Derivative relationships between volume and surface area of compact regions in \mathbb{R}^p

Jean-Luc Marichal
Introductory Examples

• Sphere in \mathbb{R}^3 of radius $r > 0$:

\[V = \frac{4}{3} \pi r^3 \]
\[A = 4\pi r^2 \]

\[\frac{dV}{dr} = A \]

The rate of change in volume is the surface area

• Circle in \mathbb{R}^2 of radius $r > 0$:

\[A = \pi r^2 \]
\[P = 2\pi r \]

\[\frac{dA}{dr} = P \]

The rate of change in area is the perimeter
• Cube in \mathbb{R}^3 of edge length $s > 0$:

\[
V = s^3 \\
A = 6s^2
\]

\[
\frac{dV}{ds} = 3s^2 \neq A !!!
\]

• Square in \mathbb{R}^2 of side length $s > 0$:

\[
A = s^2 \\
P = 4s
\]

\[
\frac{dA}{ds} = 2s \neq P !!!
\]
Cube of edge length $s > 0$

Express volume and area in terms of the inradius

$$r = \frac{s}{2} \quad \Leftrightarrow \quad s = 2r$$

$$V = 8r^3$$

$$A = 24r^2$$

Increasing the inradius r makes V increase at a rate A

Appropriate notation:

$$V \rightarrow V(s) \rightarrow V[s(r)]$$

$$A \rightarrow A(s) \rightarrow A[s(r)]$$

$$\frac{d}{dr}V[s(r)] = A[s(r)]$$
Let us formalize the problem...

One-parameter family of compact regions in \mathbb{R}^p

$$\mathcal{R} := \{ R(s) \subset \mathbb{R}^p \mid s \in E \} \quad (E = \text{real interval})$$

With \mathcal{R} is associated:

- $V : E \to \mathbb{R}_+$ differentiable
- $A : E \to \mathbb{R}_+$ continuous

$V(s)$ is the volume of $R(s)$
$A(s)$ is the area of $R(s)$
Example: Family of cubes in \mathbb{R}^3

Edge length of $R(s)$: s

$$V(s) = s^3$$
$$A(s) = 6s^2$$

Alternative representation:

Edge length of $R(s)$: $\phi(s)$

e.g. $s =$ diameter of $R(s)$

$$\Rightarrow \quad \phi(s) = \frac{s}{\sqrt{3}}$$

$$V_\phi(s) = \phi(s)^3$$
$$A_\phi(s) = 6\phi(s)^2$$
We search for a change of variable $s \mapsto r(s)$ so that

$$\frac{d}{dr} V[s(r)] = A[s(r)] \quad (r \in r(E))$$

Note: r represents a linear dimension (a length)

Questions:

Given a family \mathcal{R},

1. When does such a change of variable exists?
2. When it exists, how can we calculate it?
3. When it exists, can we provide a geometric interpretation of it?
Proposition

Suppose \(V(s) \) is a strictly monotone and differentiable function in \(E \) and \(A(s) \) is a continuous function in \(E \). Then there is a differentiable change of variable

\[
 r(s) : E \to r(E),
\]

defined as

\[
 r(s) = \int \frac{V'(s)}{A(s)} \, ds \quad (s \in E)
\]

and unique within an additive constant \(C \in \mathbb{R} \), such that

\[
 \frac{d}{dr} V[s(r)] = A[s(r)] \quad (r \in r(E)).
\]
Stability under any change of representation

If $V(s)$ and $A(s)$ are replaced with

$$V_\phi(s) = V[\phi(s)] \quad \text{and} \quad A_\phi(s) = A[\phi(s)]$$

respectively, where ϕ is a differentiable function from E into itself, then $r(s)$ is simply replaced with

$$r_\phi(s) = \int \frac{V'_\phi(s)}{A_\phi(s)} \, ds = \int \frac{V'[\phi(s)] \phi'(s)}{A[\phi(s)]} \, ds$$

$$= \int \frac{V'(t)}{A(t)} \, dt \bigg|_{t=\phi(s)}$$

$$= r[\phi(s)]$$
Example: Family of cubes in \mathbb{R}^3

\[V(s) = s^3 \]
\[A(s) = 6s^2 \]

\[\Rightarrow r(s) = \int \frac{3s^2}{6s^2} ds = \frac{s}{2} + C \]

If $C = 0$ then $r(s) = \frac{s}{2}$ (inradius)

We can consider $C \neq 0$:

e.g. $r(s) = \frac{s}{2} - r_0$

\[V[s(r)] = 8(r + r_0)^3 \]
\[A[s(r)] = 24(r + r_0)^2 \]
Family of rhombi in \mathbb{R}^2

Sides of fixed length $a > 0$

A diagonal of variable length $s \in [0, 2a[$

$$A(s) = s \sqrt{a^2 - s^2/4}$$

$$P(s) = 4a$$

$$r(s) = \int \frac{A'(s)}{P(s)} \, ds = \frac{1}{4a} \int A'(s) \, ds = \frac{A(s)}{4a} + C$$

If $C = 0$ then $r(s) = \frac{A(s)}{4a}$.

$$A[s(r)] = 4ar$$

$$P[s(r)] = 4a$$
Interpretation:
Let $r^*(s)$ be the inradius of rhombus $R(s)$

$$\frac{A(s)}{4} = \frac{ar^*(s)}{2}$$

$$\Rightarrow r(s) = \frac{A(s)}{4a} = \frac{r^*(s)}{2}$$

(half of the inradius)
Family of rectangles in \mathbb{R}^2

Fixed length $a > 0$
Variable width $s > 0$

\[
A(s) = as \\
P(s) = 2s + 2a
\]

\[
r(s) = \int \frac{A'(s)}{P(s)} \, ds = \int \frac{a}{2s + 2a} \, ds = \frac{a}{2} \ln(2s + 2a) + C
\]

Interpretation ?
Family of similar rectangles in \mathbb{R}^2

Width $s > 0$

Length $2s > 0$

\[A(s) = 2s^2 \]
\[P(s) = 6s \]

\[r(s) = \int \frac{A'(s)}{P(s)} \, ds = \int \frac{4s}{6s} \, ds = \frac{2}{3} s + C \]

Interpretation?

Setting $r_1(s) = s$ and $r_2(s) = s/2$, we have

\[r(s) = \frac{2}{3} s = \frac{2}{\frac{1}{s} + \frac{2}{s}} = H[r_1(s), r_2(s)]. \]
Case of Similar Regions

Suppose that R is made up of similar regions and $s \in \mathbb{R}_+$ is a characteristic linear dimension

Then, there are $k_1, k_2 > 0$ such that

\[
V(s) = k_1 s^p \\
A(s) = k_2 s^{p-1}
\]

\[
\Rightarrow \quad r(s) = p \frac{V(s)}{A(s)} + C
\]

Conversely,...
Proposition

Suppose $V(s)$ is a strictly monotone and differentiable function in E and $A(s)$ is a continuous function in E. Let

$$r(s) = \int \frac{V'(s)}{A(s)} ds \quad (s \in E).$$

Then there exists a constant $C \in \mathbb{R}$ such that

$$r(s) = p \frac{V(s)}{A(s)} + C \quad (s \in E)$$

if and only if there exists a constant $k > 0$ such that

$$A(s)^p = kV(s)^{p-1} \quad (s \in E).$$

In this case, \mathcal{R} is said to be a homogeneous family
Isoperimetric Ratio

The isoperimetric ratio (Pólya, 1954) of a compact region R in \mathbb{R}^p is given by $Q = \frac{A^p}{V^{p-1}}$.

The previous proposition says that \mathcal{R} is homogeneous iff the isoperimetric ratio

$$Q(s) = \frac{A(s)^p}{V(s)^{p-1}} \quad (s \in E)$$

is constant in E.

Example: Family of cubes in \mathbb{R}^3 \Rightarrow $Q(s) = 216$
Immediate Corollary

If the regions of \mathcal{R} are all similar then \mathcal{R} is a homogeneous family.

Converse false: Consider the hexagons $R(s)$ whose inner angles all have a fixed amplitude $2\pi/3$ and the consecutive sides have lengths $a(s), b(s), c(s), a(s), b(s),$ and $c(s),$ respectively. Then

\[
A(s) = \frac{\sqrt{3}}{2}[a(s)b(s) + b(s)c(s) + c(s)a(s)],
\]
\[
P(s) = 2[a(s) + b(s) + c(s)].
\]

By choosing $a(s) = 1, b(s) = s^2,$ and $c(s) = (s + 1)^2,$ where $s \in \mathbb{R}_+,$ we obtain a homogeneous family.
Proposition

R is a homogeneous family if and only if there exists a differentiable change of variable $\phi : E \to \phi(E)$ and constants $k_1, k_2 > 0$ such that

\[V(s) = k_1 \phi(s)^p \quad \text{and} \quad A(s) = k_2 \phi(s)^{p-1} \quad (s \in E). \]

$V(s)$ and $A(s)$ are homogeneous functions of degrees p and $p - 1$, respectively, up to the same change of variable $\phi(s)$.
Elasticity

Define the area elasticity of volume as the proportional change in volume relative to the proportional change in area, that is,

\[e_{V,A}(s) = \frac{\frac{dV(s)}{V(s)}}{\frac{dA(s)}{A(s)}} = \frac{V'(s)}{V(s)} \frac{A(s)}{A'(s)} \frac{V(s)}{A(s)} = \frac{V'(s)}{V'(s)} \frac{A(s)}{A(s)} \frac{V(s)}{V(s)}. \]

Proposition

R is a homogeneous family if and only if

\[e_{V,A}(s) = \frac{p}{p-1} \quad (s \in E). \]
Open Questions

• Characterize geometrically homogeneous families

• Given a class of compact regions in \mathbb{R}^p, find homogeneous subfamilies, if any.
Geometric Interpretation of r?

Theorem For any family of similar circumscribing polytopes, the variable r represents the radius of the inscribed sphere

Corollary If a p-dimensional sphere of radius r is inscribed in a polytope, then

$$V = \frac{r}{p} A.$$

Proposition

Let $R(s)$ be a homogeneous family of n-faced polyhedra $R(s)$ that are star-like with respect to a point $T(s)$ in the interior of $R(s)$. Let $P_i(s)$ be the pyramid whose base is the ith facet of $R(s)$ and whose vertex is $T(s)$. Then

$$r(s) = \sum_{i=1}^{n} \frac{A_i(s)}{A(s)} r_i(s)$$

and

$$\frac{1}{r(s)} = \sum_{i=1}^{n} \frac{V_i(s)}{V(s)} \frac{1}{r_i(s)}$$

where $V_i(s)$, $A_i(s)$, and $r_i(s)$ are respectively the volume of $P_i(s)$, the surface area of the base of $P_i(s)$, and the altitude from $T(s)$ of $P_i(s)$.
Case of triangle

The centroid T of any triangle provides an equal-area triangulation.

So we have

$$\frac{1}{r} = \sum_{i=1}^{3} \frac{V_i}{V} \cdot \frac{1}{r_i} = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{r_i}$$

that is

$$r = H(r_1, r_2, r_3).$$

Setting $h_i := 3r_i$ (triangle altitudes), we get

$$3r = H(h_1, h_2, h_3)$$

For any triangle, the harmonic mean of its altitudes is three times the inradius of the triangle.
Open Questions

• Generalize the previous proposition to any star-like region (cones, cylinders...)

• Generalize the previous proposition to any region (torus...)

Some results on similar regions

1. Any convex region R in \mathbb{R}^2 having an inscribed circle S of radius r has the property

$$\frac{d}{dr} A = P$$

2. Let $R \subset \mathbb{R}^2$ be a region as in (1) above and which is symmetric w.r.t. an axis through the center of S. For the solid formed by revolving R about that axis of symmetry, we have

$$\frac{d}{dr} V = A$$

The same for the solid formed by lifting R to a height of $2r$.

M. Dorff and L. Hall, Solids in \mathbb{R}^n whose area is the derivative of the volume, submitted.
Singular Case
(non similar regions)

Let $R \subset \mathbb{R}^2$ be a disc or a regular polygonal region with in-radius r. For any solid formed by revolving R about an axis that does not intersect R, we have

$$\frac{d}{dr} V = A$$

Example: Torus obtained by rotating a circle centered at the fixed point $(a, 0)$ and of radius $r < a$:

$$V = (2\pi a)(\pi r^2)$$
$$A = (2\pi a)(2\pi r)$$

$$\frac{d}{dr} V = A$$
Another open problem: the case of n-parameter families

Example: Consider a family of rectangles $R(s_1, s_2)$ with length $s_1 > 0$ and width $s_2 > 0$. Consider also the linear change of variables

$$r_1(s) = \frac{s_1}{2} \quad \text{and} \quad r_2(s) = \frac{s_2}{2}$$

which inverts into

$$s_1(r) = 2r_1 \quad \text{and} \quad s_2(r) = 2r_2.$$

Then we clearly have

$$A(s) = 4r_1(s)r_2(s).$$
$$P(s) = 4r_1(s) + 4r_2(s).$$

Finally,

$$\frac{\partial}{\partial r_1} A[s(r)] + \frac{\partial}{\partial r_2} A[s(r)] = P[s(r)].$$

In the general case, we consider the following derivative relationship:

$$\sum_{j=1}^{n} \frac{\partial}{\partial r_j} V[s(r)] = A[s(r)],$$

where $r(s)$ is an appropriate change of variables.

to be continued...