Robustness of groups and trajectories in Nagin’s finite mixture model

Jang SCHILTZ (University of Luxembourg)

joint work with
Jean-Daniel GUIGOU (University of Luxembourg),
& Bruno LOVAT (University Nancy II)

June 7, 2012
Outline

1 Nagin’s Finite Mixture Model
Outline

1. Nagin’s Finite Mixture Model

2. Robustness of the results
Outline

1. Nagin’s Finite Mixture Model

2. Robustness of the results
General description of Nagin’s model

We have a collection of individual trajectories.
General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous subpopulations and to estimate a mean trajectory for each subpopulation.
General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous subpopulations and to estimate a mean trajectory for each subpopulation.

This is still an inter-individual model, but unlike other classical models such as standard growth curve models, it allows the existence of subpopulations with completely different behaviors.
The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i1}, y_{i2}, ..., y_{iT}$ be T measures of the variable, taken at times $t_1, ... t_T$ for subject number i.
The Likelihood Function (1)

Consider a population of size \(N \) and a variable of interest \(Y \).

Let \(Y_i = y_{i1}, y_{i2}, ..., y_{iT} \) be \(T \) measures of the variable, taken at times \(t_1, ... t_T \) for subject number \(i \).

\(P(Y_i) \) denotes the probability of \(Y_i \).
The Likelihood Function (1)

Consider a population of size \(N \) and a variable of interest \(Y \).

Let \(Y_i = y_{i1}, y_{i2}, \ldots, y_{iT} \) be \(T \) measures of the variable, taken at times \(t_1, \ldots, t_T \) for subject number \(i \).

\[P(Y_i) \] denotes the probability of \(Y_i \)

- count data \(\Rightarrow \) Poisson distribution
The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i1}, y_{i2}, \ldots, y_{iT}$ be T measures of the variable, taken at times t_1, \ldots, t_T for subject number i.

$P(Y_i)$ denotes the probability of Y_i.

- count data \Rightarrow Poisson distribution
- binary data \Rightarrow Binary logit distribution
The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i1}, y_{i2}, \ldots, y_{iT}$ be T measures of the variable, taken at times t_1, \ldots, t_T for subject number i.

$P(Y_i)$ denotes the probability of Y_i.

- count data \Rightarrow Poisson distribution
- binary data \Rightarrow Binary logit distribution
- censored data \Rightarrow Censored normal distribution
Consider a population of size \(N \) and a variable of interest \(Y \).

Let \(Y_i = y_{i1}, y_{i2}, \ldots, y_{iT} \) be \(T \) measures of the variable, taken at times \(t_1, \ldots, t_T \) for subject number \(i \).

\(P(Y_i) \) denotes the probability of \(Y_i \):

- count data \(\Rightarrow \) Poisson distribution
- binary data \(\Rightarrow \) Binary logit distribution
- censored data \(\Rightarrow \) Censored normal distribution

Aim of the analysis: Find \(r \) groups of trajectories of a given kind (for instance polynomials of degree 4, \(P(t) = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 \)).
The Likelihood Function (2)

\(\pi_j \) : probability of a given subject to belong to group number \(j \)
The Likelihood Function (2)

\(\pi_j \): probability of a given subject to belong to group number \(j \)

\[\Rightarrow \pi_j \text{ is the size of group } j. \]
The Likelihood Function (2)

\(\pi_j \): probability of a given subject to belong to group number \(j \)

\[\Rightarrow \pi_j \text{ is the size of group } j. \]

We try to estimate a set of parameters \(\Omega = \{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \} \) which allow to maximize the probability of the measured data.
The Likelihood Function (2)

\(\pi_j \): probability of a given subject to belong to group number \(j \)

\[\Rightarrow \pi_j \text{ is the size of group } j. \]

We try to estimate a set of parameters \(\Omega = \{ \beta_j^0, \beta_j^1, \beta_j^2, \beta_j^3, \beta_j^4, \pi_j \} \) which allow to maximize the probability of the measured data.

\(P_j(Y_i) \): probability of \(Y_i \) if subject \(i \) belongs to group \(j \)
The Likelihood Function (2)

π_j: probability of a given subject to belong to group number j

$\Rightarrow \pi_j$ is the size of group j.

We try to estimate a set of parameters $\Omega = \{\beta^j_0, \beta^j_1, \beta^j_2, \beta^j_3, \beta^j_4, \pi_j\}$ which allow to maximize the probability of the measured data.

$P^j(Y_i)$: probability of Y_i if subject i belongs to group j

$\Rightarrow P(Y_i) = \sum_{j=1}^{r} \pi_j P^j(Y_i)$. \hfill (1)
The Likelihood Function (2)

\(\pi_j \) : probability of a given subject to belong to group number \(j \)

\[\Rightarrow \pi_j \text{ is the size of group } j. \]

We try to estimate a set of parameters \(\Omega = \{ \beta^j_0, \beta^j_1, \beta^j_2, \beta^j_3, \beta^j_4, \pi_j \} \) which allow to maximize the probability of the measured data.

\(P^j(Y_i) \) : probability of \(Y_i \) if subject \(i \) belongs to group \(j \)

\[\Rightarrow P(Y_i) = \sum_{j=1}^{r} \pi_j P^j(Y_i). \] (1)

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
The Likelihood Function (2)

\(\pi_j \): probability of a given subject to belong to group number \(j \)

\[\Rightarrow \pi_j \text{ is the size of group } j. \]

We try to estimate a set of parameters \(\Omega = \{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \} \) which allow to maximize the probability of the measured data.

\(P_j(Y_i) \): probability of \(Y_i \) if subject \(i \) belongs to group \(j \)

\[\Rightarrow P(Y_i) = \sum_{j=1}^{r} \pi_j P_j(Y_i). \quad (1) \]

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

- finite: sums across a finite number of groups
The Likelihood Function (2)

\(\pi_j \) : probability of a given subject to belong to group number \(j \)

\[\Rightarrow \pi_j \text{ is the size of group } j. \]

We try to estimate a set of parameters \(\Omega = \{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \} \) which allow to maximize the probability of the measured data.

\(P^j(Y_i) \) : probability of \(Y_i \) if subject \(i \) belongs to group \(j \)

\[\Rightarrow P(Y_i) = \sum_{j=1}^{r} \pi_j P^j(Y_i). \quad (1) \]

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

- finite: sums across a finite number of groups
- mixture: population composed of a mixture of unobserved groups
The case of a censored normal distribution

If all the measures are in the interval \([S_{\text{min}}, S_{\text{max}}]\), we get

\[
L = 1 \sigma^N \prod_{i=1} r \sum_{j=1} \pi_j T \prod_{t=1} \phi(y_i t - \beta_j t i t \sigma)
\] (2)

It is too complicated to get closed-forms equations \(\Rightarrow\) quasi-Newton procedure maximum research routine

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()

Robustness of results June 7, 2012 7 / 28
The case of a censored normal distribution

If all the measures are in the interval \([S_{min}, S_{max}]\), we get

\[
L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta_j t_{it}}{\sigma} \right).
\] (2)

It is too complicated to get closed-form equations ⇒ quasi-Newton procedure maximum research routine

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II)
The case of a censored normal distribution

If all the measures are in the interval \([S_{min}, S_{max}]\), we get

\[
L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_{j} \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta_{j} t_{it}}{\sigma} \right). \tag{2}
\]

It is too complicated to get closed-forms equations.
The case of a censored normal distribution

If all the measures are in the interval \([S_{\text{min}}, S_{\text{max}}]\), we get

\[
L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta_j t_{it}}{\sigma} \right).
\]

(2)

It is too complicated to get closed-forms equations

\[\Rightarrow \] quasi-Newton procedure maximum research routine
The case of a censored normal distribution

If all the measures are in the interval \([S_{\text{min}}, S_{\text{max}}]\), we get

\[
L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta^j t_{it}}{\sigma} \right). \tag{2}
\]

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).
A computational trick

The estimations of π_j must be in $[0, 1]$.

Finally,

$$L = \frac{1}{\sigma N} \prod_{i=1}^{\pi} r \sum_{j=1}^{\theta} e^{\theta_j r \sum_{j=1}^{\pi} e^{\theta_j T} \prod_{t=1}^{\phi} (y_{it} - \beta_j t_i)}.$$

(4)
A computational trick

The estimations of π_j must be in $[0, 1]$.

It is difficult to force this constraint in model estimation.
A computational trick

The estimations of π_j must be in $[0, 1]$.

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters θ_j such that

\[\pi_j = e^{\theta_j} \sum_{j=1}^{\infty} e^{\theta_j}, \] (3)

Finally,

\[L = \frac{1}{\sigma N} \prod_{i=1}^{r} \sum_{j=1}^{\infty} e^{\theta_j} \prod_{t=1}^{T} \phi(y_{it} - \beta_j t^i \sigma). \] (4)
A computational trick

The estimations of π_j must be in $[0, 1]$.

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters θ_j such that

$$\pi_j = \frac{e^{\theta_j}}{r \sum_{j=1}^{r} e^{\theta_j}},$$

(3)
A computational trick

The estimations of π_j must be in $[0, 1]$.

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters θ_j such that

$$
\pi_j = \frac{e^{\theta_j}}{r \sum_{j=1}^{r} e^{\theta_j}},
$$

Finally,

$$
L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \frac{e^{\theta_j}}{r \sum_{j=1}^{r} e^{\theta_j}} \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta_j t_{it}}{\sigma} \right).
$$
Model Selection

Bayesian Information Criterion:

\[\text{BIC} = \log(L) - 0.5k \log(N), \]

where \(k \) denotes the number of parameters in the model.

Rule: The bigger the BIC, the better the model!
Bayesian Information Criterion:

\[\text{BIC} = \log(L) - 0.5k \log(N), \]

where \(k \) denotes the number of parameters in the model.
Bayesian Information Criterion:

\[
BIC = \log(L) - 0.5k \log(N),
\]

where \(k\) denotes the number of parameters in the model.

Rule:
The bigger the BIC, the better the model!
Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j:

$$P(j/Y_i)$$

Bayes's theorem \Rightarrow

$$P(j/Y_i) = \frac{P(Y_i/j) \pi_j}{\sum_{j=1}^{r} P(Y_i/j) \pi_j}.$$ (6)

Bigger groups have on average larger probability estimates. To be classified into a small group, an individual really needs to be strongly consistent with it.
Posterior Group-Membership Probabilities

Posterior probability of individual i’s membership in group j: $P(j/Y_i)$.

Bayes’s theorem $\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\pi_j}{\sum_{j=1}^{n} P(Y_i/j)\pi_j}$.

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be strongly consistent with it.
Posterior Group-Membership Probabilities

Posterior probability of individual i’s membership in group j: $P(j/Y_i)$.

Bayes’s theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^{r} P(Y_i/j)\hat{\pi}_j}.$$ \hspace{1cm} (6)
Posterior Group-Membership Probabilities

Posterior probability of individual i’s membership in group j: $P(j/Y_i)$.

Bayes’s theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)^{\hat{\pi}_j}}{\sum_{j=1}^{r} P(Y_i/j)^{\hat{\pi}_j}}.$$ (6)

Bigger groups have on average larger probability estimates.
Posterior Group-Membership Probabilities

Posterior probability of individual i’s membership in group j: $P(j/Y_i)$.

Bayes’s theorem

$$P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^{r} P(Y_i/j)\hat{\pi}_j}.$$ (6)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be strongly consistent with it.
Application: Salary trajectories
Application: Salary trajectories

![Graph showing salary trajectories over time with different group percent labels.](image-url)
Outline

1. Nagin’s Finite Mixture Model

2. Robustness of the results
Result for 3 groups:
workers beginning their career in 1982

![Graph showing outcomes for different groups over time.](image)
Result for 3 groups:
workers beginning their career in 1983
Result for 3 groups:
workers beginning their career in 1984
Result for 3 groups: workers beginning their career in 1985

Robustness of results
Result for 3 groups: workers beginning their career in 1986
Result for 3 groups: workers beginning their career in 1987
Previous work

The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

\[\text{statistical shape analysis:} \]

Compute the mean shape of the different results.

Use Ziezold's test for every set of trajectories to see if it is significantly different from the mean set of trajectories.

Remark:

This approach is just useful to compare a whole set of models.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II)
The statistical shape analysis approach

Comparing the geometrical figure of the trajectories
The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

→ statistical shape analysis:

Compute the mean shape of the different results.

Use Ziezold's test for every set of trajectories to see if it is significantly different from the mean set of trajectories.

Remark:

This approach is just useful to compare a whole set of models.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()

Robustness of results

June 7, 2012 20 / 28
The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

\[\rightarrow \text{statistical shape analysis:} \]

Compute the mean shape of the different results.
The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

\[\rightarrow \] statistical shape analysis:

Compute the mean shape of the different results.

Use Ziezold’s test for every set of trajectories to see if it is significantly different from the mean set of trajectories.
The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

→ statistical shape analysis:

Compute the mean shape of the different results.

Use Ziezold’s test for every set of trajectories to see if it is significantly different from the mean set of trajectories.

Remark:

This approach is just useful to compare a whole set of models.
The mean shape

To compare the standardized and centered sets of landmarks, we need to define the mean shape of all the objects and a distance function which allows us to evaluate how "near" every object is from this mean shape.
The mean shape

To compare the standardized and centered sets of landmarks, we need to define the mean shape of all the objects and a distance function which allows us to evaluate how "near" every object is from this mean shape.

The term "mean" is here used in the sense of Fréchet (1948).
The mean shape

To compare the standardized and centered sets of landmarks, we need to define the mean shape of all the objects and a distance function which allows us to evaluate how “near” every object is from this mean shape.

The term ”mean” is here used in the sense of Fréchet (1948).

If X denotes a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ with values in a metric space (Ξ, d), an element $m \in \Xi$ is called a mean of $x_1, x_2, ..., x_k \in \Xi$ if

$$\sum_{j=1}^{k} d(x_j, m)^2 = \inf_{\alpha \in \Xi} \sum_{j=1}^{k} d(x_j, \alpha)^2.$$ \hspace{1cm} (7)

That means that the mean shape is defined as the shape with the smallest variance of all shapes in a group of objects.
The mean shape

To compare the standardized and centered sets of landmarks, we need to define the mean shape of all the objects and a distance function which allows us to evaluate how ”near” every object is from this mean shape.

The term ”mean” is here used in the sense of Fréchet (1948).

If \(X \) demotes a random variable defined on a probability space \((\Omega, \mathcal{F}, P) \) with values in a metric space \((\Xi, d) \), an element \(m \in \Xi \) is called a mean of \(x_1, x_2, \ldots, x_k \in \Xi \) if

\[
\sum_{j=1}^{k} d(x_j, m)^2 = \inf_{\alpha \in \Xi} \sum_{j=1}^{k} d(x_j, \alpha)^2. \tag{7}
\]

That means that the mean shape is defined as the shape with the smallest variance of all shapes in a group of objects.
Ziezold’s test

We consider to subsets A and B of the sample of size n and $N - n$ respectively.
Ziezold’s test

We consider two subsets A and B of the sample of size n and $N - n$ respectively.

The subset A is a realization of a distribution P and the subset B is an independent realization of a distribution Q.
Ziezold’s test

We consider two subsets A and B of the sample of size n and $N - n$ respectively.

The subset A is a realization of a distribution P and the subset B is an independent realization of a distribution Q.

The test hypotheses are:

- **Hypothesis**: $H_0 : P = Q$
- **Alternative**: $H_1 : P \neq Q$
Ziezold’s test (2)

1. Computing the mean shape m_0 of subset A.

Determination of all the possibilities of dividing the set into two subset with the same proportion.

Comparing the u_0-value to all possible u-values. Computing the rank (small u-value mean a small rank).

Calculate the p-value for H_0. $p_r = i/N_n$ for $i = 1, \ldots, N_n$, where r is the rank for which we assume a uniform distribution.
Ziezold's test (2)

1. Computing the mean shape m_0 of subset A.
2. Computing the u-value

Determination of all the possibilities of dividing the set into two subsets with the same proportion.

Comparing the u_0-value to all possible u-values. Computing the rank (small u-value mean a small rank).

Calculate the p-value for H_0.

$$p_r = rac{i}{N}$$ for $i = 1, \ldots, N$, where r is the rank for which we assume a uniform distribution.
Ziezold’s test (2)

1. Computing the mean shape m_0 of subset A.
2. Computing the u-value

\[u_0 = \sum_{j=1}^{n} \text{card} \left(b_k : d(b_k, m_0) < d(a_j, m_0) \right). \]
Ziezold’s test (2)

1. Computing the mean shape m_0 of subset A.

2. Computing the u-value

\[u_0 = \sum_{j=1}^{n} \text{card}(b_k : d(b_k, m_0) < d(a_j, m_0)). \]

3. Determination of all the possibilities of dividing the set into two subset with the same proportion.
Ziezold’s test (2)

1. Computing the mean shape m_0 of subset A.

2. Computing the u-value

 $$u_0 = \sum_{j=1}^{n} \text{card}(b_k : d(b_k, m_0) < d(a_j, m_0)).$$

3. Determination of all the possibilities of dividing the set into two subset with the same proportion.

4. Comparing the u_0-value to all possible u-values. Computing the rank (small u-value mean a small rank).
Ziezold’s test (2)

1. Computing the mean shape m_0 of subset A.
2. Computing the u-value

$$u_0 = \sum_{j=1}^{n} \text{card} \left(b_k : d(b_k, m_0) < d(a_j, m_0) \right).$$

3. Determination of all the possibilities of dividing the set into two subset with the same proportion.
4. Comparing the u_0-value to all possible u-values. Computing the rank (small u-value mean a small rank).
5. Calculate the p-value for H_0. $p_{r=i} = \frac{1}{\binom{N}{n}}$ for $i = 1, \ldots, \binom{N}{n}$, where r is the rank for which we assume a uniform distribution.
The statistical shape analysis approach

Are these sets of trajectories different?
The statistical shape analysis approach

Are these sets of trajectories different?
The statistical shape analysis approach

Are these sets of trajectories different?

Shape Analysis says yes,
The statistical shape analysis approach

Are these sets of trajectories different?

Shape Analysis says yes, but are they really?
The statistical shape analysis approach

Alternative methodology
To avoid this kind of situation, one can take the estimated parameters of the model as landmarks and perform a statistical "shape" analysis on these.
The classical statistics approach
The classical statistics approach

Compare the estimated parameters:
The classical statistics approach

Compare the estimated parameters:

- Performing the Wald test to see if the parameters differ between two models.
The classical statistics approach

Compare the estimated parameters:

- Performing the Wald test to see if the parameters differ between two models.
- Compare the confidence intervals of the parameters and see if they have an intersection.
Functional Data Analysis Approach

Compare the set of trajectories as functions:
Consider a metrical space on the continuous functions defined on the time interval of the trajectories and use tests on functional data to analyze the time stability of the results.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()

Robustness of results

June 7, 2012 27 / 28
Functional Data Analysis Approach

Compare the set of trajectories as functions:
Functional Data Analysis Approach

Compare the set of trajectories as functions:

Consider a metrical space on the continuous functions defined on the time interval of the trajectories and use tests on functional data to analyze the time stability of the results.
Bibliography

- Schiltz, J. 2012: Robustness of groups and trajectories in Nagin’s finite mixture model. To appear.