Dynamic many-valued logics for searching games with errors

Bruno Teheux

Introduction

Providing concrete interpretations of many-valued logics has always been an intriguing problem. In [6], Mundici develops a model of the Rényi-Ulam searching games with lies in terms of Łukasiewicz logic and MV-algebras. In this game, a liar picks out a number in a given search space M. A detective has to guess this number by asking Yes/No questions to the liar who is allowed to lie a maximum given number of times.

In his model of the game, Mundici interprets the states of knowledge of the detective at a given step of the game as an element of an MV-algebra. Even though this model provides a way to interpret the effect of the liar’s answers on the states of knowledge of the game, its language (the language of MV-algebras) is not rich enough to state specifications about a whole round of the game.

The starting point of this talk is the will to add a ‘dynamic’ layer to this ‘static’ interpretation of the game. We actually develop finitely-valued generalizations of Propositional Dynamic Logic, which is a multi-modal logic designed to reason about programs (see [2, 5]). Informally, these new logics are a mixture of many-valued modal logics (as introduced in [1, 3, 4]) and algebras of regular programs.

$n + 1$-valued Kripke models

We fix $n \geq 1$ for the remainder of the paper and we denote by \mathbb{L}_n the sub-MV-algebra $\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$ of $[0, 1]$.

We denote by Π a set of programs and by Form a set of formulas defined from a countable set Prop of propositional variables $p, q \ldots$ and a countable set Π_0 of atomic programs a, b, \ldots by the following Backus-Naur forms (where ϕ are formulas and α are programs):

$$
\phi ::= p \mid 0 \mid \neg \phi \mid \phi \to \phi \mid [\alpha]\phi \\
\alpha ::= a \mid \phi? \mid \alpha ; \alpha \mid \alpha \cup \alpha \mid \alpha^* .
$$
Definition 1. An \(n + 1 \)-valued Kripke model \(M = \langle W, R, Val \rangle \) is given by a non empty set \(W \), a map \(R : \Pi_0 \to 2^{W \times W} \) that assigns a binary relation \(R_a \) to any \(a \) of \(\Pi_0 \) and a map \(\text{Val} : W \times \text{Prop} \to \mathbb{L}_n \) that assigns a truth value to any propositional variable \(p \) of \(\text{Prop} \) in any world \(w \) of \(W \).

The maps \(R \) and \(\text{Val} \) are extended by mutual induction to formulas and programs by the following rules (where \(\lnot^{[0,1]} \) and \(\to^{[0,1]} \) denote \(\text{ŁUKASIEWICZ's} \) interpretation of \(\lnot \) and \(\to \) on \([0,1] \)):

1. \(R_{\alpha;\beta} = R_{\alpha} \circ R_{\beta} \);
2. \(R_{\alpha;\beta} = R_{\alpha} \cap R_{\beta} \);
3. \(R_{\psi?} = \{(u,u) \mid \text{Val}(u,\psi) = 1\} \);
4. \(R_{\alpha}^* = \bigcup_{n \in \omega} (R_{\alpha})^n \);
5. \(\text{Val}(w,\phi \to \psi) = \text{Val}(w,\phi)^{[0,1]} \text{Val}(w,\psi) \);
6. \(\text{Val}(w,\lnot \psi) = \lnot^{[0,1]} \text{Val}(w,\psi) \);
7. \(\text{Val}(w,[\alpha]\psi) = \bigwedge \{\text{Val}(v,\psi) \mid (w,v) \in R_{\alpha}\} \)

If \(w \) is a world of a Kripke model \(M \) and if \(\text{Val}(w,\phi) = 1 \), we write \(M,w \models \phi \) and say that \(\phi \) is true in \(w \). If \(\phi \) is a formula that is true in each world of a model \(M \) then \(\phi \) is true in \(M \). A formula that is true in every Kripke model is called a tautology.

Hence, we intend to interpret the operator ‘;’ as the concatenation program operator, the operator ‘\(\cup \)’ as the alternative program operator and the operator ‘\(* \)’ as the Kleene program operator.

n + 1-valued propositional dynamic logics

The purpose of the talk is to characterize the theory of the \(n + 1 \)-valued Kripke models (Theorem 5).

Definition 2. An \(n + 1 \)-valued propositional dynamic logic (or simply a logic) is a subset \(L \) of \(\text{Form} \) that is closed under the rules of modus ponens, uniform substitution and necessitation (generalization) and that contains the following axioms:

1. tautologies of the \(n + 1 \)-valued \(\text{ŁUKASIEWICZ} \) logic;
2. for any program \(\alpha \), axioms defining modality \([\alpha]\):
 (a) \([\alpha](p \to q) \to ([\alpha]p \to [\alpha]q) \),
 (b) \([\alpha](p \oplus p) \leftrightarrow [\alpha]p \oplus [\alpha]p \),
 (c) \([\alpha](p \odot p) \leftrightarrow [\alpha]p \odot [\alpha]p \),
3. the axioms that define the program operators: for any programs \(\alpha \) and \(\beta \) of \(\Pi \):

(a) $[\alpha \cup \beta]p \leftrightarrow [\alpha]p \land [\beta]p$,
(b) $[\alpha; \beta]p \leftrightarrow [\alpha]([\beta]p)$,
(c) $[q?]p \leftrightarrow (\neg q^n \lor p)$,
(d) $[\alpha^*]p \leftrightarrow (p \land [\alpha][\alpha^*]p)$,
(e) $[\alpha^*]p \rightarrow [\alpha^*][\alpha^*]p$,

4. the induction axiom $(p \land [\alpha^*](p \rightarrow [\alpha][p]^n)) \rightarrow [\alpha^*]p$ for any program α.

We denote by PDL$_n$ the smallest $n + 1$-valued propositional dynamic logic.

As usual, a formula ϕ that belongs to a logic L is called a theorem of L.

Completeness result

The classical construction of the canonical model can be adapted for PDL$_n$. We denote by F_n the Lindenbaum - Tarski algebra of PDL$_n$. The reduct of F_n to the language of MV-algebras is an MV-algebra. We denote by $\mathcal{MV}(F_n, L_n)$ the set of MV-homomorphisms from the MV-reduct of F_n to L_n.

Definition 3. The canonical model of PDL$_n$ is defined as the model $M^c = (W^c, R^c, Val^c)$ where

1. $W^c = \mathcal{MV}(F_n, L_n)$;
2. if $\alpha \in \Pi$, the relation R^c_α is defined by

 $$R^c_\alpha = \{(u, v) \mid \forall \phi \in F_n \ (u([\alpha]\phi) = 1 \Rightarrow v(\phi) = 1)\};$$
3. the map Val^c is defined by

 $$Val^c : W^c \times \text{Form} : (u, \phi) \mapsto u(\phi).$$

Even though the valuation in M^c is defined for any formula, it turns out that it is compatible with the inductive definition of a valuation in a Kripke model.

Proposition 4.

1. If $\phi \in \text{Form}$, if $\alpha \in \Pi$ and if u is a world of W^c then $Val^c(u, [\alpha]\phi) = \bigwedge \{Val^c(v, \phi) \mid v \in R^c_\alpha u\}$.
2. For any $\alpha \in \Pi$, the relation R^c_α is a reflexive and transitive extension of R_α.

According to the second item of the previous proposition, the canonical model may not be Kripke model. Nevertheless, it is possible to use a filtration lemma in order to use the canonical model to obtain a completeness result for PDL$_n$.

Theorem 5. The logic PDL$_n$ is complete with respect to the $n + 1$-valued Kripke models, i.e., a formula ϕ is a theorem of PDL$_n$ if and only if ϕ is a tautology.
References

