From Model Transformation
to Model Integration
based on the Algebraic Approach to
Triple Graph Grammars

Hartmut Ehrig1, Karsten Ehrig2 and Frank Hermann1

1 [ehrig, frank](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

2 karsten@mcs.le.ac.uk
Department of Computer Science
University of Leicester, United Kingdom
From Model Transformation to Model Integration based on the Algebraic Approach to Triple Graph Grammars

Hartmut Ehrig1, Karsten Ehrig2 and Frank Hermann1

1 [ehrig, frank](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

2 karsten@mcs.le.ac.uk
Department of Computer Science
University of Leicester, United Kingdom

February 5, 2008

Abstract

Success and efficiency of software and system design fundamentally relies on its models. The more they are based on formal methods the more they can be automatically transformed to execution models and finally to implementation code. This paper presents model transformation and model integration as specific problem within bidirectional model transformation, which has shown to support various purposes, such as analysis, optimization, and code generation.

The main purpose of model integration is to establish correspondence between various models, especially between source and target models. From the analysis point of view, model integration supports correctness checks of syntactical dependencies between different views and models.

The overall concept is based on the algebraic approach to triple graph grammars, which are widely used for model transformation. The main result shows the close relationship between model transformation and model integration. For each model transformation sequence there is a unique model integration sequence and vice versa. This is demonstrated by a quasi-standard example for model transformation between class models and relational data base models.

Keywords: model transformation, model integration, syntactical correctness

1 Introduction

Whenever one can expect benefits out of different modeling languages for the same specific task there is a substantial motivation of combining at least two of them. For this purpose it is useful to have model transformations between these modeling languages together with suitable analysis and verification techniques. In cases of bidirectional model transformation the support for the modeling process increases, for instance, if results of analysis can be translated backwards to mark the original source of deficiency or defect, respectively.

In [EEE+07] Ehrig et al. showed how to analyze bi-directional model transformations based on triple graph grammars [Sch94, KS06] with respect to information preservation, which is especially important to ensure the benefits of other languages for all interesting parts of models. Triple graph grammars are based on triple rules, which allow to generate integrated models G consisting of a source model G_S, a target model G_T and a connection model G_C together with correspondences from G_C to G_S and G_T. Altogether G is a triple graph $G = (G_S \leftarrow G_C \rightarrow G_T)$. From each triple rule tr we are able to derive a source rule tr_S and a forward rule tr_F, such that the source rules are generating source models G_S and the forward
rules allow to transform a source model G_S into its corresponding target model G_T leading to a model transformation from source to target models. On the other hand we can also derive from each triple rule tr a target rule tr_T and a backward rule tr_B, such that the target rules are generating target models G_T and backward rules transform target models to source models. The relationship between these forward and backward model transformation sequences was analyzed already in [EEE07] based on a canonical decomposition and composition result for triple transformations.

In this paper we study the model integration problem: Given a source model G_S and a target model G_T we want to construct a corresponding integrated model $G = (G_S \leftarrow G_C \rightarrow G_T)$. For this purpose, we derive from each triple rule tr an integration rule tr_I, such that the integration rules allow to define a model integration sequence from (G_S, G_T) to G. Of course, not each pair (G_S, G_T) allows to construct such a model integration sequence. In our main result we characterize existence and construction of model integration sequences from (G_S, G_T) to G by model transformation sequences from G_S to G_T. This main result is based on the canonical decomposition result mentioned above [EEE07] and a new decomposition result of triple transformation sequences into source-target- and model integration sequences.

In Section 2 we review triple rules and triple graph grammars as introduced in [Sch94] and present as example the triple rules for model transformation and integration between class models and relational data base models. Model transformations based on our paper [EEE07] are introduced in Section 3, where we show in addition syntactical correctness of model transformation. The main new part of this paper is model integration presented in Section 4 including the main results mentioned above and applied to our example. Related and future work are discussed in sections 5 and 6, respectively.

2 Review of Triple Rules and Triple Graph Grammars

Triple graph transformation [Sch94] has been shown to be a promising approach to consistently co-develop two related structures. Bidirectional model transformation can be defined using models consisting of a pair of graphs which are connected via an intermediate correspondence graph together with its embeddings into the source and target graph. In [KS06], Königs and Schürr formalize the basic concepts of triple graph grammars in a set-theoretical way, which was generalized and extended by Ehrig et. al. in [EEE07] to typed, attributed graphs. In this section, we shortly review main constructions and relevant results for model integration as given in [EEE07].

Definition 1 (Triple Graph and Triple Graph Morphism). Three graphs SG, CG, and TG, called source, connection, and target graphs, together with two graph morphisms $s_C : CG \rightarrow SG$ and $t_C : CG \rightarrow TG$ form a triple graph $G = (SG \xleftarrow{s_C} CG \xrightarrow{t_C} TG)$. G is called empty, if SG, CG, and TG are empty graphs.

A triple graph morphism $m = (s, c, t) : G \rightarrow H$ between two triple graphs $G = (SG \xleftarrow{s_C} CG \xrightarrow{t_C} TG)$ and $H = (SH \xleftarrow{s_H} CH \xrightarrow{t_H} TH)$ consists of three graph morphisms $s : SG \rightarrow SH$, $c : CG \rightarrow CH$ and $t : TG \rightarrow TH$ such that $s \circ s_G = s_H \circ c$ and $t \circ t_G = t_H \circ c$. It is injective, if morphisms s, c and t are injective.

Triple graphs G are typed over a triple graph $TG = (TG_S \leftarrow TG_C \rightarrow TG_T)$ by a triple graph morphism $t_G : G \rightarrow TG$. Type graph of the example is given in Fig. 1 showing the structure of class diagrams in source component and relational databases in target component. Where classes are connected via associations the corresponding elements in databases are foreign keys. Though, the complete structure of correspondence elements between both types of models is defined via the connection component of TG. Throughout the example, originating from [EEE07], elements are arranged left, center, and right according to the component types source, correspondence and target. Morphisms starting at a connection part are given by dashed arrow lines.

A triple rule is used to build up source and target graphs as well as their connection graph, i.e. to build up triple graphs. Structure filtering which deletes parts of triple graphs,

2 Review of Triple Rules and Triple Graph Grammars

Triple graph transformation [Sch94] has been shown to be a promising approach to consistently co-develop two related structures. Bidirectional model transformation can be defined using models consisting of a pair of graphs which are connected via an intermediate correspondence graph together with its embeddings into the source and target graph. In [KS06], Königs and Schürr formalize the basic concepts of triple graph grammars in a set-theoretical way, which was generalized and extended by Ehrig et. al. in [EEE07] to typed, attributed graphs. In this section, we shortly review main constructions and relevant results for model integration as given in [EEE07].

Definition 1 (Triple Graph and Triple Graph Morphism). Three graphs SG, CG, and TG, called source, connection, and target graphs, together with two graph morphisms $s_C : CG \rightarrow SG$ and $t_C : CG \rightarrow TG$ form a triple graph $G = (SG \xleftarrow{s_C} CG \xrightarrow{t_C} TG)$. G is called empty, if SG, CG, and TG are empty graphs.

A triple graph morphism $m = (s, c, t) : G \rightarrow H$ between two triple graphs $G = (SG \xleftarrow{s_C} CG \xrightarrow{t_C} TG)$ and $H = (SH \xleftarrow{s_H} CH \xrightarrow{t_H} TH)$ consists of three graph morphisms $s : SG \rightarrow SH$, $c : CG \rightarrow CH$ and $t : TG \rightarrow TH$ such that $s \circ s_G = s_H \circ c$ and $t \circ t_G = t_H \circ c$. It is injective, if morphisms s, c and t are injective.

Triple graphs G are typed over a triple graph $TG = (TG_S \leftarrow TG_C \rightarrow TG_T)$ by a triple graph morphism $t_G : G \rightarrow TG$. Type graph of the example is given in Fig. 1 showing the structure of class diagrams in source component and relational databases in target component. Where classes are connected via associations the corresponding elements in databases are foreign keys. Though, the complete structure of correspondence elements between both types of models is defined via the connection component of TG. Throughout the example, originating from [EEE07], elements are arranged left, center, and right according to the component types source, correspondence and target. Morphisms starting at a connection part are given by dashed arrow lines.

A triple rule is used to build up source and target graphs as well as their connection graph, i.e. to build up triple graphs. Structure filtering which deletes parts of triple graphs,
is performed by projection operations only, i.e. structure deletion is not done by rule applications. Thus, we can concentrate our investigations on non-deleting triple rules without any restriction.

Definition 2 (Triple Rule tr and Triple Transformation Step).

A triple rule tr consists of triple graphs L and R, called left-hand and right-hand sides, and an injective triple graph morphism $tr = (s,c,t) : L \rightarrow R$.

Given a triple rule $tr = (s,c,t) : L \rightarrow R$, a triple graph G and a triple graph morphism $m = (sm, cm, tm) : L \rightarrow G$, called triple match m, a triple graph transformation step (TGG-step) $G \xrightarrow{tr,m} H$ from G to a triple graph H is given by three pushouts (SH, s', sm), (CH, c', cm) and (TH, t', tm) in category Graph with induced morphisms $s_H : CH \rightarrow SH$ and $t_H : CH \rightarrow TH$. Morphism $n = (sn, cn, tn)$ is called co-match.

Moreover, we obtain a triple graph morphism $d : G \rightarrow H$ with $d = (s', c', t')$ called transformation morphism. A sequence of triple graph transformation steps is called triple (graph) transformation sequence, short TGG-sequence. Furthermore, a triple graph grammar $TGG = (S, TR)$ consists of a triple start graph S and a set TR of triple rules. Given a triple rule tr we refer by $L(tr)$ to its left and by $R(tr)$ to its right hand side.

Remark 1 (gluing construction). Each of the pushout objects SH, CH, TH in Def. 2 can be constructed as a gluing construction, e.g. $SH = SG + SL \cdot SR$, where the S-components SG of G and SR of R are glued together via SL.

Figure 1: Triple type graph for $CD2RDBM$ model transformation

Figure 2: TGT-rules for $CD2RDBM$ model transformation
Fig. 3: Rule Association2ForeignKey(an : String) for CD2RDBM model transformation

Examples for triple rules are given in Fig. 2 and Fig. 3 in short notation. Left and right hand side of a rule are depicted in one triple graph. Elements, which are created by the rule, are labeled with "new" and all other elements are preserved, meaning they are included in the left and right hand side. Rule "Class2Table" synchronously creates a class in a class diagram with its corresponding table in the relational database. Accordingly the other rules create parts in all components. For rule "PrimaryAttribute2Column" there is an analogous rule "Attribute2Column" for translation of non primary attributes, which does not add the edge "pkey" in the database component.

3 Model transformation

The triple rules \(TR \) are defining the language \(VL = \{ G | \emptyset \Rightarrow^* G \ via \ TR \} \) of triple graphs. As shown already in [Sch94] we can derive from each triple rule \(tr = L \rightarrow R \) the following source and forward rule. Forward rules are used for model transformations from a model of a source language to models of the target language. Source rules are important for analyzing properties of forward transformations such as information preservation, presented in [EEE+07].

\[
L = (SL \xleftarrow{t_L} CL \xrightarrow{t_L} TL)
\]

\[
R = (SR \xleftarrow{t_R} CR \xrightarrow{t_R} TR)
\]

forward rule \(tr_F \)

source rule \(tr_S \)

For simplicity of notation we sometimes identify source rule \(tr_S \) with \(SL \xrightarrow{t} SR \) and target rule \(tr_T \) with \(TL \xleftarrow{t} TR \).

Theses rules can be used to define a model transformation from source graphs to target graphs. Vice versa using backward rules - which are dual to forward rules - it is also possible to define backward transformations from target to source graphs and altogether bidirectional model transformations. In [EEE+07] we have shown that there is an equivalence between canonical forward and backward TGT sequences. This equivalence is based on the canonical decomposition and composition result (Thm. 1) and its dual version for backward transformations.

Definition 3 (Match Consistency). Let \(tr_S^* \) and \(tr_F^* \) be sequences of source rules \(tr_i_S \) and forward rules \(tr_i_F \), which are derived from the same triple rules \(tri \) for \(i = 1, \ldots, n \). Let further \(G_0 \xrightarrow{tr_1^*} G_{n_0} \xrightarrow{tr_n^*} G_{n} \) be a TGT-sequence with \((mi_S, ni_S) \) being match and comatch of \(tr_{i_S} \) (respectively \((mi, ni) \) for \(tr_{i_F} \) then match consistency of \(G_0 \xrightarrow{tr_1^*} G_{n_0} \xrightarrow{tr_n^*} G_{n} \) means that the \(S \)-component of the match \(mi \) is uniquely determined by the comatch \(ni_S \) (i = 1, \ldots, n).

Theorem 1 (Canonical Decomposition and Composition Result - Forward Rule Case).

1. **Decomposition**: For each TGT-sequence based on triple rules \(tr^* \)

 (1) \(G_0 \xrightarrow{tr^*} G_n \) there is a canonical match consistent TGT-sequence
(2) \(G_0 = G_{00} \xrightarrow{tr_S^0} G_{n0} \xrightarrow{tr_F^0} G_n = G_n \) based on corresponding source rules \(tr_S^0 \) and forward rules \(tr_F^0 \).

2. **Composition:** For each match consistent transformation sequence (2) there is a canonical transformation sequence (1).

3. **Bijective Correspondence:** Composition and Decomposition are inverse to each other.

Proof. See [EEE+07].

Now we want to discuss under which conditions forward transformation sequences \(G_1 \xrightarrow{tr_F^1} G_n \) define a model transformation between suitable source and target languages. In fact we have different choices: On the one hand we can consider the projections \(VL_S = proj_S(VL) \) and \(VL_T = proj_T(VL) \) of the triple graph language \(VL = \{G\mid \emptyset \Rightarrow^* G \text{ via } TR\} \), where \(proj_X \) is a projection defined by restriction to one of the triple components, i.e. \(X \in \{S,C,T\} \).

On the other hand we can use the source rules \(TR_S = \{tr_S \mid tr \in TR\} \) and the target rules \(TR_T = \{tr_T \mid tr \in TR\} \) to define the source language \(VL_{S0} = \{G_S\mid \emptyset \Rightarrow^* G_S \text{ via } TR_S\} \) and the target language \(VL_{T0} = \{G_T\mid \emptyset \Rightarrow^* G_T \text{ via } TR_T\} \). Since each sequence \(\emptyset \Rightarrow^* G \text{ via } TR \) can be restricted to a source sequence \(\emptyset \Rightarrow^* G_S \text{ via } TR_S \) and to a target sequence \(\emptyset \Rightarrow^* G_T \text{ via } TR_T \) we have \(VL_S \subseteq VL_{S0} \) and \(VL_T \subseteq VL_{T0} \), but in general no equality. In case of typed graphs the rules in \(TR \) are typed over \(TG \) with \(TG = \{TG_S \leftarrow TG_C \rightarrow TG_T\} \) and rules of \(TR_S \) and \(TR_T \) typed over \((TG_S \leftarrow \emptyset \rightarrow \emptyset) \) and \((\emptyset \rightarrow \emptyset \rightarrow TG_T) \), respectively. Since \(G_S \) and \(G_T \) are considered as plain graphs they are typed over \(TG, TG_T \), respectively.

Given a forward transformation sequence \(G_1 \xrightarrow{tr_F^1} G_n \) we want to ensure the source component of \(G_1 \) corresponds to the target component of \(G_n \), i.e. the transformation sequence defines a model transformation \(MT \) from \(VL_{S0} \) to \(VL_{T0} \), written \(MT : VL_{S0} \Rightarrow VL_{T0} \), where all elements of the source component are translated. Thus given a class diagram as instance of the type graph in Fig. 1 all corresponding tables, columns and foreign keys of the corresponding data base model shall be created in the same way they could have been synchronously generated by the triple rules of \(TR \). An example forward transformation is presented in [EEE+07]. Since \(G_S \in VL_{S0} \) is generated by \(TR_S \)-rules we have a source transformation \(\emptyset \Rightarrow^* G_S \text{ via } TR_S \). In order to be sure that \(G_1 \xrightarrow{tr_F^1} G_n \) transforms all parts of \(G_1 \), which are generated by \(\emptyset \Rightarrow^* G_S \), we require that \(\emptyset \Rightarrow^* G_S \) is given by \(\emptyset \xrightarrow{tr_F^0} G_1 \) with \(G_1 = (G_S \rightarrow \emptyset \rightarrow \emptyset) \), i.e. \(proj_S(G_1) = G_S \) based on the same triple rule sequence \(tr_F^0 \) as \(G_1 \xrightarrow{tr_F^1} G_n \). Finally we require that the TGT-sequence \(\emptyset \xrightarrow{tr_T^0} G_1 \xrightarrow{tr_T^1} G_n \) is match consistent, because this implies – by Fact 1 below – that \(G_S \in VL_S \) and \(G_T \in VL_T \) and that we obtain a model transformation \(MT : VL_{S0} \Rightarrow VL_{T0} \) (see Fact 1).

Definition 4 (Model Transformation). A model transformation sequence \((G_S, G_1 \xrightarrow{tr_F^1} G_n, G_T) \) consists of a source graph \(G_S \), a target graph \(G_T \), and a source consistent forward TGT-sequence \(G_1 \xrightarrow{tr_F^1} G_n \) with \(G_S = proj_S(G_1) \) and \(G_T = proj_T(G_n) \).

Source consistency of \(G_1 \xrightarrow{tr_F^1} G_n \) means that there is a source transformation sequence \(\emptyset \xrightarrow{tr_S^0} G_1 \), such that \(\emptyset \xrightarrow{tr_F^0} G_1 \xrightarrow{tr_T^1} G_n \) is match consistent. A model transformation \(MT : VL_{S0} \Rightarrow VL_{T0} \) is defined by model transformation sequences \((G_S, G_1 \xrightarrow{tr_F^1} G_n, G_T) \) with \(G_S \in VL_{S0} \) and \(G_T \in VL_{T0} \).

Remark 2. A model transformation \(MT : VL_{S0} \Rightarrow VL_{T0} \) is a relational dependency and only in special cases a function.

This allows to show that \(MT : VL_{S0} \Rightarrow VL_{T0} \) defined above is in fact \(MT : VL_S \Rightarrow VL_T \)

Fact 1 (Syntactical Correctness of Model Transformation \(MT \)). Given \(G_S \in VL_{S0} \) and \(G_1 \xrightarrow{tr_F^1} G_n \) source consistent with \(proj_S(G_1) = G_S \) then \(G_T = proj_T(G_n) \in VL_T \) and \(G_S \in VL_S \), i.e. \(MT : VL_S \Rightarrow VL_T \).

Proof. Given \(G_1 \xrightarrow{tr_F^1} G_n \) source consistent, we have \(\emptyset \xrightarrow{tr_S^0} G_1 \xrightarrow{tr_T^0} G_n \) match consistent and hence, by Theorem 1 above with \(G_0 = \emptyset \xrightarrow{tr_S} G_n \) which implies \(G_n \in VL \). Now we have \(proj_S(G_n) = proj_S(G_1) = G_S \in VL_S \) and \(proj_T(G_n) = G_T \in VL_T \).
4 Model Integration

Given models $G_S \in VL_0$ and $G_T \in VL_T$ the aim of model integration is to construct an integrated model $G \in VL$, such that G restricted to source and target is equal to G_S and G_T, respectively, i.e. $\text{proj}_S G = G_S$ and $\text{proj}_T G = G_T$. Thus, given a class diagram and a data base model as instance of the type graph in Fig. 1 all correspondences between their elements shall be recovered or detected, respectively. Similar to model transformation we can derive rules for model integration based on triple rule tr.

The derived rules are source-target rule tr_{ST} and integration rule tr_I given by

$$ (SL \xrightarrow{s_L} CL \xrightarrow{t_L} TL), (SR \xrightarrow{s_R} CR \xrightarrow{t_R} TR) $$

source-target rule tr_{ST}

$$ (SL \xrightarrow{s} \emptyset \xrightarrow{t} TL), (SR \xrightarrow{s} \emptyset \xrightarrow{t} TR) $$

integration rule tr_I

An example for both kinds of rules is given in Fig. 4 for the triple rule Class2Table in Fig. 2.

![Diagram](image.png)

Figure 4: Derived rules for Class2Table

Similar to the canonical decomposition of TGT-sequences $G_0 \xrightarrow{tr^*_S} G_n$ into source and forward transformation sequences we also have a canonical decomposition into source-target and integration transformation sequences of the form $\emptyset \xrightarrow{tr^*_S} G_0 \xrightarrow{tr^*_I} G_n$. Such a sequence is called S-T-consistent, if the S- and T-component of the comatch of tr_{ST} is completely determined by that of the match of tr_I for $tr = (tr_{i})_{i=1\ldots n}$.

Theorem 2 (Canonical Decomposition and Composition Result - Integration Rule Case).

1. **Decomposition:** For each TGT-sequence based on triple rules tr^*_S
 1. $G_0 \xrightarrow{tr^*_S} G_n$ there is a canonical source-target S-T-match consistent TGT-sequence tr^*_S
 2. $G_0 \xrightarrow{tr^*_I} G_n$ based on corresponding source-target rules tr_{ST} and integration rules tr_I.

2. **Composition:** For each S-T-match consistent transformation sequence (2) there is a canonical transformation sequence (1).

3. **Bijective Correspondence:** Composition and Decomposition are inverse to each other.

In the following we give the proof of Theorem 2 which is based on the Local-Church-Rosser and the Concurrency Theorem for algebraic graph transformations [see [Roz97], [EEPT06]]. In Lemma 1 we show that a triple rule tr can be represented as concurrent production tr_{ST} of the corresponding source-target rule tr_{ST} and integration rule tr_I, where the overlapping E is equal to $L(tr_I)$, the left hand side of tr_I. Moreover E-related sequences in the sense of the Concurrency Theorem correspond exactly to S-T-match-consistent sequences in Theorem 2. In Lemma 2 we show compatibility of S-T-match consistency with sequential independence in the sense of the Local-Church-Rosser-Theorem.

Using Lemma 1 we can decompose a single TGT-transformation $G_0 \xrightarrow{tr} G_1$ into an S-T-match consistent sequence $G_0 \xrightarrow{tr^*_S} G_0 \xrightarrow{tr^*_I} G_1$ and vice versa. Lemma 2 allows to decompose TGT-sequences $G_0 \xrightarrow{tr} G_n$ into S-T-match consistent sequences $G_0 \xrightarrow{tr^*_S} G_0 \xrightarrow{tr^*_I} G_n$ and vice versa.

All constructions are done in the category TripleGraph of typed triple graphs and typed triple graph morphisms, which according to Fact 4.18 in [EEPT06] is an adhesive HLR.
category. This implies that the Local-Church-Rosser and Concurrency Theorem are valid for triple rules with injective morphisms (see Chapter 5 in [EEPT06]).

Lemma 1 (Concurrent Production $tr = tr_{ST} *_{E} tr_{1}$). Let $E = L(tr_{1})$ with $e1 = (id, S, id) : R(tr_{ST}) \rightarrow E$ and $e2 = id : L(tr_{1}) \rightarrow E$ then tr is given by the concurrent production $tr = tr_{ST} *_{E} tr_{1}$. Moreover, there is a bijective correspondence between a transformation $G_{1} \xrightarrow{tr_{ST},m_{1},n_{1}} G_{2}$ and match-consistent sequences $G_{1} \xrightarrow{tr_{ST},m_{1},n_{1}} H \xrightarrow{tr_{1},m_{2},n_{2}} G_{2}$, where $S-T$-match consistency means that the $S-$ and $T-$components of the comatch $n1$ and the match $m2$ are equal, i.e. $n_{1S} = m_{2S}$ and $n_{1T} = m_{2T}$. Construction of concurrent production:

\[
\begin{array}{c}
\xrightarrow{i} L(tr) \\
\xrightarrow{(1)} L(tr_{ST}) \xrightarrow{tr_{ST}} R(tr_{ST}) \\
\xrightarrow{(2)} L(tr_{1}) \xrightarrow{tr_{1}} R(tr_{1}) \\
\xrightarrow{r} R \\
E - \text{concurrent rule}
\end{array}
\]

Proof. The pushouts in (1) in TripleGraph_{TG} are given below showing $d2 \circ d1 = tr : L(tr) \rightarrow R(tr)$

According to the Concurrency Theorem for TripleGraph_{CG} there is a bijective correspondence between transformations $G_{1} \xrightarrow{tr_{ST},m_{1},n_{1}} G_{2}$ and E-related sequences $G_{1} \xrightarrow{tr_{ST},m_{1},n_{1}} H \xrightarrow{tr_{1},m_{2},n_{2}} G_{2}$. The sequence is E-related if there is $h : E \rightarrow H$ with $h \circ e1 = n1$ and $h \circ e2 = n2$ and there are $c1 : L(tr) \rightarrow G_{1}$ and $c2 : R(tr) \rightarrow G_{2}$, s.t. $c1 \circ l = m1, c2 \circ r = n2$ and (3) as well as (4) in the following diagram are pushouts.

\[
\begin{array}{c}
\xrightarrow{i} L(tr) \\
\xrightarrow{(1)} L(tr_{ST}) \xrightarrow{tr_{ST}} R(tr_{ST}) \\
\xrightarrow{(2)} L(tr_{1}) \xrightarrow{tr_{1}} R(tr_{1}) \\
\xrightarrow{r} R \\
E - \text{concurrent rule}
\end{array}
\]

First of all we observe that the sequence is $S-T$-match consistent, i.e. $n_{1S} = m_{2S}$ and $n_{1T} = m_{2T}$ if and only if $h : E \rightarrow H$ with $h \circ e1 = n1$ and $h \circ e2 = m2$. In case of $n_{1S} = m_{2S}$ and $n_{1T} = m_{2T}$ we define h by $h = m2$, which implies $h \circ e2 = h \circ id = m2$, but also $h \circ e1 = h \circ n1$, because $h \circ e1 = m2 \circ id = n1$, $h \circ e1 = m2 \circ id = n1$ and $h \circ e2 = m2$. Vice versa, given h with $h \circ e1 = n1$, $h \circ e2 = m2$ we have $n_{1S} = h \circ id = h \circ e2 = m_{2S}$ and similar $n_{1T} = m_{2T}$. In order to have an E-related sequence we have to show that h induces $c1$ and $c2$ with $c1 \circ l = n1$ and $c2 \circ r = n2$, st. (3) and (4) become pushouts. This follows for $c2$ and (4) directly from pushout (2) and pushout decomposition. For $c1$ and (3), however, we need pushout-pullback decomposition, which would require that h is injective. In order to avoid the assumption h injective we give now a direct construction for $c1$ with $c1 \circ l = n1$ and pushout (3) by $c1 = (m1S, h_{C}, m1T)$ according to the following diagrams.

7
Lemma 2 (Compatibility of S – T-match consistency with independence).

Given the TGT-sequences on the right with independence in (4) and matches m_i, m'_i and
comatches n_i, n'_i. Then we have:

\[
\begin{align*}
G_{00} & \xrightarrow{G_{10}} G_{11} & G_{10} & \xrightarrow{G_{20}} G_{21} & G_{21} & \xrightarrow{G_{22}}
\end{align*}
\]

(1) $G_{00} \xrightarrow{G_{10}} G_{11} \iff S - T$-match consistent

(2) $G_{00} \xrightarrow{G_{10}} G_{11} \xrightarrow{G_{20}} G_{21} \iff S - T$-match consistent and

(3) $G_{11} \xrightarrow{G_{21}} G_{22} \iff S - T$-match consistent

(4) $G_{10} \xrightarrow{G_{20}} G_{21} \xrightarrow{G_{22}} \iff S - T$-match consistent

Proof. By independence we have $d : L(\text{tr}_{ST}) \to G_{10}$ with $g_2 \circ d = n_2$ leading to $g_3 \circ n_2' = n_2$ and $m_1' = g_1 \circ n_1$.

Note that the outer diagrams are the S-, C- and T-component of the pushout according to $G_1 \xrightarrow{\text{tr}_{ST}} m_1, n_1 \Rightarrow H$ with $n_1 = h \circ e_1$, where we assume w.l.o.g. $g_1C = id$ induced by $\emptyset \Rightarrow \emptyset$ in the C-component. The outer diagrams in the S- and T-component are pushouts and equal to $(3)_S$ and $(3)_T$ respectively. $(3)_C$ is a trivial pushout. It remains to show that c_1 is a morphism in TripleGraph_{TC}. This follows from componentwise commutativity of (3) and the fact that d_1, h and g_1 are in TripleGraph_{TC} by construction and g_1S, g_1T injective, because tr_{ST} injective implies g injective. In more detail, g_1S, g_1T injective implies commutativity of the left squares below showing that c_1 is in TripleGraph_{TC}.

\[
\begin{align*}
\text{SL} & \xrightarrow{id, (1)_S} \text{SR} & \text{SL} & \xrightarrow{id, (1)_C} \text{CL} & \text{SL} & \xrightarrow{id, (3)_T} \text{TR}
\end{align*}
\]
Similar to above we can show that G equivalence of corresponding matches in the Local Church Rosser Theorem (see Lemma 2).

\[S - T \text{-match consistent} \Leftrightarrow n_0S = m_1S \text{ and } n_0T = m_1T \]

(1) $S - T \text{-match consistent} \Leftrightarrow g_1S \circ n_0S = m_1S$ and $g_1T \circ n_0T = m_1T$

(2) $S - T \text{-match consistent} \Leftrightarrow g_1S \circ m_1S = m_1S$ and $g_1T \circ m_1T = m_1T$

(1) \Rightarrow (2) : $g_1S \circ n_0S \Leftrightarrow g_1S \circ m_1S = m_1S$ (and similar for T-component)

(2) \Rightarrow (1) : $g_1S \circ m_1S = m_1S$ and $g_1T \circ m_1T = m_1T$ (and similar for T-component)

(3) $S - T \text{-match consistent} \Leftrightarrow n_2S = m_3S$ and $n_2T = m_3T$

(4) $S - T \text{-match consistent} \Leftrightarrow g_3S \circ n_2S = m_3S$ and $g_3T \circ n_2T = m_3T$

(3) \Rightarrow (4) : $g_3S \circ n_2S \Leftrightarrow g_3S \circ m_3S$ (and similar for T-component)

(4) \Rightarrow (3) : $m_3S \Leftrightarrow g_3S \circ n_2S$ (and similar for T-component)

\hfill \Box

Proof of Theorem 2.

1. **Decomposition:** Given (1) we obtain (for $n = 3$) by Lemma 1 a decomposition into triangles (1), (2), (3), where the corresponding transformation sequences are $S - T$-match consistent.

![Diagram showing decomposition](image)

In the next step we show that $G_{10} \xrightarrow{tr_{11}} G_{11} \xrightarrow{tr_{21}} G_{21}$ is sequentially independent leading by the Local Church Rosser Theorem to square (4) sequential independence in this case means existence of $d : L(tr_{2ST}) \to G_{10}$ with $g \circ d = m_2$.

\[L(tr_{11}) \xrightarrow{m_1} G_1 \xrightarrow{g} G_2 \xrightarrow{m_2} G_3 \]

The diagram beneath shows that $d = (d_S, d_C, d_T) = (m_2S, \emptyset, m_2T)$ satisfies this property.

(1) - (4) leads to the following transformation sequence $G_{00} \xrightarrow{tr_{11}G_{10}} G_{10} \xrightarrow{tr_{21}} G_{20} \xrightarrow{tr_{11}} G_{21} \xrightarrow{tr_{21}} G_{22} \xrightarrow{tr_{31}} G_{33} \xrightarrow{G_{33}} G_{33}$ which is again $S - T$-match consistent due to shift equivalence of corresponding matches in the Local Church Rosser Theorem (see Lemma 2). Similar to above we can show that $G_{21} \xrightarrow{tr_{31}} G_{22} \xrightarrow{tr_{31}} G_{33}$ are sequentially independent leading to (5) and in the next step to (6) with corresponding $S - T$-match consistent sequences.

9
2. Composition: Vice versa, each $S-T$-match consistent sequence (2) leads to a canonical $S-T$-match consistent sequence of triangles (1), (2), (3) and later by Lemma 1 to TGT-sequence (1). We obtain the triangles by inverse shift equivalence, where subsequence 1 as above is $S-T$-match consistent. In fact $S-T$-match consistency of (2) together with Lemma 2 implies that the corresponding sequences are sequentially independent in order to allow inverse shifts according to the Local Church Rosser Theorem. Sequential independence for (6) is shown below.

By $S-T$-match consistency we have $m_{1,S} = g_{2S} \circ g_{1S} \circ n_{1S}$. Define $d_{S} = g_{1S} \circ n_{1S}$, then $g_{2S} \circ d_{S} = g_{2S} \circ g_{1S} \circ n_{1S} = m_{1,S}$ and similar for the T-component, while $d_{C} = m_{1,C}$ using $g_{2C} = id$. 3. Bijective Correspondence: by that of the Local Church Rosser Theorem and Concurrency Theorem.

Given an integration transformation sequence $G_{0} \xrightarrow{\text{tr}^{1}} G_{n}$ with $\text{proj}_{S}(G_{0}) = G_{S}$, $\text{proj}_{T}(G_{0}) = G_{T}$ and $\text{proj}_{C}(G_{0}) = \emptyset$, we want to make sure that the unrelated pair $(G_{S}, G_{T}) \in V_{LS0} \times V_{LT0}$ is transformed into an integrated model $G = G_{n}$ with $\text{proj}_{S}(G) = G_{S}, \text{proj}_{T}(G) = G_{T}$. Of course this is not possible for all pairs $(G_{S}, G_{T}) \in V_{LS0} \times V_{LT0}$, but only for specific pairs. In any case $(G_{S}, G_{T}) \in V_{LS0} \times V_{LT0}$ implies that we have a source-target transformation sequence $\emptyset \Rightarrow^{*} G_{0}$ via $T_{S,T} = \{ tr_{ST} | tr \in TR \}$. In order to be sure that $G_{0} \xrightarrow{\text{tr}^{1}} G_{n}$ integrates all parts of G_{S} and G_{T}, which are generated by $\emptyset \Rightarrow^{*} G_{0}$, we require that $\emptyset \Rightarrow^{*} G_{0}$ is given by $\emptyset \xrightarrow{\text{tr}^{1}} G_{0}$ based on the same triple rule sequence tr^{*} as $G_{0} \xrightarrow{\text{tr}^{1}} G_{n}$. Moreover, we require that the TGT-sequence $\emptyset \xrightarrow{\text{tr}^{2}_{T}} G_{0} \xrightarrow{\text{tr}^{1}} G_{n}$ is $S-T$-match consistent because this implies - using Theorem 2 - that $G_{S} \in V_{LS}, G_{T} \in V_{LT}$ and $G \in VL$ (see Theorem 2).

Definition 5 (Model Integration). A model integration sequence $((G_{S}, G_{T}), G_{0} \xrightarrow{\text{tr}^{1}_{C}} G_{n}, G)$ consists of a source and a target model G_{S} and G_{T}, an integrated model G and a source-target consistent TGT-sequence $G_{0} \xrightarrow{\text{tr}^{1}_{C}} G_{n}$ with $G_{S} = \text{proj}_{S}(G_{0})$ and $G_{T} = \text{proj}_{T}(G_{0})$.

Source-target consistency of $G_{0} \xrightarrow{\text{tr}^{1}_{C}} G_{n}$ means that there is a source-target transformation sequence $\emptyset \xrightarrow{\text{tr}^{1}_{C}} G_{0}$, such that $\emptyset \xrightarrow{\text{tr}^{1}_{C}} G_{0} \xrightarrow{\text{tr}^{1}_{C}} G_{n}$ is match consistent. A model integration $MI : V_{LS0} \times V_{LT0} \Rightarrow VL$ is defined by model integration sequences $((G_{S}, G_{T}), G_{0} \xrightarrow{\text{tr}^{1}_{C}} G_{n}, G)$ with $G_{S} \in V_{LS0}, G_{T} \in V_{LT0}$, and $G \in VL$.

Remark 3. Given model integration sequence $((G_{S}, G_{T}), G_{0} \xrightarrow{\text{tr}^{1}_{C}} G_{n}, G)$ the corresponding source-target TGT-sequence $\emptyset \xrightarrow{\text{tr}^{2}_{C}} G_{0}$ is uniquely determined. The reason is that each
comatch of tri_{ST} is completely determined by S- and T-component of the match of tri_{I},
because of embedding R(tri_{ST}) \rightarrow L(tri_{I}). Furthermore, each match of tri_{ST} is given by
uniqueness of pushout complements along injective morphisms with respect to non-deleting
rule tri_{ST} and its comatch. Moreover, the source-target TGT-sequence implies G_S \in VL_{S0}
and G_T \in VL_{T0}.

Fact 2 (Model Integration is syntactically correct). Given model integration sequence
((G_S, G_T), G_0 \xrightarrow{tr_I} G_n, G) then G_n = G \in VL with proj_S(G) = G_S \in VL_S and
proj_T(G) = G_T \in VL_T.

Proof. G_0 \xrightarrow{tr_I} G_n source-target consistent
⇒ \exists \emptyset \xrightarrow{tr^*_S} G_0 \text{ s.t. } \emptyset \xrightarrow{tr^*_T} G_0 \xrightarrow{tr_I} G_n S-T-match consistent
⇒ \emptyset \xrightarrow{tr^*_S} G_n , \ i.e. G_n = G \in VL

Finally we want to analyze which pairs (G_S, G_T) \in VL_S \times VL_T can be integrated. Intu-
teively those which are related by the model transformation MT : VL_S \Rightarrow VL_T in Theorem
1. In fact, model integration sequences can be characterized by unique model transformation
sequences.

Theorem 3 (Characterization of Model Integration Sequences). Each model integration
sequence ((G_S, G_T), G_0 \xrightarrow{tr_I} G_n, G) corresponds uniquely to a model transformation sequence
(G_S, G_0 \xrightarrow{tr_I} G_n, G_T), where tr^*_S and tr^*_T are based on the same rule sequence tr^*_I.

Proof. ((G_S, G_T), G_0 \xrightarrow{tr_I} G_n, G) is model integration sequence
\begin{enumerate}
\item source-target consistent G_0 \xrightarrow{tr_I} G_n with \text{proj}_S(G_0) = \text{proj}_S(G_n) = G_S, \text{proj}_T(G_0) = \emptyset,
\text{proj}_T(G_n) = G_T, G_n = G
\item S-T-match consistent with \text{proj}_S(G_n) = G_S and \text{proj}_T(G_n) = G_T
\item match consistent with \text{proj}_S(G_n) = G_S and \text{proj}_T(G_n) = G_T
\item source consistent with \text{proj}_S(G_0) = \text{proj}_S(G_n) = G_S and \text{proj}_T(G_n) = G_T
\item (G_S, G_0 \xrightarrow{tr_I} G_n, G_T) is model transformation sequence.
\end{enumerate}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{source_component.png}
\caption{Source component of Fig. 6 in concrete syntax}
\end{figure}

Coming back to the example of a model transformation from class diagrams to database
models the relevance and value of the given theorems can be described from the more practical
view. Fig. 6 shows a triple graph, which defines a class diagram in its source component,
database tables in its target component and the correspondences in between. Since this model
is already fully integrated, it constitutes the resulting graph G of example model integration
sequence ((G_S, G_T), G_0 \xrightarrow{tr_I} G_n, G). The starting point is given by G_S as restriction of G
to elements of the class diagram, indicated by pink, and G_T containing the elements of the
database part, indicated by yellow colour. Now, the blue nodes for correspondence as well as
the morphisms between connection component to source and target component are created
during the integration process. All elements are labeled with a number to specify matches
and created objects for each transformation step. The sequence of applied rules is
Now, Table 1 shows all matches of this sequence for both cases of Theorem 3 being the model integration sequence \(G_0 \transfer G_n \) and the forward transformation sequence \(G_0 \transfer G_n \), where \(G_0 \) contains the elements of \(G \) except correspondence parts and \(G_0 \) is \(G \) leaving out all elements of target and connection component. The column “Created” in the table lists the elements which are created at each transformation step. According to the numbers for the elements, the correspondence component is completely created during the model integration sequence and the elements of each match are created by the corresponding source-target rule application in \(\emptyset \transfer G_0 \). Therefore, \(\emptyset \transfer G_0 \transfer G_n \) is match consistent. Analogously \(\emptyset \transfer G_0 \) consists of the specified steps in Table 1, where comatches are given by the elements of the match in the forward transformation sequence implying \(\emptyset \transfer G_0 \transfer G_n \) being match consistent. Both integration and forward transformation sequence can be recaptured by analyzing the other, which corresponds to Theorem 3.
5 Related Work

Various approaches for model transformation in general are discussed in [MB03] and [OMG07] using BOTL and QVT respectively. For a taxonomy of model transformation based on graph transformation we refer to [MG06]. Triple Graph Grammars have been proposed by A. Schürr in [Sch94] for the specification of graph transformations. A detailed discussion of concepts, extensions, implementations and applications scenarios is given by E. Kindler and R. Wagner in [KW07]. The main application scenarios in [KW07] are model transformation, model integration and model synchronization. These concepts, however, are discussed only on an informal level using a slightly different concept of triple graphs compared with [Sch94].

In this paper we use the original definition of triple graphs, triple rules, and triple transformations of [Sch94] based on the double pushout approach (see [Roz97], [EEPT06]). In our paper [EEE+07] we have extended the approach of [Sch94] concerning the relationship between TGT-sequences based on triple rules $G_0 \xrightarrow{tr}^* G_n$ and match consistent TGT-sequences $G_0 \xrightarrow{tr}^* G_{n0} \xrightarrow{tr}^* G_m$ based on source and forward rules leading to the canonical Decomposition and Composition Result 1 (Thm 1). This allows to characterize information preserving bidirectional model transformations in [EEET07].

In this paper the main technical result is the Canonical Decomposition and Composition Result 2 (Thm 2) using source-target rules tr_{ST} and integration rules tr_I instead of tr_S and tr_F. Both results are formally independent, but the same proof technique is used based on the Local Church–Rosser and Concurrency Theorem for graph transformations. The main result of [EEPT06] is based on these two decomposition and composition results. For a survey on tool integration with triple graph grammars we refer to [KS06].

6 Future Work and Conclusion

Model integration is an adequate technique in system design to work on specific models in different languages, in order to establish the correspondences between these models using rules which can be generated automatically. Once model transformation triple rules are defined for translations between the involved languages, integration rules can be derived automatically for maintaining consistency in the overall integrated modelling process.

Main contributions of this paper are suitable requirements for existence of model integration as well as composition and decomposition of source-target and integration transformations and from triple transformations. Since model integration may be applied at any stage and several times during the modelling process, results of model integrations in previous stages can be used as the starting point for the next incremental step.

All concepts are explained using the well known case study for model transformation between class diagrams and relational data bases. While other model transformation approaches were applied to the same example for translation between source and target language, triple graph grammars additionally show their general power by automatic and constructive derivation of an integration formalism. Therefore, model integration in the presented way can scale up very easily, only bounded by the effort to build up general triple rules for parallel model evolution.

Usability extends when regarding partly connected models, which shall be synchronized as discussed on an informal level in [KW07]. On the basis of model integration rules model synchronization can be defined in future work as model integration using inverse source and target rules, standard source and target rules as well as integration rules in a mixed way, such that the resulting model is syntactically correct and completely integrated. Another interesting aspect for future work is the extension of triple graph rules and corresponding transformation and integration rules by negative application conditions (see [HHT96]), or by more general graph constraints (see [HP05]).
References

http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf

http://www.springer.com/3-540-31187-4

http://dx.doi.org/10.1007/b106390

http://citeseer.ist.psu.edu/marschall03model.html

http://dx.doi.org/10.1007/3-540-59071-4_45