An optimized short-arc approach: methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions

Qiujie Chen¹,²,³, Yunzhong Shen¹, Wu Chen², Olivier Francis³, Xingfu Zhang⁴, Qiang Chen³, Weiwei Li², Tianyi Chen¹

1. College of Surveying and Geo-informatics, Tongji University, Shanghai, China
2. Department of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University, Hong Kong, China
3. Faculté des Science, de la Technologie et de la Communication, University of Luxembourg, Luxembourg, Luxembourg
4. Departments of Surveying and Mapping, Guangdong University of Technology, Guangzhou, China
5. College of Geomatics, Shandong University of Science and Technology, Qingdao, China

* Now at: Institute of Geodesy and Geo-information, University of Bonn, Bonn, Germany
Abstract: Considering the unstable inversion of ill-conditioned intermediate matrix required in each integral arc in the short-arc approach presented in Chen et al. (2015), an optimized short-arc method via stabilizing the inversion is proposed. To account for frequency-dependent noise in observations, a noise whitening technique is implemented in the optimized short-arc approach. Our study shows the optimized short-arc method is able to stabilize the inversion and eventually prolong the arc length to 6 hours. In addition, the noise whitening method is able to mitigate the impacts of low-frequency noise in observations. Using the optimized short-arc approach, a refined time series of GRACE monthly models called Tongji-Grace2018 has been developed. The analyses allow us to derive the following conclusions: (a) during the analyses over the river basins (i.e. Amazon, Mississippi, Irrawaddy and Taz) and Greenland, the correlation coefficients of mass changes between Tongji-Grace2018 and others (i.e. CSR RL06, GFZ RL06 and JPL RL06 Mascon) are all over 92% and the corresponding amplitudes are comparable; (b) the signals of Tongji-Grace2018 agree well with those of CSR RL06, GFZ RL06, ITSG-Grace2018 and JPL RL06 Mascon, while Tongji-Grace2018 and ITSG-Grace2018 are less noisy than CSR RL06 and GFZ RL06; (c) clearer global mass change trend and less striping noise over oceans can be observed in Tongji-Grace2018 even only using decorrelation filtering; and (d) for the tests over Sahara, over 36% and 19% of noise reductions are achieved by Tongji-Grace2018 relative to CSR RL06 in the cases of using decorrelation filtering and combined filtering, respectively.

Keywords: Satellite geodesy; GRACE; monthly gravity field solutions; optimized short-arc approach; frequency-dependent noise

1. Introduction

The mass redistributions of the Earth system among atmosphere, ocean, ice sheet, hydrology and solid Earth inevitably cause time-related variations in the Earth’s gravity field (Wahr et al. 2004; Tapley et al. 2004; Kusche et al. 2012). The Gravity Recovery and Climate Experiment (GRACE) mission was launched in March 2002 (Tapley et al. 2004) to measure the variations in the Earth’s gravity field at global scale. Though the GRACE mission ended operation last year due to degradation of the batteries, over 15 years of measurements collected by the GRACE mission have brought us unprecedented understanding of the Earth’s mass transport processes. Various data processing methods to the GRACE measurements have been developed, resulting in various time-variable gravity field models in terms of unconstrained spherical harmonics (Bettadpur 2018; Dahle et al. 2018; Yuan 2018; Mayer-Gürr et al. 2018; Meyer et al. 2016; Chen et al. 2016), regularized or filtered spherical harmonics (Lemoine et al. 2018; Farahani et al. 2017) and mascon grids (Luthke et al. 2013; Watkins et al. 2015; Save et al. 2016). As the traditional and established representation of gravity field solutions, the spherical harmonic models are usually applied to most of geophysical signal analyses (Velicogna and Wahr 2013; Chen et al. 2014; Schumacher et al. 2018).

Through over 15 years of efforts, numerous research teams have greatly improved the GRACE gravity field models by developing various refined data processing methods. The improved data processing algorithms generally focus on refinements of background force models, GRACE Level-1b data, gravity field recovery methodologies and noise modelling. Imperfectness of the background force models (especially ocean tide and de-aliasing models) (Zenner et al. 2012; Daras and Pail 2017) will inevitably cause temporal aliasing, which is one of the reasons for the north-south stripes (Wiese et al. 2011; Loomis et al. 2012). The enhanced ocean tide modelling (Mayer-Gürr et al. 2012) and non-tidal
de-aliasing strategy (Flechtner and Dobslaw 2013) were demonstrated to reduce the impact of temporal aliasing on gravity field estimates to some extent. The GRACE Level-1b data processed by the Jet Propulsion Laboratory (JPL) have matured from RL01 to RL03, where every new version of GRACE Level-1b data consistently brought clear improvement on gravity field estimates (Chambers and Bonin 2012; Dahle et al. 2014; Dahle et al. 2018). During gravity field determination, the gravity field modelling approaches (e.g. dynamic approach, short-arc approach and its modified version, acceleration approach, celestial mechanics approach and energy balance one) and noise modelling (random noise and frequency-dependent noise modelling) are of great importance for improving the GRACE solutions.

For the well-known short-arc approach, it was first established by Schneider (1968) for orbit determination and then applied by Mayer-Gürr (2006) to derive several high-quality gravity field models. Before solving gravity field parameters, this approach needs to use a priori gravity field models to correct orbits when computing gravitational force acting on satellites. A modified short-arc approach that simultaneously estimates the orbit corrections and gravity field parameters was therefore proposed by Chen et al. (2015). Consequently, the modified short-arc method becomes insensitive toward the a priori gravity field information. Using the proposed method, Chen et al. (2015) developed the Tongji-GRACE01 monthly solutions that are comparable to the official GRACE RL05 models. Recently, a further enhancement was implemented for the modified short-arc method to model the errors of accelerometer measurement and attitude data (Chen et al. 2016), leading to clear noise reductions in the derived Tongji-GRACE02 monthly solutions. However, there is still some space to further improve the modified short-arc method. In principle, long-arc techniques are more sensitive to long-term variations in the Earth’s gravity field (Cheng et al. 1997) and contributes better estimates of tesseral harmonic coefficients (Taff 1985). Moreover, long arcs probably amplify those minor forces acting on spacecraft (Xu 2008), which means that these signals are more likely to be captured. However, the arc length used in the modified short-arc approach is generally 2 hours (Chen et al. 2015; Shen et al. 2015), which is still significantly shorter than those used in either the dynamic approach (one day arcs) (Bettadpur 2012; Dahle et al. 2012; Watkins and Yuan 2014) or acceleration approach (6 hour arcs) (Ditmar et al. 2004; Liu et al. 2010). One may discuss whether it is possible to further extend the arc length in the modified short-arc approach and what the practical contribution to gravity field quality is. One of the reasons for limiting the arc length in the modified short-arc method is that the stability of inverting an intermediate matrix is decreased along with the increase of arc length. To briefly explain it, we write the observation equation for both orbits and range-rates in the modified short-arc method as \(\mathbf{C} \mathbf{x} + \mathbf{D} \mathbf{v} = \mathbf{y} \) for any arc \((\mathbf{x} \text{ and } \mathbf{v}; \text{ parameters and observation corrections}; \mathbf{C} \text{ and } \mathbf{D}; \text{ design matrices for } \mathbf{x} \text{ and } \mathbf{v}; \mathbf{y} \text{ is residual vector})\). The inversion of the intermediate matrix \((\mathbf{DQDT})^T\) (\(\mathbf{Q} \text{ is variance-covariance matrix of observations}) should be computed in each arc before generating sub-normal equation for this arc, whose condition number will increase rapidly when prolonging the arc length. In other words, stabilizing the inversion would allow to further extend the arc length. However, until now, nearly no research was conducted on exploring any possibility to extend the arc length in the modified short-arc method by stabilizing the inversion.

Noise modelling is also an important factor in gravity field estimation. Especially for K-band range-rate measurements, many studies have shown that such measurements are dominated by frequency-dependent noise (Farahani et al. 2013; Mayer-Gürr et al. 2014). Ditmar et al. (2012) pointed out that the frequency-dependent noise in the observations is severely corrupted by the errors in the
GRACE orbits. Hence, different noise modelling strategies were applied by various research centers. To account for the effects of the frequency-dependent noise in the observations on gravity field modelling, empirical parameters are generally introduced (Liu et al. 2010; Zhao et al. 2011; Zhou et al. 2017). The frequency-dependent noise can also be suppressed by frequency-dependent data weighting (FDDW) techniques (Klees and Ditmar 2004; Farahani et al. 2017; Guo et al. 2018). However, most processing centers don’t consider the FDDW and less often discuss the noise behaviors of orbit measurements. One possible reason for that is many approaches do not use orbits as observations for the estimation of the geopotential coefficients. Even though the contribution of the orbit measurements to gravity field estimates is limited to the low degrees, the orbits are of importance for processing the K-band data. Since any kind of orbits (dynamic, reduced-dynamic, or kinematic orbits) is dominated by the significant frequency-dependent noise, much more work should be carried out to analyze and model the noise.

To enhance gravity field solutions, this research proposes an optimized short-arc approach by stabilizing the inversion of intermediate matrix and modelling the frequency-dependent noise. Using the optimized method, a new time series of GRACE monthly solutions called Tongji-Grace2018 (with maximum degree and order of both 60 and 96) for the period Apr. 2002 to Aug. 2016 are developed by Tongji University. The rest of the paper is outlined as follows. The theoretical model for the optimized short-arc approach is presented in Sect. 2. In Sect. 3 it shows the frequency-dependent noise modelling and discusses the stabilities of the short-arc method proposed by Chen et al. (2015) and the optimized one. The detailed data processing procedures for Tongji-Grace2018 monthly models are given in Sect. 4. Sects. 5 and 6 are left for discussions on Tongji-Grace2018 in terms of noise and signal levels. Conclusions are drawn in Sect. 7.

2. Methodology

2.1 Functional model for the optimized short-arc approach

For an arc with \(N + 1 \) kinematic orbit measurements \(\mathbf{r}(\tau_k) (k = 0, 1, \ldots, N) \), the observation equations at boundary epochs are:

\[
\mathbf{r}(\tau_0) + \mathbf{v}_r(\tau_0) = \mathbf{r}_0 + \delta \mathbf{r}_0 \\
\mathbf{r}(\tau_N) + \mathbf{v}_r(\tau_N) = \mathbf{r}_N + \delta \mathbf{r}_N
\]

where \(\mathbf{v}_r(\tau_i) (i = 0, N) \) is the corrections to position measurements at the boundary epochs; \(\delta \mathbf{r}_0 \) and \(\delta \mathbf{r}_N \) denote the corrections to the boundary position parameters \(\mathbf{r}_0 \) and \(\mathbf{r}_N \) to be estimated.

For the epochs except for the two boundary epochs, we have position observation equation below:

\[
\mathbf{r}(\tau_i) + \mathbf{v}_r(\tau_i) = \mathbf{r}^0(\tau_i) + \delta \mathbf{r}^0(\tau_i), i = 1, 2, \ldots, N - 1
\]

To generate velocity vector at any epoch, the following equation is subsequently given:

\[
\mathbf{v}_r(\tau_i) = \dot{\mathbf{r}}^0(\tau_i) + \delta \dot{\mathbf{r}}^0(\tau_i), i = 0, 1, \ldots, N
\]

In Eqs. (3) and (4), \(\mathbf{v}_r(\tau_i) \) is the corrections to the position measurements at normalize time \(\tau_i \); \(\mathbf{r}^0(\tau_i) \) and \(\dot{\mathbf{r}}^0(\tau_i) \) are the reference position and velocity vectors numerically integrated by \(\mathbf{r}(\tau_i) \) and a priori parameters (including gravity field coefficients, accelerometer and boundary parameters) and background force models; \(\delta \mathbf{r}^0(\tau_i) \) and \(\delta \dot{\mathbf{r}}^0(\tau_i) \) represent the corrections caused by position measurement errors and insufficient accuracies in the a priori parameters. Before computing the
reference position and velocity vectors, we define the a priori values u_0 and p_0 for the gravity field parameters and accelerometer parameters, respectively. Following the discretization technique presented in Chen et al. (2015), the reference position and velocity vectors can be expressed as a combination of the kinematic orbit measurements in the whole arc by using integration coefficients α_k and β_k:

$$ r^0(\tau_i) = (1 - \tau_i)r_0 + \tau r_N - T^2 \sum_{k=0}^{N} \alpha_k K(\tau_i, \tau_k) a(r_k,u_0,p_0) $$

$$ \dot{r}^0(\tau_i) = \frac{r_N - r_0}{T} + T \sum_{k=0}^{N} \beta_k \frac{\partial K(\tau_i, \tau_k)}{\partial \tau_i} a(r_k,u_0,p_0) $$

where K is the integral kernel for the arc of length T (Mayer-Gürr 2006; Chen et al. 2015) and a is the a priori force acting on spacecraft. Using the same discretization method, the corrections to the reference position and velocity vectors are subsequently given as:

$$ \delta r^0(\tau_i) = (1 - \tau_i) \delta r_0 + \tau \delta r_N - T^2 \sum_{k=0}^{N} \alpha_k \frac{\partial K(\tau_i, \tau_k)}{\partial \tau_i} \left(\frac{\partial a(r_k,u_0,p_0)}{\partial u} \delta u + \frac{\partial a(r_k,u_0,p_0)}{\partial p} \delta p + \frac{\partial a(r_k,u_0,p_0)}{\partial r} \delta r (\tau_k) \right) $$

$$ \delta \dot{r}^0(\tau_i) = \delta r_N - \delta r_0 + T \sum_{k=0}^{N} \beta_k \frac{\partial K(\tau_i, \tau_k)}{\partial \tau_i} \left(\frac{\partial a(r_k,u_0,p_0)}{\partial u} \delta u + \frac{\partial a(r_k,u_0,p_0)}{\partial p} \delta p + \frac{\partial a(r_k,u_0,p_0)}{\partial r} \delta r (\tau_k) \right) $$

Both position and velocity vectors of GRACE A and GRACE B are used to form the following observation equation for the K-band range-rate measurements:

$$ F(r_A(\tau_i), r_B(\tau_i), u, p_A, p_B) = \left(r_B(\tau_i) - r_A(\tau_i) \right)^T \left(\dot{r}_B(\tau_i) - \dot{r}_A(\tau_i) \right) / \rho(\tau_i) $$

in which the symbols A and B indicate GRACE A and GRACE B separately; and $\rho(\tau_i)$ is the inter-satellite range. We substitute equations from (s) to (8) into the observation equation (9) and carry out the linearization of the observation equation (9), leading to the linearized observation equation for the range-rate measurements:

$$ \dot{\rho}(\tau_i) + v_\rho(\tau_i) = F^0 + \frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial r_0^A} \delta r_0^A + \frac{\partial F}{\partial r_N^A} \delta r_N^A + \frac{\partial F}{\partial r_0^B} \delta r_0^B + \frac{\partial F}{\partial r_N^B} \delta r_N^B + \frac{\partial F}{\partial p_A} \delta p_A + \frac{\partial F}{\partial p_B} \delta p_B + \sum_{k=0}^{N} \left(\frac{\partial F}{\partial r_k^A} \delta r_k^A + \frac{\partial F}{\partial r_k^B} \delta r_k^B \right) $$

in which the reference range-rate F^0 is directly computed from the reference position and velocity vectors; δp_s and $v_{\rho_s} (s = A, B)$ are the corrections to the accelerometer parameters for both satellites and orbit measurements of both satellites, respectively; v_{ρ_s} stands for the corrections to the inter-satellite range-rate measurements $\rho(\tau_i)$; $\delta r_k^s (k = 0, N; s = A, B)$ represents the corrections to the boundary parameters for both satellites.

2.2 Separating orbits from range-rate in constructing normal equation

For brevity, the observation equations (1) and (3) for the orbits of both satellites at the j-th arc ($j = 1, 2, ..., K$) can be re-written in the form of matrices:
\[C^A_j x_j + D^A_j v^A_j = y^A_j \] (11)
\[C^B_j x_j + D^B_j v^B_j = y^B_j \] (12)

where \(C^A_j \) and \(D^A_j \) \((s = A,B)\) stand for partial derivative matrices with respect to the parameters to be estimated \(x_j = (\delta \mu^T, \delta p^T_{A,i}, \delta p^T_{B,i}, \delta r^T_{A,i}, \delta r^T_{B,i}, \delta r^T_{A,J}, \delta r^T_{B,J})^T \) and orbit correction vector \(v^A_j \) \((s = A,B)\), respectively, as given in the observation equations from (1) to (3); the residual vector \(y^A_j \) \((s = A,B)\) is formed by subtracting the kinematic orbit measurements from the reference orbit positions. Analogously, the simplified form of the observation equation (10) for the inter-satellite range-rates is given as follows:

\[C^B_j x_j + D^B_j v^A_j + D^{\beta^B} v^B_j - v^A_j = y^B_j \] (13)

in which \(C^B_j \) and \(D^{\beta^B} \) \((s = A,B)\) are the partial derivative matrices with respect to the unknown parameters and orbit corrections separately; \(y^B_j \) indicates residual vector for range-rate measurements. Before further conducting derivation for the above observation equations, we assume there are \(N + 1 \) kinematic orbit measurements and \(L \) inter-satellite observations at the \(j \)-th arc. Unlike the modified short-arc approach that does not treat boundary vectors as parameters, we can derive \(N + 1 \) orbit observation equations for either GRACE A or GRACE B because boundary parameters are introduced when forming observation equations. This means that \(D^A_j \) and \(D^B_j \) for both satellites become square matrices with full rank, so they are invertible. We therefore multiply Eqs. (11) and (12) by \((D^A_j)^{-1}\) and \((D^B_j)^{-1}\) separately, leading to more concise observation equations for both orbits as follows:

\[v^A_j = (-D^A_j)^{-1} C^A_j x_j - (-D^A_j)^{-1} y^A_j \] (14)
\[v^B_j = (-D^B_j)^{-1} C^B_j x_j - (-D^B_j)^{-1} y^B_j \] (15)

Here we define:

\[\bar{C}^A_j = (-D^A_j)^{-1} C^A_j; \quad \bar{y}^A_j = (-D^A_j)^{-1} y^A_j \] (16)
\[\bar{C}^B_j = (-D^B_j)^{-1} C^B_j; \quad \bar{y}^B_j = (-D^B_j)^{-1} y^B_j \] (17)

\[\bar{v}^B_j = C^B_j + D^{\beta^A} \bar{C}^A_j + D^{\beta^B} \bar{C}^B_j; \quad \bar{y}^B_j = y^B_j + D^{\beta^A} \bar{y}^A_j + D^{\beta^B} \bar{y}^B_j \] (18)

Based on the definitions (16) and (17), the orbit observation equations for GRACE A and GRACE B can be further simplified as:

\[v^A_j = \bar{C}^A_j x_j - \bar{y}^A_j \] (19)
\[v^B_j = \bar{C}^B_j x_j - \bar{y}^B_j \] (20)

Taking equations from (18) to (20) and (13) into account, we derive a more concise observation equation for the range-rate measurements as follows:

\[\bar{v}^B_j = \bar{C}^B_j x_j - \bar{y}^B_j \] (21)

Finally, the sub-normal equation at the \(j \)-th arc can be formed as:
\[
\sum_{s=A,B,\hat{p}} (C_j^s)^T (Q_j^s)^{-1} y_j = \sum_{s=A,B,\hat{p}} (C_j^s)^T (Q_j^s)^{-1} x_j
\]

where \(Q_j^s(s = A,B,\hat{p})\) denotes the variance-covariance matrices for orbits and inter-satellite range-rates. As shown in Eq. (22), the contribution of each observable (orbit of each satellite or inter-satellite range-rate) to generating normal equation is easy to be assessed. According to Eq. (22), we generate the sub-normal equation for each arc. In this study, the boundary parameters are estimated per arc and accelerometer parameters (scales and biases) are solved per day. The boundary parameters can be first eliminated after generating the sub-normal equation for each arc. Once generating the daily normal equation, the accelerometer parameters will also be eliminated immediately. The combination of all the reduced daily normal equations leads to the final monthly normal equation only regarding the geopotential coefficients to be estimated.

2.3 Theoretical merits of the optimized short-arc method

Before discussing the metrics of the optimized short-arc approach, we need to review the basic formulas for the previous modified short-arc approach (Chen et al. 2015) and explain the corresponding drawback. One of the major distinctions between the functional models of the optimized short-arc approach and the modified one is the parameterization of the boundary epochs. In the modified short-arc approach, the boundary values are directly expressed as kinematic orbit measurements at the boundary epochs plus corrections, thereby no boundary parameter is introduced. In such a case, the observation equations (1) and (2) are not applicable anymore, indicating that the design matrix \(D_j^s\) for kinematic orbit corrections at the \(j\)-th arc becomes a \(m\)-by-\(n\) irreversible matrix \((m = 3 \times (N - 1), n = 3 \times (N + 1))\). Consequently, as given in Chen et al. (2015), the observation equations for the pair of orbits and range-rates at the \(j\)-th arc along with the corresponding sub-normal equation can be summarized as follows:

\[
\begin{align*}
C_j x_j + D_j y_j &= y_j \\
(C_j^T(D_j Q_j D_j^T)^{-1} C_j) x_j &= C_j^T(D_j Q_j D_j^T)^{-1} y_j, & j = 1, 2, \ldots, K
\end{align*}
\]

where

\[
C_j = \begin{pmatrix} C_j^A \\ C_j^B \\ C_j^\hat{p} \end{pmatrix}; D_j = \begin{pmatrix} D_j^A & 0 & 0 \\ 0 & D_j^B & 0 \\ D_j^A & D_j^B & -I \end{pmatrix}
\]

\[
y_j = \begin{pmatrix} y_j^A \\ y_j^B \\ y_j^\hat{p} \end{pmatrix}; Q_j = \begin{pmatrix} Q_j^A & 0 & 0 \\ 0 & Q_j^B & 0 \\ 0 & 0 & Q_j^\hat{p} \end{pmatrix}
\]

Unfortunately, \(D_j\) is such an irreversible matrix that we cannot separate equation (23) for each GRACE observable (orbit of each satellite or inter-satellite range-rate) in the form of Eqs. (19) to (21). In the modified short-arc approach, the large-scale intermediate matrix \((D_j Q_j D_j^T)\) with dimension generally between six and seven times the arc length should be inversed prior to creating the normal equation,
which means that extending arc length will rapidly increase the dimension of this matrix. From the perspective of numerical computation, the large-scale matrix in general makes it more difficult to obtain a stable inversion \((D_Q^s D_J^s)^{-1}\), which is the main reason for preventing the extension of the arc length in the modified short-arc method. On the other hand, in the case of the optimized short-arc approach, we only need to individually compute the inversion of matrix \(D_J^s (s = A, B)\) for each satellite before creating the normal equations, whose dimensions are only triple of the arc length, making it possible to prolong the arc length. Further discussions about the difference of stability between the modified and optimized short-arc methods will be given in Sect. 3.3.

3. Discussions on the optimized short-arc method

3.1 Constructing variance-covariance matrices

As stated before, the inter-satellite range-rate measurements are contaminated by the frequency-dependent noise and many methodologies have been applied to account for them. One of the methodologies is to construct variance-covariance matrices for the observations. Based on auto-covariance or cross-covariance of postfit residuals, different variance-covariance matrices for observations were established under various assumptions (Koch et al. 2010). In this study, a noise whitening technique is applied to construct the variance-covariance matrices for measurements, which is similar to FDDW technique (Farahani et al. 2017) in spite of the difference of detailed implementation between these two techniques. It is necessary to investigate the behavior of the postfit residuals of GRACE measurements before our variance-covariance matrices are created. As an example, we select Nov. 2014 to show the postfit residuals of GRACE measurements derived by using the data processing presented in Chen et al. (2015). Note that the corresponding monthly gravity field model up to degree and order 60 was determined before calculating the residuals. During gravity field modelling, the GRACE measurements (range-rates, non-gravitational accelerations and attitudes) from JPL and kinematic orbits computed by Graz University of Technology were used.

![Figure 1 Postfit residuals of orbit (a) and range-rate (b) measurements on 15th Nov. 2014.](image)

As presented in Figure 1, the postfit residuals of orbit and range-rate measurements on 15th Nov. 2014 show clear frequency dependency, as illustrated by the power spectrum densities (PSD) plotted in Figure...
2. From Figure 2 it can be seen that both orbit and range-rate measurements (especially the orbit data) are dominated by the low-frequency noise. For the case of range-rates, the frequency-dependent noise is usually accounted for via either estimating periodic parameters or introducing variance-covariance matrices. As stated in the introduction, the frequency-dependent noise in the observations is greatly attributed to the errors in GRACE orbits (Ditmar et al. 2012). Due to the imperfect background models used to account for tidal and non-tidal variations in both ocean and atmosphere during gravity field modelling (Seo et al. 2008; Kurtenbach et al. 2009), temporal aliasing errors will inevitably propagate to the orbit and K-band observations. This is one of the possible reasons for the frequency-dependent amplitude of the orbit residuals as displayed in Figure 1(a), indicating modelling frequency-dependent noise for orbits is theoretically necessary. In this paper, the variance-covariance matrices for orbit and range-rate data are constructed rather than doing so only in the range-rates (Guo et al. 2018).

Before constructing the variance-covariance matrix \(\mathbf{Q}_j(s = A, B, \dot{\rho}) \) in the \(j \)-th arc, we define the frequency-dependent noise for the orbit and inter-satellite range-rate measurements as \(\mathbf{e}_j(s = A, B, \dot{\rho}) \). Applying noise whitening operation, the frequency-dependent noise will become Gaussian white noise \(\mathbf{\tilde{e}}_j(s = A, B, \dot{\rho}) \):

\[
\mathbf{\tilde{e}}_j = \mathbf{H}_j^s \mathbf{e}_j
\]

where the noise whitening matrix \(\mathbf{H}_j^s(s = A, B, \dot{\rho}) \) and the variance of white noise \(\mathbf{\tilde{e}}_j(s = A, B, \dot{\rho}) \) can be obtained based on the Auto-Regressive (AR) noise model implemented in the ARMASA toolbox (Broersen 2000) (e.g. ARMASA toolbox offered in the MATLAB Central, https://nl.mathworks.com/matlabcentral/fileexchange/1330-armasa). In ARMASA, the AR noise model can be determined by using the Levinson-Durbin algorithm (Broersen and Wensink 1998). Based on \(\mathbf{\tilde{e}}_j(s = A, B, \dot{\rho}) \) and the predefined variance of unit weight \(\sigma_0 \) (It is 2 cm in this study since this value is close to the RMS of the postfit residuals of kinematic orbits), the variance-covariance matrix \(\mathbf{\tilde{Q}}_j(s = A, B, \dot{\rho}) \) for white noise is constructed in the followings:

\[
\mathbf{\tilde{Q}}_j = \operatorname{diag} \left(\frac{(\sigma_j)^2}{(\sigma_0)^2} \right)
\]
According to the law of variance-covariance propagation, we build the relationship between the variance-covariance matrices $\overline{Q}_j(s = A, B, \rho)$ and $Q^s_j(s = A, B, \rho)$ as follows:

$$\overline{Q}_j = H_j^T Q^s_j (H_j^s)^T$$

(27)

Because the whitening matrix $H_j^s(s = A, B, \rho)$ is invertible, the variance-covariance matrix $Q^s_j(s = A, B, \rho)$ for the frequency-dependent noise is easily obtained through applying the inversion of H_j^s to both sides of Eq. (27):

$$Q^s_j = (H_j^s)^{-1} \overline{Q}_j (H_j^s)^{-1}$$

(28)

As the frequency-dependent noise $e^s_j(s = A, B, \rho)$ for measurements is practically unknown, the variance-covariance matrices $Q^s_j(s = A, B, \rho)$ for measurements are usually computed on the basis of the postfit residuals of measurements.

3.2 Added value of optimized short-arc method

As discussed in Sect. 2.3, the optimized short-arc method is theoretically expected to improve the gravity field estimates compared to the modified short-arc approach. In order to discuss any possible practical merit of the optimized short-arc method in gravity field modelling, we compare four monthly gravity field models (indicated by cases 1 to 4) up to degree and order 60 derived from the GRACE observations over the month Nov. 2014 via the modified and optimized short-arc approaches in the cases with and without modelling frequency-dependent noise. As given in Table 1, the variance-covariance matrices are diagonal matrices for cases 1 and 2 since the noise contained in the GRACE measurements are simply treated as white noise in the two cases, while they become full matrices when the frequency-dependent noise is modelled in accordance with Sect. 3.1. During computing the four models, the arc length is chosen to be 2 hours since Chen et al. (2015) found that such an arc length can achieve the optimum gravity field model for the modified short-arc approach.

![Figure 3](image-url)

Figure 3 Gravity field solutions in terms of geoid degree variances w.r.t EIGEN6C4 determined by using the modified and optimized short-arc approaches (with and without modelling frequency-dependent noise).
Table 1. Computational schemes (M for modified, O for optimized, d for diagonal matrices and f for full matrices)

<table>
<thead>
<tr>
<th>Gravity field solution</th>
<th>Method</th>
<th>Variance-covariance matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1: Md</td>
<td>modified short-arc</td>
<td>diagonal</td>
</tr>
<tr>
<td>Case 2: Od</td>
<td>optimized short-arc</td>
<td>diagonal</td>
</tr>
<tr>
<td>Case 3: Mf</td>
<td>modified short-arc</td>
<td>full</td>
</tr>
<tr>
<td>Case 4: Of</td>
<td>optimized short-arc</td>
<td>full</td>
</tr>
</tbody>
</table>

As expected, the derived gravity field solutions in terms of geoid degree variances relative to EIGEN6C4 (Förste et al. 2014) shown in Figure 3 demonstrate the clear improvements on gravity field determination contributed by the optimized short-arc method. It can be concluded from Figure 3 that: (1) no matter whether frequency-dependent noise is modelled or not, the optimized short-arc approach consistently reduces gravity field errors at high degrees significantly in comparison to the modified one; and (2) the frequency-dependent noise modelling technique presented in this paper leads to prominent noise reductions for both modified and optimized short-arc methods. In mathematic sense, the optimized short-arc method is equivalent to the modified one. However, as elaborated in Sect. 2.3, the optimized method is expected contribute a better-conditioned intermediate matrix in each arc, which is the reason for the improvements in cases 2 and 4. Detailed discussions on the difference of the property of the intermediate matrices between the two methods are going to be performed in Sect. 3.3. In Figure 3, we also observe some differences at the low degrees ranging 2 to 3 between case 4 and others; nevertheless, such differences are less than 0.30 mm in terms of geoid degree variances. We further present the PSDs of the postfit residuals of observations (i.e. orbits and range-rates) for the four cases in Figure 4 to check any possible enhancement caused by the optimized short-arc method in the observation domain. Overall, as indicated in Figure 4, the optimized short-arc method has stronger ability to reduce the low-frequency noise than the modified short-arc approach when comparing either case 1 to 2 or case 3 to 4. Particularly for the range-rates, much more low-frequency noise is mitigated by the frequency-dependent noise modelling method, demonstrating the benefits of the proposed noise modelling.
Table 2: Computational schemes based on optimized short-arc method

(O for orbits, R for range-rates, d for diagonal matrices and f for full matrices)

<table>
<thead>
<tr>
<th>Gravity filed solution</th>
<th>Variance-covariance matrix</th>
<th>Orbits</th>
<th>Range-rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A: Od & Rd</td>
<td>Diagonal</td>
<td>diagonal</td>
<td></td>
</tr>
<tr>
<td>Case B: Of & Rd</td>
<td>Full</td>
<td>diagonal</td>
<td></td>
</tr>
<tr>
<td>Case C: Od & Rf</td>
<td>Diagonal</td>
<td>full</td>
<td></td>
</tr>
<tr>
<td>Case D: Of & Rf</td>
<td>Full</td>
<td>full</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Gravity field solutions in terms of geoid degree variances w.r.t EIGEN6C4 determined by using the modified and optimized short-arc approaches with and without modelling frequency-dependent noise.

Figure 6: PSDs of postfit residuals of orbits (a) and range-rate (b) measurements.

In this study, the concurrent modelling of frequency-dependent noise for both orbit and range-rate observations is one of the contributions. In order to separate the impact of frequency-dependent noise modelling on gravity field recovery from orbits to range-rates, this study further calculates four GRACE solutions up to degree and order 60 for the month Nov. 2014 based on the strategies outlined in Table 2.
The resulting gravity field solutions are illustrated in Figure 5 in terms of geoid degree variances relative to EIGEN6C4. One can see from Figure 5 that constructing variance-covariance matrices for either orbits or range-rates, there is no doubt, improves the accuracies of geopotential coefficients at high degrees. Even better, simultaneously modelling the frequency-dependent noise for orbits and range-rates further reduces the noise at high degrees. This finding supports that it is beneficial to consider the frequency-dependent noise in the orbit measurements during gravity field modelling in addition to that in the range-rate data. Even though the coefficients of the four models at low degrees are generally dominated by geophysical signals, some slight discrepancies occur at degrees 2 and 3. In the comparison among the four models in terms of geoid degree variance, the maximum difference for degrees 2 and 3 is about 0.70 mm 0.28 mm, respectively. Such discrepancies are probably caused by the differences among the constructed variance-covariance matrices. Therefore, an in-depth discussion on the impacts of different variance-covariance matrices on gravity field modelling deserves a separate investigation. Furthermore, we also plot the PSDs of the postfit residuals of orbits and range-rates for cases A to D in Figure 6. It reveals that introducing variance-covariance matrices for any type of observables (orbit or range-rate) achieves noise reductions for orbits and range-rates at low frequencies, particularly for the range-rates. Despite the relatively larger improvement contributed by modelling frequency-dependent noise in the range-rate measurements, the decreased noise at low frequencies as shown in Figure 6(a) suggests that constructing variance-covariance matrix for orbits is beneficial as well.

3.3 Inversion stability of the modified and optimized short-arc methods

As stated in the introduction, one of the aims in this study is to answer whether we are able to prolong the arc length for the short-arc approach and what benefit this can achieve. The arc length used in the modified short-arc method is generally 2 hours (Chen et al. 2015). As discussed in Sect. 2.3, further prolonging the arc length for the modified short-arc method is a challenge due to the unstable inversion of the large-scale intermediate matrix \(D_j Q_j D_j^T \), whose dimension is almost seven times the arc length. In principle, the proposed optimized short-arc is able to extend the arc length since only two reduced-dimension matrices (namely \(D_j^A \) and \(D_j^B \)) are required to be inverted in forming the normal equation for estimating geopotential coefficients. To confirm the above this, we choose various arc lengths (2, 4, 6, 8 and 12 hours) and compute the corresponding condition numbers of \(D_j^s (s = A, B) \) based on the optimized short-arc approach. The same arcs are applied to the modified short-arc method and the condition numbers of \(D_j Q_j D_j^T \) are calculated as well. However, the case of 12 hours is unavailable for the modified short-arc method, since such a long arc length makes the dimension of the immediate matrix \(D_j Q_j D_j^T \) over 60,000, which requires almost 30 GB of computational memory. Considering the memory consumption of other matrices (e.g., the design matrices for generating normal equation and computing post-fit residuals), the memory consumption in total is over 100 GB, which greatly exceeds the maximum memory (32 GB) of our computers. As shown in Table 3, the resulting condition number based on the modified short-arc method significantly increases with arc length, while it changes slightly when prolonging the arc length in the case of the optimized short-arc method. Even in the case of 2 hour arcs, the matrix \(D_j Q_j D_j^T \) generated via the modified short-arc method is still relatively ill-conditioned, with the condition number of 15.3 (in unit of \(\log_{10} \)), which is remarkably larger than that generated by the optimized short-arc method.
Table 3 Condition numbers of intermediate matrices based on various arcs (* indicates unavailable test)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$D_j Q_j D_j^T$</td>
<td>$D_j^T (s = A, B)$</td>
</tr>
<tr>
<td>2 hours</td>
<td>15.3</td>
<td>3.3</td>
</tr>
<tr>
<td>4 hours</td>
<td>15.8</td>
<td>4.2</td>
</tr>
<tr>
<td>6 hours</td>
<td>16.4</td>
<td>4.8</td>
</tr>
<tr>
<td>8 hours</td>
<td>16.8</td>
<td>5.5</td>
</tr>
<tr>
<td>12 hours</td>
<td>*</td>
<td>9.9</td>
</tr>
</tbody>
</table>

In mathematic sense, the intermediate matrix $D_j Q_j D_j^T$ applied to generate normal equation for estimating gravity field parameters in the modified short-arc approach is severely ill-conditioned so that the property of the final normal matrix for solving gravity field parameters will be affected and eventually the gravity field estimates may be degraded. On the contrary, the condition number of the reduced-dimension intermediate matrix $D_j^T (s = A, B)$ is significantly better, which will lead to more stable gravity field estimates. To verify it, the modified and optimized short-arc methods are separately applied to derive normal equations for estimating geopotential coefficients up to degree and order 60 from the GRACE data in Nov. 2014, with different arc lengths listed in Table 3. The full variance-covariance matrices are built during deriving the above normal equations in accordance with Sect. 3.1. As depicted in Table 4, the condition number of the final normal equation in terms of log10 for the modified short-arc method increases with the arc length. This agrees to what we discussed in Sect. 2.3. In the case of the optimized one, the condition number shows an apparent decline when prolonging the arc length from 2 to 6 hours; however, it grows up when further prolonging the arc length from 6 to 12 hours. One possible reason for limiting the arc length, as shown in Table 3, is that the property of the immediate matrix $D_j^T (s = A, B)$ degrades when the arc length is over 6 hours. Especially in the case of 12 hour arc length, $D_j^T (s = A, B)$ becomes severely ill-conditioned (with condition number of 9.9 in terms of log10). Nevertheless, the normal equation based on the optimized short-arc method has a smaller condition number than that based on the modified one when using the same arc length.

Table 4 Condition numbers (log10) of normal matrices based on various arcs (* indicates unavailable test)

<table>
<thead>
<tr>
<th>Arc length</th>
<th>Modified short-arc method</th>
<th>Optimized short-arc method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hours</td>
<td>6.24</td>
<td>6.12</td>
</tr>
<tr>
<td>4 hours</td>
<td>6.43</td>
<td>5.90</td>
</tr>
<tr>
<td>6 hours</td>
<td>6.57</td>
<td>4.82</td>
</tr>
<tr>
<td>8 hours</td>
<td>6.76</td>
<td>5.84</td>
</tr>
<tr>
<td>12 hours</td>
<td>*</td>
<td>5.90</td>
</tr>
</tbody>
</table>

The more stable normal equations obtained by the optimized short-arc method are theoretically anticipated to improve gravity field estimation. To compare the difference of the practical contributions to gravity field estimation between the modified and optimized short-arc methods, we subsequently present the geoid degree variances of the corresponding gravity field models based on the above normal equations in Figure 7. One can see from Figure 7(a) that longer arcs (more than 2 hours) for the modified short-arc approach result in dramatic increase of noise in gravity field estimates as the normal equations become more ill-conditioned. Conversely, as long as the arc length is no more than 6 hours, increasing
arc length can lead to noticeable noise reduction in the obtained gravity field models for the case of the optimized short-arc method, which also agrees well with what we conclude from Table 4. However, for the case of the optimized short-arc approach, there is a slight noise growth in the estimated gravity field at high degrees when further prolonging the arc length from 6 to 12 hours. Overall, the most appropriate arc length is 2 hours for the modified short-arc method, while it is 6 hours for the optimized short-arc approach. Though 2 hour arcs are the optimal choice for the modified short-arc method, as demonstrated in Figure 8, the corresponding gravity field solution still manifests significant noise at high degrees compared to that determined by using the optimized short-arc method based on 6 hour arcs.

4. Development of Tongji-Grace2018 monthly solutions

The above analyses demonstrate the merits of the optimized short-arc approach in gravity field
estimation. In view of such contributions of the proposed methodologies, we develop a new time series of GRACE monthly gravity field solutions (named Tongji-Grace2018) for the period Apr. 2002 to Aug. 2016 through using the optimized short-arc approach. Like the official RL06 models (i.e. CSR RL06, GFZ RL06 and JPL RL06), Tongji-Grace2018 is provided in two different maximum resolutions (d/o 96 and 60). This section is dedicated to elaborating the dynamic process models and observations collected by GRACE satellites as well as the detailed parameter estimation process for generating Tongji-Grace2018 models.

4.1 Models for dynamic process

Table 5 lists the dynamic models, including static Earth’s gravity field, solid Earth (pole) tides, ocean (pole) tides, atmospheric and oceanic de-aliasing effects, third-body perturbations, and relativistic impacts in conjunction with non-gravitational forces. As we concentrate on the time-variable Earth’s gravity field directly associated with the variations in atmosphere, ocean, ice sheet, hydrology and solid Earth (Tapley et al. 2004), the dynamic forces should be accurately removed during gravity field modelling.

<table>
<thead>
<tr>
<th>Force model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Earth’s gravity field</td>
<td>Tongji-Grace02s with a maximum degree and order of 180</td>
</tr>
<tr>
<td>Solid Earth tides</td>
<td>IERS 2010 conventions (Petit and Luzum 2010)</td>
</tr>
<tr>
<td>Solid Earth pole tides</td>
<td>IERS mean pole</td>
</tr>
<tr>
<td>Ocean tides</td>
<td>EOT11a (Savcenko et al. 2012) & Fes2004 (Mtm & Msqm) (Lyard et al. 2006) up to d/o 100</td>
</tr>
<tr>
<td>Ocean pole tides</td>
<td>Desai model (Desai 2002) up to d/o 100</td>
</tr>
<tr>
<td>Atmospheric and oceanic de-aliasing</td>
<td>AOD1B RL06 de-aliasing products (Dobslaw et al. 2017) up to d/o 180</td>
</tr>
<tr>
<td>Third-body</td>
<td>The Sun, Moon and Jupiter (JPL DE430 planetary ephemerides) (Folkner et al. 2008)</td>
</tr>
<tr>
<td>Relativistic impacts</td>
<td>IERS 2010 conventions</td>
</tr>
<tr>
<td>Non-gravitational forces</td>
<td>Onboard accelerometer data</td>
</tr>
</tbody>
</table>

Since the GRACE monthly models are generally defined by a specific degree and order (e.g. 60, 96 or 120), high-degree signals are usually de-aliased by static Earth’s gravity field model. During deriving Tongji-Grace2018 models, the high-precision static GRACE-only Tongji-Grace02s complete to degree and order 180 is selected to account for the gravity field signals at high degrees. Like Chen et al. (2015), the impacts of the solid Earth (pole) tides in terms of geopotential coefficients for the degrees ranging 2 to 4 are modelled in accordance with the IERS 2010 conventions (Petit and Luzum 2010). Unlike Chen et al. (2015) that only used 18 tides in EOT11a ocean model (Savcenko and Boch 2012), this paper considers two more ocean tide constituents (namely Mtm and Msqm) from Fes2004 (Lyard et al. 2006) in addition to the 18 tides in EOT11a to remove the impacts of the ocean tides. As stated in Petit and Luzum (2010), the secondary ocean tides may represent almost 20% of impacts on satellite orbit integration based on one day arcs, thus an admittance method proposed by Rieser et al. (2012) is used to linearly interpolate 236 secondary ocean tides. For the purpose of computing the corrections due to the ocean pole tides, Desai model (Desai 2002) up to degree and order 100 is adopted. For the removal of the short-period non-tidal variability over the atmosphere and ocean, the AOD1B RL06 up to degree and order 180 is employed (Dobslaw et al. 2017). As for the relativistic effects, we calculate the corresponding correction in terms of acceleration based on the IERS 2010 conventions. For computing the third-body
perturbations caused by the Sun, Moon and other planets (e.g. Jupiter), the version of planetary ephemerides offered by JPL, namely DE430 (Folkner et al. 2008), is used to determine the precise position and velocity vectors for planets at any required epoch. Regarding calculation of the non-gravitational forces acting on satellites, the onboard accelerometer data are employed.

4.2 Satellite observations

The creation of normal Eq. (22) for estimating gravity field parameters is based on GRACE observations containing orbits and accelerations as well as attitudes of both satellites together with inter-satellite range-rates, which are the primary observation type of GRACE Level-1b data published by JPL. As stated in the introduction, every release of GRACE Level-1b data can lead to apparent improvements on gravity field estimation, which is one of the reasons for JPL to recently reprocess the GRACE Level-1b data by using refined data processing algorithms, leading to an improved version of Level-1b data called GRACE RL03. This paper therefore uses the accelerations and attitudes of the twin satellites and the inter-satellite range-rates from GRACE RL03 as well as kinematic orbits from Graz University of Technology (Zehentner and Mayer-Gürr 2013). The basic information on the employed measurements is given in Table 6.

<table>
<thead>
<tr>
<th>Observable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Kinematic orbits from Graz University of Technology; sampling rate of 10s</td>
</tr>
<tr>
<td>Range-rate</td>
<td>Sampling rate of 5s</td>
</tr>
<tr>
<td>Attitude</td>
<td>Sampling rate of 5s</td>
</tr>
<tr>
<td>Acceleration</td>
<td>Sampling rate of 1s; resampled into 5s</td>
</tr>
</tbody>
</table>

4.3 Parameter estimation

Based on the dynamic models given in Table 5 and the measurements outlined in Table 6, the sub-normal equation (22) regarding the unknown vector \mathbf{x}_j for each arc can be computed. The vector \mathbf{x}_j to be estimated includes global (gravity field coefficients) and local (boundary positions and accelerometer scales and biases) parameters as elaborated in Sect. 2.2. Because Meyer et al. (2016) showed that calibrating accelerometer data via daily scales can considerably mitigate the impacts of the solar activity on the derived gravity field models, we estimate daily accelerometer scales in three axes for both satellites throughout this study. To model any possible time-related variation in daily accelerometer biases, the accelerometer bias in each axis of the accelerometer is treated as a 5-order polynomial for each day in accordance with Chen et al. (2018). Although the local parameters (boundary parameters and accelerometer parameters) are simultaneously estimated with the geopotential coefficients, it is worth noting that the boundary parameters are eliminated from the sub-normal equation for each arc and the accelerometer parameters are eliminated for each day. All the reduced daily normal equations are subsequently accumulated to form the monthly normal equation for solving the geopotential coefficients up to degree and order 96 (or 60). Even though all the local parameters are eliminated from the final normal equation, the corresponding gravity field result is mathematically equivalent to the case of retaining the local parameters in the final normal equation.
Figure 9 (A): monthly mean accelerometer scales in X, Y and Z axes; (B): standard deviations of scales (in unit of m/s²); (C): monthly mean biases; (D): standard deviations of biases (in unit of m/s²).

Chen et al. (2018) showed that accurately modelling the time-related variations in accelerometer parameters can lead to improvements on gravity field models. Here we present the statistics (mean values and standard deviations) of the estimated accelerometer scales and biases for the period Apr. 2002 to Aug. 2016 in Figure 9. It can be clearly observed in Figure 9 that both scales and biases experience apparent temporal variations, particularly in X and Z directions, indicating that the time-related variations in the accelerometer parameters should be accounted for during gravity field modelling.

5. Noise analyses of monthly gravity field solutions

Since any gravity field model depends on specific observations, dynamic process models and methodologies, either inaccuracies in the observations (or dynamic process models) or imperfectness in the methodologies will corrupt the derived gravity field model. Even though most of the GRACE monthly solutions available at ICGEM generally have comparable signal amplitudes, their noise levels are different. For gravity field modelling, the better methodology is able to considerably suppress the noise in addition to retaining the gravity field signals. As discussed in the preceding sections, the optimized short-arc method can reduce the gravity field noise at high degrees in comparison with the modified one. To comprehensively assess the quality of the Tongji-Grace2018 models derived on the basis of such optimized methodologies, the signal amplitude and noise level of the models are going to be discussed in terms of spectra, time and space domains since each gravity field model simultaneously contains signals and noise.

5.1 Spectra domain

To conduct analyses in the spectra domain for various GRACE models, the geoid degree variances with respect to the state-of-the-art static model EIGEN6C4 are computed. We compare Tongji-Grace2018 to CSR RL06, GFZ RL06, ITSG-Grace2018 (Mayer-Gürr et al. 2018), IGG RL01 (available at ICGEM) and HUST-Grace2016 (Zhou et al. 2017) for the months May 2003 and Apr. 2011 in terms of geoid degree
variances. Note that both IGG RL01 and HUST-Grace2016 are based on RL05 processing standards, but the others are all based on RL06 processing standards. It is well known that the GRACE-based geopotential coefficients at low degrees (particularly below degree 30) are generally dominated by gravity field signals, while the high-degree coefficients are contaminated by noise (Meyer et al. 2016; Chen et al. 2018). As presented in Figure 10, the signal levels (approximately below degree 30) of Tongji-Grace2018 for both months are in good agreement with those models on the basis of the RL06 processing standards. Compared to IGG RL01, HUST-Grace2016 and GFZ RL06, much more noise at degrees over 30 is reduced by Tongji-Grace2018 models. Even compared to CSR RL06, Tongji-Grace2018 still achieves clear noise reductions at degrees over 60, suggesting that our gravity field coefficients are accurate up to a higher degree. However, ITSG-Grace2018 has the best performance at high degrees, which is believed to be contributed by the rigorous variance-covariance matrices of observations constructed by incorporating the uncertainties of background force models (ocean model together with atmospheric and oceanic de-aliasing product) (Mayer-Gürr et al. 2018). So far no data processing center except for Mayer-Gürr et al. (2018) has considered such uncertainties. One of the reasons for that is the tremendous computational burden caused by taking the background force models uncertainties into account.

The comparisons in terms of geoid degree variances only reflect the mean signal or noise per degree. To further compare the coefficients at all the degrees and orders among different GRACE models, we subsequently plot the discrepancies of geopotential coefficients between 6 GRACE models and EIGEN6C4 in Figure 11. In this case, the discrepancies at higher degrees and orders still are greatly contaminated by noise since the GRACE observations collected over one month are insensitive to high-degree signals. As shown in Figure 11, the zonal and near-zonal coefficients of both Tongji-Grace2018 and ITSG-Grace2018 in the case after degree 60 are better determined than those of other models. Especially compared to HUST-Grace2016 and IGG RL01, Tongji-Grace2018 and ITSG-Grace2018 show the significantly improved accuracies at high degrees.

![Figure 10: Geoid degree variances of various gravity field solutions w.r.t EIGEN6C4.](image-url)
5.2 Spatial noise

The improved accuracy in Tongji-Grace2018 is theoretically expected to enhance the estimates of global mass transports. Before the mass transports are computed, degree-one coefficients are replaced with those from Swenson et al. (2008). For the C_{20} coefficients, the SLR values determined by Cheng and Tapley (2004) are used instead of the GRACE-based ones. In this section, CSR RL06, GFZ RL06 and ITSG-Grace2018 are all complete to degree and order 96 and used for comparison. In an attempt to confirm possible improvement of Tongji-Grace2018 on the estimates of global mass transports, we estimate dominant signal terms (bias, trend, acceleration, annual, semiannual and S2 alias components) after applying a $P_4 M_6$ decorrelation filtering (Chen et al. 2009). The reason to apply the decorrelation filtering is that the GRACE models up to degree and order 96 are corrupted by so severe correlated noise.
that nearly no clear signal can be seen without using decorrelation filtering. Consequently, the global mass change trends (in $1^\circ \times 1^\circ$ grids) estimated from the four models are presented in Figure 12. It demonstrates that: (1) striping noise over the zones near the equator are significantly suppressed in both Tongji-Grace2018 and ITSG-Grace2018 in comparison with those in CSR RL06 and GFZ RL06; (2) signal patterns over Greenland, Antarctica, North America and South America derived from Tongji-Grace2018 and ITSG-Grace2018 are much clearer than those from other models; and (3) particularly in the polar areas, the signal patterns from Tongji-Grace2018 and ITSG-Grace2018 become significantly clearer in contrast with those from others.

Even though the decorrelation filtering has been applied to the four models, the corresponding mass change trends are still contaminated by the remaining noise. To considerably suppress the remaining noise, the Gaussian smoothing (Jekeli 1981) with a reasonable smoothing radius will be employed in addition to the decorrelation filtering. It is worth-while to point out that a larger smoothing radius will reduce the spatial resolution, but a smaller one may lead to much more remaining noise. Therefore, a reasonable smoothing radius should be consistent with the practical spatial resolution of the GRACE models. Considering the improvements of ITSG-Grace2018 and Tongji-Grace2018 with respect to others (CSR RL06 and GFZ RL06) at high degrees (particularly over 60) as shown in Figures 10 and 11, one may wonder whether the improved accuracies at high degrees allow for clear distinction of practical spatial resolution between the improved models (Tongji-Grace2018 and ITSG-Grace2018) and others. To answer this issue, a strategy is adopted as follows: the Gaussian smoothing with increasing smoothing radius (i.e. 100, 150, 200, 250 and 300 km) and the P_4M_6 decorrelation filtering are applied to process all the models up to the point that most striping noise in the global mass change trends estimated from either ITSG-Grace2018 or Tongji-Grace2018 disappear. As a consequence, the smoothing radius of 300 km is the point we are looking for, which reduces most striping noise in ITSG-Grace2018 and Tongji-Grace2018. Nevertheless, as presented in Figure 13, the corresponding global mass change trend maps from the four models over the period Apr. 2002 to Aug. 2016 do not show significant discrepancy in either signal pattern or striping noise. This finding indicates that the spatial resolutions of these GRACE models are
overall comparable, which can be understandable since a lot of refined data processing strategies and up-to-date standards have been applied to improve all the models in terms of accuracies and resolutions (Bettadpur 2018; Dahle et al. 2018; Yuan 2018; Mayer-Gürr et al. 2018).

In physical sense, the spatial distributions of stripes to some extent are related to the GRACE orbit configuration. As explained in previous studies (e.g. Chen et al. 2018 and Dobslaw et al. 2016), the large orbit inclination (about 89 degrees) for GRACE satellites leads to over-sampling in the polar areas and sparser ground track coverage over medium and low latitude areas. As a consequence, much more striping errors over the medium and low latitude areas exist in all the models in contrast to over the polar areas. To further compare the noise distributions among the four models, Root Mean Square (RMS) values of mass change residuals are depicted in Figure 14 for the period Apr. 2002 to Aug. 2016 after removing the estimated dominant signal terms (bias, trend, acceleration, annual, semiannual and S2 alias). Since the dominant mass change signals have been subtracted and the oceanic tidal and non-tidal effects have been modelled when solving the gravity field solutions (Chen et al. 2018), the resulting RMS values over ocean areas are approximately regarded as noise levels of the GRACE models in this study. One can see that the medium and low latitude areas are dominated by noise for the four models in spite of the significant noise reductions over the polar areas. As anticipated, much smaller RMS values over oceans are clearly observed in both Tongji-Grace2018 and ITSG-Grace2018 compared to in CSR RL06 and GFZ RL06.

Despite the significant noise reductions achieved by Tongji-Grace2018 and ITSG-Grace2018 in the case of only applying decorrelation filtering in comparison to CSR RL06 and GFZ RL06, the errors over oceans still cannot be completely neglected for any of the above models. Nevertheless, when the combined filtering (300 km Gaussian smoothing and decorrelation filtering) are applied, the RMS values of residual mass changes are distinctly reduced for all the models, which are plotted in Figure 15. Even though the combined filtering effectively suppresses the noise in most areas, CSR RL06 and GFZ RL06 models still suffer from much more noise over ocean areas near the equator than both ITSG-Grace2018 and

© 2019 American Geophysical Union. All rights reserved.
The remaining mass variations over Greenland, Antarctica, North America, South America, Africa and India are primarily caused by the signals not captured by the bias, trend, acceleration, annual, semiannual and S2 alias parametrization. To quantify the noise levels of the four models, the mean RMS values over the global oceans in the decorrelation filtering and combined filtering cases are given in Table 7. One can see from Table 7 that Tongji-Grace2018 and ITSG-Grace2018 achieve much more noise decrease over oceans in both filtering cases when comparing to other models. For the case of Tongji-Grace2018, it reaches 35% and 7% of improvements with respect to CSR RL06 in the decorrelation filtering and combined filtering cases, respectively. It is a remarkable fact that the applied Gaussian smoothing contributes nearly 25 times noise reductions over oceans for CSR RL06 and GFZ RL06, but for Tongji-Grace2018, it only achieves about 17 times noise reductions. This finding suggests that the optimized methodologies applied to compute Tongji-Grace2018 greatly suppresses the spatial noise in gravity field estimates.

![Figure 15](image1.png)

Table 7 Mean RMS values (in unit of cm) of mass change residuals over the global oceans

<table>
<thead>
<tr>
<th>Filtering</th>
<th>CSR RL06</th>
<th>GFZ RL06</th>
<th>ITSG-Grace 2018</th>
<th>Tongji-Grace 2018</th>
<th>Improvement rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_4M6</td>
<td>68.6</td>
<td>72.0</td>
<td>48.0</td>
<td>44.7</td>
<td>35%</td>
</tr>
<tr>
<td>P_4M6+Gauss</td>
<td>2.8</td>
<td>2.9</td>
<td>2.4</td>
<td>2.6</td>
<td>7%</td>
</tr>
</tbody>
</table>

5.3 Temporal noise over Pacific and Sahara

The previous two subsections have discussed the noise behaviors of Tongji-Grace2018 models in the spectra and space domains. In this section, we primarily focus on noise comparisons among the above GRACE monthly solutions in the time domain. As motivated by the fact that the mass variations over oceans and deserts are anticipated to be smaller, this section studies the temporal noise behaviors of the above GRACE models over Pacific ([28°N, 51°N], [170°E, 220°E]) and Sahara desert ([15°N, 35°N], [0°E, 35°E]). Using the same analysis method as in Sect. 5.2, the suitable Gaussian smoothing radius for the cases over Pacific and Sahara is determined to be 300 km as well. Based on the
decorrelation filtering, the time series of mass changes over Pacific and Sahara in the time interval Apr. 2002 to Aug. 2016 from the four models are produced in the cases with and without using 300 km Gaussian smoothing. As depicted in Figure 16, clear discrepancies of mass changes between decorrelation filtering and combined filtering can be found. Over Pacific and Sahara, the mass changes on the basis of the four models show some differences in the case of only using decorrelation filtering.

To get more insights into the discrepancies among the four models, we further remove the primary signal terms (bias, trend, acceleration, annual, semiannual and S2 alias terms) from the estimated mass changes and compute the RMS values of residuals. Following this method, the time series of RMS values together with the statistics for both decorrelation filtering and combined filtering cases are separately given in Figure 17 and Table 8 to describe the temporal variations in noise for different GRACE models over the two areas. Both Figure 17 and Table 8 demonstrate that Tongji-Grace2018 and ITSG-Grace2018 have less noise than other models. One can clearly see from Table 8 that, over Sahara desert, about 36% and 19% of noise is reduced by Tongji-Grace2018 relative to CSR RL06 in the decorrelation filtering and combined filtering cases, respectively. However, as indicated in Table 8, in the case of using the same decorrelation filtering, Tongji-Grace2018 and ITSG-Grace2018 based on 250 km Gaussian smoothing do not perform better than other two models based on 300 km Gaussian smoothing. In particular, for all the GRACE models, dramatic increases of noise occurred in early GRACE and some particular months (including September to October in 2004, June to July in 2012 and January to February in 2015). It is worth noting that the early GRACE suffered from missing observations (before 2003) and the above months experienced repeat ground track. However, the missing observations and repeat ground track directly impact the stability of normal equations, which eventually degrade the geopotential coefficients to be estimated. Especially for the high degrees (e.g. over degree 60), the impacts of missing observations and repeat ground track will become much more remarkable. In our own experiments (not shown), we truncated all the models to degree and order 60 and did the same noise analyses over Pacific and Sahara. As expected, the noise over those months with data quality degradation was found to be

Figure 16 Time series of mass changes over Pacific and Sahara derived from GRACE models with and without Gaussian smoothing applied.
reduced to a great extent. We therefore believe the differences of noise levels among the four GRACE models over those months with poor observation condition as indicated in Figure 17 are mainly attributed to the differences of stabilities among varying gravity field modelling methods to the poor observation condition.

Figure 17 Time series of RMS values of residual mass changes derived from GRACE models.

Table 8 Mean RMS values (in unit of cm) of mass change residuals over Pacific and Sahara

<table>
<thead>
<tr>
<th>Area</th>
<th>Filtering</th>
<th>CSR RL06</th>
<th>GFZ RL06</th>
<th>ITSG-Grace2018</th>
<th>Tongji-Grace2018</th>
<th>Improvement rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific</td>
<td>P4M6</td>
<td>53.6</td>
<td>59.2</td>
<td>36.4</td>
<td>38.2</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>P4M6+300km Gauss</td>
<td>1.9</td>
<td>2.1</td>
<td>1.6</td>
<td>1.9</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>P4M6+250km Gauss</td>
<td>*</td>
<td>*</td>
<td>2.3</td>
<td>2.8</td>
<td>*</td>
</tr>
<tr>
<td>Sahara</td>
<td>P4M6</td>
<td>85.5</td>
<td>83.4</td>
<td>46.6</td>
<td>54.9</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>P4M6+300km Gauss</td>
<td>3.3</td>
<td>3.3</td>
<td>1.9</td>
<td>2.5</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>P4M6+250km Gauss</td>
<td>*</td>
<td>*</td>
<td>3.4</td>
<td>4.2</td>
<td>*</td>
</tr>
</tbody>
</table>

6. Signal levels of monthly gravity field solutions

Every GRACE model simultaneously includes signals and noise. In view of the differences of the noise between Tongji-Grace2018 and other monthly gravity field models, further analyses on the signal levels of these models are conducted here. For comparisons of signal levels among the above models, this study selects four river basins and Greenland to see the mass changes related to hydrology process and ice melting respectively.
6.1 Time-variable signals over river basins

Figure 18 Time series of mass changes over river basins derived from mascon solution and filtered GRACE models.

Considering that temporal behaviors of mass changes over river basins with different sizes may be varying, in this study we select two large river basins (i.e. Amazon and Mississippi) and another two small river basins (i.e. Irrawaddy and Taz) to show the time-variable signals. The basic definitions of the four studied river basins are all taken from the Hydro website (http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/TRIPDATA.html). In this section, the following strategies are used in mass change estimates: (1) a $P_4 M_6$ decorrelation filtering (Chen et al. 2009) in addition to Gaussian smoothing is applied during producing the time series of mass changes from the four GRACE models; and (2) to account for leakage issue, leakage biases are estimated by using least-squares method and employed to correct GRACE-based mass changes (Klees et al. 2007). In view of the improved accuracies in Tongji Grace2018 and ITSG Grace2018, the Gaussian smoothing radius is chosen to be 250 km for them, while for the case of CSR RL06 and GFZ RL06, the corresponding smoothing radius is 300 km. The resulting time series of mass changes based on CSR RL06 and GFZ RL06, ITSG Grace2018 and Tongji Grace2018 are provided in Figure 18. Apart from the four time series of mass changes based on the filtered GRACE harmonic models, JPL RL06 Mascon solutions (Watkins et al. 2015) developed by using mascon technique are also included for comparison, since mascon technique is generally believed to improve the mass transport estimates (Watkins et al. 2015; Save et al. 2016; Luthcke et al. 2013). As we can see from Figure 18, Tongji Grace2018 shows a good agreement with other models in terms of equivalent water heights over all the river basins. The correlation coefficients of mass changes over the four regions between Tongji Grace2018 and others are all over 92%. The comparable performances of Tongji Grace2018 in both large and small river basins demonstrate that Tongji Grace2018 is as sensitive as other models to hydrology signals though a smaller smoothing radius (250 km) is used. For quantifying the signal levels of the GRACE models, further analyses are carried out by estimating mean annual amplitudes and phases over the four river basins. As given in Table 9, the
mean annual amplitudes and phases over the four basins estimated from Tongji-Grace2018 tend to be very close to those from other models (especially to CSR RL06, GFZ RL06 and ITSG-Grace2018). Both Figure 18 and Table 9 suggest that Tongji-Grace2018 and ITSG-Grace2018 are able to achieve the comparable mass changes as other solutions in the case of using a smaller smoothing radius (250 km).

Table 9 Mean annual amplitudes and phases over river basins

<table>
<thead>
<tr>
<th>Area</th>
<th>CSR RL06</th>
<th>GFZ RL06</th>
<th>ITSG-Grace2018</th>
<th>Tongji-Grace2018</th>
<th>JPL Mascon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amplitude</td>
<td>Amplitude</td>
<td>Amplitude</td>
<td>Amplitude</td>
<td>Amplitude</td>
</tr>
<tr>
<td></td>
<td>Phase</td>
<td>Phase</td>
<td>Phase</td>
<td>Phase</td>
<td>Phase</td>
</tr>
<tr>
<td>Amazon</td>
<td>⟨22.8cm</td>
<td>96°⟩</td>
<td>⟨22.5cm</td>
<td>96°⟩</td>
<td>⟨23.4cm</td>
</tr>
<tr>
<td>Mississippi</td>
<td>⟨6.5cm</td>
<td>112°⟩</td>
<td>⟨6.4cm</td>
<td>111°⟩</td>
<td>⟨6.5cm</td>
</tr>
<tr>
<td>Irrawaddy</td>
<td>⟨26.6cm</td>
<td>291°⟩</td>
<td>⟨25.3cm</td>
<td>291°⟩</td>
<td>⟨27.3cm</td>
</tr>
<tr>
<td>Taz</td>
<td>⟨10.4cm</td>
<td>126°⟩</td>
<td>⟨10.6cm</td>
<td>126°⟩</td>
<td>⟨10.5cm</td>
</tr>
</tbody>
</table>

Figure 19 Annual amplitudes of mass changes over Amazon basin derived from different GRACE models.

For further comparison, we calculate the spatial distributions of annual amplitudes over Amazon basin estimated from the five models, which are displayed in Figure 19. Comparing the estimated annual amplitudes based on Tongji-Grace2018 to those derived from other models, a very good agreement can be found. Although the signal levels among different models are almost the same, the quality of various models is varying since every GRACE model contains both signals and noise. To reasonably assess the quality of the GRACE models except for mascon solution over the studied area, one feasible method is to separate the signals from noise and compute the SNR values (signal-to-noise ratio). In order to do so, this analysis takes the following steps: (a) the primary signal terms (bias, trend, acceleration, annual, semiannual and S2 alias components) are estimated from the post-processed time series of mass changes (processed by filtering and corrected by leakage biases); (b) the residual mass changes are computed by subtracting the post-processed mass changes from the unfiltered mass changes, and then the mean RMS values of residuals are approximately regarded as the noise of the unfiltered GRACE models since the residuals are severely contaminated by noise; (c) as the above four river basins are
primarily contributed by annual signal, the estimated annual amplitudes can be regarded as signal; and (d) the computed annual amplitude along with the mean RMS values are eventually applied to derive the SNR values according to $SNR = \frac{\text{Amplitude}}{\text{RMS}}$. Note that we cannot do the same SNR analyses for JPL Mascon solution since the mascon solution has been post-processed by using regularization technique and the noise of the unfiltered mascon solution is not accessible.

Table 10 Mean RMS and SNR values

<table>
<thead>
<tr>
<th>Area</th>
<th>CSR RL06</th>
<th>GFZ RL06</th>
<th>ITSG-Grace2018</th>
<th>Tongji-Grace2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>(291cm</td>
<td>0.08)</td>
<td>(407cm</td>
<td>0.06)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>(232cm</td>
<td>0.03)</td>
<td>(393cm</td>
<td>0.02)</td>
</tr>
<tr>
<td>Irrawaddy</td>
<td>(245cm</td>
<td>0.11)</td>
<td>(328cm</td>
<td>0.08)</td>
</tr>
<tr>
<td>Taz</td>
<td>(94cm</td>
<td>0.12)</td>
<td>(144cm</td>
<td>0.08)</td>
</tr>
</tbody>
</table>

As a result, the mean RMS and average SNR values are presented in Table 10, which shows that the improvements contributed by Tongji-Grace2018 and ITSG-Grace2018 are significant. Among the four harmonic models, Tongji-Grace2018 and ITSG-Grace2018 have less noise and higher SNR over all the river basins. In comparison to CSR RL06, Tongji-Grace2018 has reduced the noise by 6% in Amazon, 22% in Mississippi, 12% in Irrawaddy and 28% in Taz. In the four areas, the SNR values of Tongji-Grace2018 and ITSG-Grace2018 are larger than those of CSR RL06 and GFZ RL06. Additionally, we plot the spatial distributions of the SNR values over the large river basin Amazon and small river basin Irrawaddy for the four harmonic models in Figures 20 and 21, separately. As shown in Figures 20 and 21, among the four harmonic models, Tongji-Grace2018 and ITSG-Grace2018 achieve the higher SNR values in both river basins. Even in the other two basins (results are not shown), the results are the same.
Figure 21. SNR values of mass changes over Irrawaddy basin for various GRACE models.

6.2 Mass transport in Greenland

As one of the high-profile studied areas, Greenland is experiencing severe ice melting. The GRACE monthly solutions have been demonstrated to be sensitive to mass losses caused by the significant ice melting in Greenland (Velicogna 2009). In an attempt to answer whether Tongji-Grace2018 models are able to retrieval mass losses related to ice melting, following the same post-processing procedure as used in Sect. 6.1, we compare the mass changes derived from Tongji-Grace2018 for the period Apr. 2002 to Aug. 2016 to those from other models (CSR RL06, GFZ RL06, ITSG-Grace2018 and JPL RL06 Mascon) in Figure 22. Here we should point out that the smoothing radius used for ITSG-Grace2018 and Tongji-Grace2018 is 250 km, while CSR RL06 and GFZ RL06 use a slightly larger smoothing radius of 300 km. Since the GIA impacts have been removed from JPL RL06 Mascon solution on the basis of ICE6G GIA model (Peltier et al. 2018), the same GIA model is applied to other GRACE models.
Interestingly, as indicated in Figure 22, the temporal behaviors of mass changes over Greenland among the four harmonic models are generally in good agreement, where the dramatic decrease of mass change and annual variation over Greenland can be captured by all the models. The correlation coefficients of mass changes between Tongji-Grace2018 and other three harmonic models are all more than 99.5%. However, compared to JPL Mascon solution, all the harmonic models suffer from apparent trend underestimates. Applying the same time series analysis method as used in Sect. 6.1, the prominent signal components are estimated for the five models. The spatial distributions of the estimated trends from the five models are given in Figure 23. As we can observe from Figure 23, the four harmonic models agree well with each other, but JPL Mascon has much higher spatial resolution and stronger trend estimates. In Figure 23, most of the significant ice losses concentrate on West and South of Greenland.

This study also presents the statistics of the mass changes over Greenland in Table 11. It reveals that the signal level of Tongji-Grace2018 is comparable to those of CSR RL06, GFZ RL06 and ITSG-Grace2018 in terms of trend, annual amplitude and annual phase. Using the same noise analysis method as used in Sect. 6.1, the mean RMS values of mass change residuals for the four harmonic models are also given in Table 11, which suggests that the least noise belongs to Tongji-Grace2018 over Greenland.

Table 11 Statistics of mass changes over Greenland

<table>
<thead>
<tr>
<th>Item</th>
<th>CSR RL06</th>
<th>GFZ RL06</th>
<th>ITSG-Grace2018</th>
<th>Tongji-Grace2018</th>
<th>JPL Mascon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend</td>
<td>-4.8 cm/yr</td>
<td>-4.8 cm/yr</td>
<td>-4.9 cm/yr</td>
<td>-4.9 cm/yr</td>
<td>-6.8 cm/yr</td>
</tr>
<tr>
<td>Amplitude</td>
<td>5.6 cm</td>
<td>5.5 cm</td>
<td>5.9 cm</td>
<td>5.8 cm</td>
<td>6.3 cm</td>
</tr>
<tr>
<td>Phase</td>
<td>151°</td>
<td>151°</td>
<td>151°</td>
<td>151°</td>
<td>116°</td>
</tr>
<tr>
<td>RMSE</td>
<td>78 cm</td>
<td>98 cm</td>
<td>53 cm</td>
<td>46 cm</td>
<td>*</td>
</tr>
</tbody>
</table>

7. Conclusions

Although the GRACE mission came to an end in 2017, seeking for any improvement of current GRACE...
gravity field estimates is very important in both geodesy and geophysics. To improve the gravity field estimates, an optimized short-arc method is proposed to gravity field modelling in this paper. One drawback of the modified short-arc method presented in Chen et al. (2015) is that it needs the large-dimension intermediate matrix \mathbf{DQDT} in Eq. (2.4) to be inversed prior to creating the normal equation. To overcome this drawback, the optimized method avoids direct inversion of \mathbf{DQDT} through introducing an improved parameterization by treating boundary vectors in any integral arc as parameters to be solved. The improved parameterization makes matrix \mathbf{D} an invertible matrix, which eventually allows the inversion of the intermediate matrix (\mathbf{DQDT}) to be computed for orbits and range-rates separately. In addition, with the purpose of accounting for the frequency-dependent noise in both kinematic orbits and range-rates, the variance-covariance matrices for observations are constructed by using the noise whitening technique described in Sect. 3.1. Numerical analyses of the optimized short-arc method demonstrate that: (1) in comparison to the modified short-arc approach, the optimized short-arc approach greatly reduces the condition number of the final normal equation for estimating gravity field parameters, which eventually allows the arc length to be extended for the optimized method; (2) 6 hour arc length is demonstrated to be optimum for our improved approach since it achieves most significant noise reduction in gravity field estimation; (3) the constructed variance-covariance matrices for both orbits and range-rates are beneficial for reducing the effects of frequency-dependent noise at low frequencies, which improves the derived gravity field solutions; (4) already for range-rate observations, the benefits from modelling frequency-dependent noise are obvious, but concurrent frequency-dependent noise modelling for both orbit and range-rate data can further decrease the noise in the estimated gravity fields; and (5) the optimized short-arc method consistently performs better than the modified short-arc approach, no matter whether frequency-dependent noise modelling is applied or not, since the inversion of the intermediate matrix $\mathbf{D}_j^s (s = A, B)$ in each integral arc has been stabilized.

Based on the optimized short-arc method, a refined time series of GRACE monthly solutions Tongji-Grace2018 is produced. To investigate the quality of Tongji-Grace2018 models, we analyze the noise levels in terms of geoid degree variances and errors over oceans and desert together with signal levels over river basins and Greenland. Our analyses allow us to draw the following conclusions:

(a) The geoid degree variance comparisons up to degree 96 among CSR RL06, GFZ RL06, HUST-Grace2016, IGG RL01, ITSG-Grace2018 and Tongji-Grace2018 suggest that the signal level of Tongji-Grace2018 at low degrees (below degree 30) is in a good agreement with others. Nevertheless, compared to CSR RL06 and GFZ RL06, the noise (above degree 60) in Tongji-Grace2018 in terms of cumulative geoid degree variance up to degree 96 is reduced by about 25% and 40%, respectively. Overall, Tongji-Grace2018 is closer to ITSG-Grace2018.

(b) In the cases of applying decorrelation filtering and combined filtering, the global mass change trend estimated from Tongji-Grace2018 is less noisy than those from CSR RL06 and GFZ RL06. No matter whether Gaussian smoothing is employed or not, Tongji-Grace2018 reduces the noise over oceans in comparison with CSR RL06 and GFZ RL06. 35% and 7% of noise reductions over the global oceans relative to CSR RL06 are obtained by Tongji-Grace2018 in the cases of applying decorrelation filtering and combined filtering, respectively. Further investigations over Pacific and Sahara also confirm this result.

(c) The comparable mass changes and amplitudes from Tongji-Grace2018 over river basins (Amazon,
Mississippi, Irrawaddy and Taz) and Greenland demonstrate that the signal amplitudes among the four models are comparable. The statistics results support that the mass changes over the four river basins and Greenland from CSR RL06, GFZ RL06, ITSG-Grace2018, Tongji-Grace2018 and JPL Mascon are in good agreement, where the correlation coefficients are all over 92%. However, JPL Mascon solution overall has improved the mass transport estimates in terms of signal amplitude and spatial resolution. In spite of the comparable signal levels among the four harmonic models, the quality assessment results prove that Tongji-Grace2018 and ITSG-Grace2018 have less noise and higher SNR.

Acknowledgements

In our data processing, the GRACE Level-1b data (download from ftp://daac.ipr.nasa.gov) and Kinematic orbits (available at ftp://ftp.tugraz.at) are given by JPL and Graz University of Technology respectively. The GRACE monthly models for comparisons can be downloaded from ICGEM (http://icgem.gfz-potsdam.de/ICGEM/). Prof. Jürgen Kusche and Ms. Christina Lück from University of Bonn should be given our sincere acknowledgements for their help. This study is primarily sponsored by the National Natural Science Foundation of China (41773069), the National Key R&D Program of China (2017YFA0603103), and the Alexander von Humboldt Foundation in Germany, as well as partially supported by the National Natural Science Foundation of China (41674006). We are also very grateful to the editors, Prof. Paul Tregoning, and two anonymous reviewers' for their valuable comments, which significantly improve the quality of our original manuscript.

References

land-ice evolution from an iterated GRACE global mascon solution. J. Glac., 59(216), 613-631.

Zehentner N and Mayer-Gürr T. Kinematic orbits for GRACE and GOCE based on raw GPS observations, Poster presented at the IAG Scientific Assembly 2013, 1.-6. September 2013, Potsdam, Germany

