Genèse et Futur d’un laboratoire de Gravimétrie à Walferdange (Luxembourg)

Paul Melchior, Jean Flick, Olivier Francis

Directeur honoraire de l’Observatoire Royal de Belgique
Astronome correspondant de l’Observatoire Royal de Belgique
Professeur à l’Université du Luxembourg

1 Avant-Propos

Lors de la commémoration du 150 ième anniversaire de l’Observatoire Royal de Belgique, la distinction d’“astronome correspondant de l’Observatoire Royal” a été conférée à Helmut Moritz en raison des liens étroitement entretenus avec ses collègues belges qui puisèrent souvent l’inspiration de leurs recherches dans les remarquables ouvrages qu’il a publiés en Gravimétrie et en Géodésie.
Helmut Moritz forgea en deux mots simples le titre magistral de ce Symposium :
“Quo Vadimus”.
Ces deux mots expriment toujours la question que nous continuons à nous poser aujourd’hui et nous nous proposons, dans notre contribution, de chercher un élément de réponse pour le Laboratoire de Géodynamique de Walferdange au Grand Duché-de-Luxembourg.

2 Introduction

L’impulsion donnée par l’Année Géophysique Internationale fut à la base du développement d’une activité originale en Géodynamique au Luxembourg,
en 1963.
La motivation initiale visait à parvenir à une meilleure connaissance des marées luni-solaires en tant que source majeure de perturbations dans les mesures de haute précision de la pesanteur qui sont essentielles dans nombre d'applications tout autant qu'à l'appui des théories de la forme et de la rotation de la Terre et de sa structure interne.
Ce problème n'était pas résolu en 1963 car les gravimètres de l'époque n'assuraient une précision qu'au niveau du milligal (10^{-6} de g) et parce qu'on ne disposait pas de bons modèles de l'intérieur de la Terre ni surtout de modèles de la propagation des marées océaniques. Celles-ci constituaient, au niveau des quelques dixièmes de milligal (10^{-7} de g), la perturbation la plus importante mais très mal appréhendée dans les mesures gravimétriques. Quarante années ont passé, les performances sont aujourd'hui de 10^{-9} de g en mesures absolues et de 10^{-11} de g en mesures différentielles.
Nous en analyserons ici le parcours, vu depuis le Laboratoire Souterrain de Géodynamique de Walferdange.

3 Gravimétrie de haute précision au Luxembourg

Le Laboratoire Souterrain de Géodynamique trouve son origine en 1963 lorsqu'un gravimètre enregistreur Askania GS11 fut installé à Luxembourg par l'Observatoire Royal de Belgique afin de réaliser une très longue série de mesures continues de l'accélération de la pesanteur.
En effet, l'analyse détaillée des mesures poursuivies depuis trois années à Bruxelles avec un instrument similaire avait montré qu'on ne pouvait éliminer correctement la contribution des marées océaniques dans les variations de g qui, loin d'être négligeables, étaient dues principalement à l'attraction des masses d'eau mobiles et à la flexion périodique du socle continental sous le poids de ces masses d'eau, flexion qui peut atteindre plusieurs centimètres !
Bruxelles n'est distante que de 100 kilomètres de la Manche alors que la marée océanique principale atteint une amplitude de 5 mètres à Ostende ! Luxembourg en est distante de quelque 300 kilomètres. Les deux pays, liés par une longue amitié, formaient aussi depuis longtemps une Union Economique qui, dès cette époque, permettait le transfert sans entraves de nos instruments.
Deux des auteurs de ce texte se rencontrèrent alors pour la première fois et, avec le support efficace des autorités nationales, ce premier gravimètre fut installé dans les casemates séculaires de la ville de Luxembourg.
L'espoir fondé était que la comparaison des observations menées simultanément dans les deux sites permettrait d'assurer une précision d'au moins
quelque 10 microgals et de lever ainsi l’obstacle constitué par les marées océaniques.

A cette époque la théorie et le calcul des marées luni-solaires de la Terre élastique étaient déjà satisfaisante. Une meilleure représentation du potentiel gravitationnel luni-solaire était réalisée et les premiers ordinateurs permettaient de raffiner et d’accélérer les calculs.

Toutefois, malgré les efforts de plusieurs théoriciens, les modèles des quelques composantes principales des marées océaniques étaient vraiment déficients, à tel point que chacun d’eux fournissait des résultats extrêmement divergents et jamais en accord avec les résultats des mesures expérimentales effectuées en quelque point que ce soit !

A ce moment le résultat de la comparaison Bruxelles – Luxembourg put paraître décevant car, malgré la différence de distance à Ostende, l’amplitude de l’effet océanique mesurée expérimentalement était à peine plus faible à Luxembourg.

C’était cependant un résultat important car ceux des autres stations conduisaient aussi à récuser les modèles océaniques proposés.

En 1978, l’océanographe américain Schwiderski, utilisant le plus puissant ordinateur, put incorporer de très nombreuses observations portuaires comme conditions aux limites dans l’intégration des équations différentielles de Laplace et produisit des modèles détaillés pour les dix ondes principales de la marée océanique.

L’utilisation de ces modèles, immédiatement entreprise par le Centre International des Marées Terrestres à Bruxelles, apporta satisfaction et soulagement pour tous les expérimentateurs : quelque quatre vingt pour cents des anomalies disparaissaient ce qui témoignait de la qualité des mesures expérimentales.

Au cours des dernières années du siècle qui vient de se terminer plusieurs océanographes ont pu, à l’aide d’ordinateurs de plus en plus puissants, incorporer l’immense quantité de mesures altimétriques par satellites et produire quelques excellents modèles de marées océaniques de plus en plus détaillés et précis.

Mais assez curieusement l’interprétation des mesures de marées gravimétriques n’est guère améliorée avec ces modèles car les résidus sont à peine différents de ceux obtenus avec les modèles de Schwiderski (Melchior et Francis, 1996). Comme dans toute science expérimentale il reste encore de petits résidus inexplicés bien que diverses suggestions soient proposées.

Il reste donc des difficultés à résoudre.

A partir de 1968 l’installation de gravimètres ainsi que d’inclinomètres (pendules horizontaux en quartz VM) et d’extensomètres (vertical et horizontaux) a été réalisée dans des galeries abandonnées, à 90 mètres sous le ni-
veau du sol, au fond d’une mine de gypse à Walferdange près de Luxembourg. Cette ancienne mine a été acquise par le gouvernement Grand Ducal et abrite le “Laboratoire souterrain de Géodynamique de Walferdange”.

L’objectif principal des mesures clinométriques continues qui y furent obtenues pendant 25 ans, était la détection et la mesure d’effets hydrodynamiques de résonance dans le noyau liquide de la Terre, qui sont discernables sur la composante Est-Ouest à la latitude de Walferdange.

Bien que les variations angulaires mesurées soient extrêmement faibles (moins de 0°006) cette recherche fut un réel succès.

Des résultats intéressants ont également été obtenus avec les extensomètres, caractérisant les déformations élastiques dans les diverses directions (nombres de Love I et h, dérivée de h).

Au cours de cette période, diverses Institutions Géophysiques (d’Allemagne, Chine, Espagne, Japon principalement) installèrent dans le laboratoire, pour des durées variables mais toujours assez longues, des clinomètres, extensomètres et gravimètres.

4 Une révolution en Gravimétrie Expérimentale: Gravimètres à Supraconductivité et Gravimètres Absolus

Nous ne décrirons pas ici ces appareils d’une nouvelle génération, apparus en 1982, et abondamment décrits dans la littérature récente.

Notre propos ici est d’exposer le programme de recherches en cours à Walferdange avec deux instruments essentiellement différents achacis par le Grand-Duché : le gravimètre absolu FG5-216 et le gravimètre différentiel à supraconductivité GWR CT040.

L’Observatoire Royal de Belgique avait entrepris, à Bruxelles, dès 1982, une série continue de mesures qui couvrit 18 ans (période des nœuds lunaires) avec un gravimètre à supraconductivité GWR de la première génération ce qui a permis de déterminer les caractéristiques de cinquante neuf ondes lunaires et solaires.

Ceci étant acquis, pour tirer pleinement parti des performances exceptionnelles (précision 10^{-11} de g : le nanogal !) de ce type d’instruments, il convient à présent de les installer en des sites également exceptionnels tant du point de vue de la stabilité du sol, du faible niveau microséismique, de conditions hydrologiques et de température également stables ce qui désignait sans conteste le laboratoire souterrain de Walferdange où la variation annuelle de la température n’atteint pas $0.1 \, ^\circ C$.
Peu auparavant, l’Observatoire Royal de Belgique avait acquis un instrument GWR de la nouvelle génération et l’avait installé dans une galerie souterraine à Membach dans l’est de la Belgique, 100 km au nord de Walferdange. Il se trouve que Membach (longitude 6.007° E, latitude 50.609° N) est à peu de chose près sur le méridien de Walferdange (longitude 6.153° E, latitude 49.665° N) qui traverse, jusqu’en Hollande une région où se manifestent des mouvements isostatiques séculaires associés à quelques séismes de moyenne intensité (Liège 1983, Trois Vierges 1987, Roermond 1992). C’est pourquoi le laboratoire de Walferdange abrite aussi un équipement séismique complet et performant (Lennartz 3D courte période, 1987 ; Geophone STS-2 Broadband Triaxial, seismomètre appartenant au Geoforschung Zentrum de Potsdam) et est associé à deux autres stations séismiques luxembourgeoises à Vianden et à Kalborn. Le gravimètre et les séismographes transmettent leurs mesures par câbles téléphoniques vers le siège de l’Institution, au centre de la petite ville de Walferdange.

C’est aussi une région d’ouvrages d’art importants (barrages de Vianden et Esch) sensibles à des variations temporelles même minimales de la pesanteur et aux variations de pression liées à la hauteur d’eau dans le bassin de retenue, (Bonatz, 2002).

Le problème majeur pour une interprétation correcte de résultats expérimentaux et leur comparaison avec les calculs théoriques effectués sur des modèles eux aussi expérimentaux réside dans un étalonnage absolu des gravimètres différentiels ce qui est loin d’être aisé, tout particulièrement pour les gravimètres à supraconductivité qui sont intransportables.

Les gravimètres absolus de la nouvelle génération utilisent les techniques ultimes du laser pour la mesure de la distance de chute et d’une horloge atomique au rubidium pour le temps de parcours (Faller, 2003). Ils apportent une solution actuellement satisfaisante permettant d’assurer une exactitude des mesures absolues au niveau de quelques microgals (10^{-9} de g) alors que la précision des mesures différentielles est de l’ordre de 10^{-11} de g.

On peut dire que ces résultats sont extraordinaires comparativement à ceux qui sont habituellement obtenus pour d’autres paramètres physiques et géophysiques.

C’est en opérant pour la première fois des séries de mesures absolues continues pendant 47 jours, auprès du gravimètre supraconducteur de Membach que O. Francis (1997) a pu obtenir une telle performance, répétée depuis en plusieurs Observatoires.
5 Quo vadimus ?

L’exactitude des mesures, pour laquelle il n’existe d’autre contrôle que celui que propose la comparaison simultanée de plusieurs gravimètres absolus exige évidemment qu’ils soient aussi placés dans les conditions les plus strictes de stabilité (sol, microséismicité, température, humidité).
Dans le cadre de la Convention de recherche Gravilux (d’Oreye et al., 2000) conclue entre le Centre Européen de Géodynamique et de Séismologie (ECGS), le Musée National d’Histoire Naturelle, l’Institut Supérieur de Technologie et l’Administration du Cadastre et de la Topographie, le Laboratoire souterrain de Géodynamique de Walferdange s’est vu doter de deux nouvelles salles équipées d’un gravimètre absolu et d’un gravimètre à supraconductivité. Ces deux instruments de haute technologie permettent au Grand-Duché de rester à la pointe de la recherche dans ce domaine. Le laboratoire est en passe de devenir une station de référence mondiale en gravimétrie de précision. Une campagne internationale d’intercomparaison de gravimètres absolus s’y déroulera au mois de novembre 2003 en collaboration avec le Bureau International des Poids et Mesures. Une douzaine de gravimètres absolus d’instituts européens et américains seront intercomparés simultanément.
La grande stabilité du site de Walferdange permet de réduire le bruit de fond et d’améliorer la qualité des mesures de la pesanteur. Cette station représente une contribution importante de l’ECGS au Global Geodynamics Project, qui réunit l’ensemble des gravimètres à supraconductivité existant dans le monde (une vingtaine, dont six en Europe). Grâce à ce projet, les chercheurs s’échangent les données afin d’étudier tous les phénomènes affectant la pesanteur pour des périodes allant de quelques minutes à plus d’un an.
Les gravimètres à supraconductivité présentent toutefois une faiblesse qui est leur dérive à long terme. Pour la contrôler, il est indispensable d’effectuer régulièrement des mesures absolues de g avec une exactitude de l’ordre de 10^{-9} de g.
Le gravimètre absolu effectue régulièrement des mesures en parallèle avec le gravimètre à supraconductivité à Walferdange. Cette expérience permet d’étalonner le gravimètre à supraconductivité en observant la marée terrestre.
Les mesures gravimétriques de haute précision sont utilisées pour:
- l’étude du spectre des oscillations libres de la Terre et d’ondes inertielles ou internes dans le noyau liquide de la Terre.
- l’étude des marées grivationnelles luni-solaires
- la mise en évidence de fluctuations saisonnières de l’amplitude des ondes
liées aux variations des marées océaniques
- la détermination des ondes à longue période du spectre de marée
- la mesure des variations de la pesanteur dues aux mouvements du pôle terrestre par modification de la force centrifuge locale
- la recherche d’éventuelles variations à long terme de la pesanteur liées à des causes locales (mouvements tectoniques) ou globales.
L’infrastructure du Laboratoire souterrain de Géodynamique de Walferdange, est à la disposition des scientifiques de la communauté internationale qui peuvent venir y contrôler le bon fonctionnement et l’étalonnage de leur gravimètre absolu à tout moment. Elle est aussi mise à profit dans de nombreux domaines de recherche : changement climatique, géodynamique, volcanologie et métrologie.
Lorsqu’on atteint une précision si extraordinaire dans des mesures conjuguées absolues et différentielles on rencontre, après élimination d’effets désormais bien connus (marées, mouvements du pôle de rotation terrestre, pression atmosphérique) des résidus faibles mais significatifs, inexpliqués, qui peuvent normalement conduire à de nouvelles découvertes dont la portée ne peut pas encore être déjà appréciée aujourd’hui.
On évoque comme problèmes à scruter de plus près :

- surcharges hydroatmosphériques sur la croûte terrestre (Plag et van Dam, 2002)
- stabilité ou mouvements séculaires verticaux, dérives, sauts
- changements soudains de g

- rôle du noyau liquide dans la rotation de la Terre.
Les effets des fluctuations d’amplitude des eaux souterraines sont observés partout mais bien mal contrôlés (recharge, porosité et perméabilité des terrains).
Même les mesures de positions par GPS les plus précises mettent en évidence les effets des marées et doivent en être corrigées (GPS 2001).
Ainsi les gravimètres à supraconductivité, bien étaillonnés, permettent d’aborder de nombreux phénomènes qui étaient indétectables précédemment et dont l’analyse conduira sans aucun doute à des découvertes et à des applications nouvelles.
De nombreux “Workshops” consacrés aux problèmes les plus divers posés en Géodynamique sont organisés depuis 30 ans à Walferdange et constituent un forum où les participants exposent leurs difficultés et cherchent, en commun, à explorer des voies nouvelles.
Depuis plusieurs années, l’ECGS poursuit un programme de recherche sur la détermination des variations de la masse de la calotte glaciaire dans la
partie sud du Groenland à partir de mesures GPS et de gravimétrie absolue (en collaboration avec John Wahr et Kristine Larson de l'Université du Colorado à Boulder, USA). Dans le cadre de ce projet, deux stations GPS permanentes ont été installées l'une sur la côte sud-est et l'autre sur la côte sud-ouest du Groenland. Chaque année, une mesure absolue de la pesanteur est effectuée en chaque site. L'objectif à long terme (van Dam et al., 2000) de ces différentes mesures est d’estimer les variations de la masse de glace au Groenland afin d’apporter des informations quantitatives contribuant à la compréhension des changements climatiques et à la relation entre la fonte des glaces et les variations du niveau moyen des mers.

Dans les années à venir, un réseau de stations gravimétriques absolues sera mis en place au Luxembourg et dans les pays limitrophes qui devrait permettre la mise en évidence de mouvements tectoniques lents dont les vitesses sont de l’ordre de quelques millimètres par an.

Bibliographie

