ABCDE - Short Summer Tutorial

Default Entailment Course

Emil Weydert
University of Luxembourg, CSC/ICR

LuxLogAI 2018
Luxembourg, 20 Sep, 2018
In a nutshell

Human-level AI requires justifiable commonsense reasoning
→ in particular: need for formal, normative accounts of
 • **Defaults**: implications with exceptions
 • **Default inference**: plausible reasoning with defaults
 From A and *if A then normally B* plausibly infer B

NMR-Tutorial:
 • Selected topics/lessons from 40 years of DR research
 • Focus on theoretical/semantic issues
Contents

- From classical to generalized reasoning
- Defaults and default reasoning
- Context-based default reasoning
- Preferential model theory
- Qualitative default entailment
- Ranking measure semantics
- Rkm-based default entailment
- Ranking-construction paradigm
- System JZ
- (Probabilistic default entailment)
Abstract logic

A 2-valued logic $\mathcal{L} = (L, \vdash)$ is characterized by

- a language (type) L together with
- an inference relation $\vdash \subseteq 2^L \times L$, or
 an inference operator $C : 2^L \rightarrow 2^L$ with $C(\Phi) = \{ \psi \mid \Phi \vdash \psi \}$

Classical: propositional/1st/2nd-order, modal/conditional, ...

Alternative: intuitionistic/constructive, resource-bounded, ...

Generalized: inductive/abductive, paraconsistent/ampliative, ...
Classical inference

In classical logic two standard ways to specify an inference rel. ⊨

• *Syntactic, proof-theoretic:* \(\Phi \vdash_{\mathcal{R}} \psi \) (\(\mathcal{R} \) rule base)
 iff there is an \(\mathcal{R} \)-derivation of \(\psi \) from \(\Phi \)

• *Semantic, model-theoretic:* \(\Phi \models \psi \)
 iff every model satisfying \(\Phi \) also satisfies \(\psi \)

Classical task: For a given semantic entailment \(\models \),
find a semi-decidable (ideally decidable) \(\vdash_{\mathcal{R}} = \models \)
Tarskian inference

\(\vdash \), \(\models \) are Tarskian inference relations (finitary):

- **Inclusion**: \(\Phi \vdash \psi \) for each \(\psi \in \Phi \)
- **Cut**: If \(\Phi \vdash \varphi_1, \ldots, \varphi_n, \Phi \cup \{\varphi\} \vdash \psi \), then \(\Phi \vdash \psi \)
- **Monotony**: If \(\Phi \vdash \psi \), then \(\Phi \cup \Psi \vdash \psi \)

Default inference is not Tarskian: **Incl+Cut** ok, never **Mon**

Notation:

- Tarskian inference: \(\vdash \) and \(Cn \)
- Generalized inference: \(\models \) and \(C \) or \(C\models \)
Nonmonotonic reasoning I

Real-world agents: must deal with incomplete, uncertain, erroneous, inconsistent, changing, and intractable info
→ need for plausible guesses, withdrawable given new evidence/assumptions
→ need for nonmonotonic reasoning: exploiting rules of thumb, heuristics, implicit assumptions, meta-level/self-reflective considerations ...

Goal: Enrich classical, monotonic core logic with reasonable formal accounts of nonmonotonic reasoning exploiting various concepts of rationality

Remind: Most reasoning outside of math is (also) nonmonotonic!
Nonmonotonic reasoning II

Nonmonotonic reasoning in practice:
- Inductive (prior/model/parameter choice, direct inference)
- Legal (norms ordered by recency, specificity, authority)
- Commonsense (cognitive heuristics, generics, implicatures)

To distinguish:
- Historically grounded, domain-specific reasoning conventions, e.g. in language and law
- Nonmonotonic reasoning concerned with underlying general theoretical and conceptual reasoning methods
Types of nonmonotonic reasoning

Generalized inference may violate any Tarskian principle:

- **Inconsistency repair**: Cut
 e.g. \(\{ \varphi, \neg \varphi, \psi \} \vdash_{inc} \psi \) but \(\{ \varphi, \neg \varphi, \psi, \neg \psi \} \not\vdash_{inc} \psi \)

- **Resource-bounded reasoning**: Incl

- **Probabilistic threshold reasoning**: Incl

- **Inductive reasoning**: Incl

- **Default reasoning**: Incl + Cut

For NMR: alternative finer-grained principles (see later)
Informal defaults

Default: standard/generic assumption, overridable by more concrete information

e.g. default/prototypical values in data bases, prima facie assumptions, legal conventions (presumption of innocence), implications/rules with exceptions, generic quantification, ...

Three common, overlapping readings:

- Plausibilistic/ontic: plausible/normal implications
- Auto-epistemic/context-dependent: classical implications/rules with autoepistemic or defeasible assumptions
- Normative: prima facie norms, amendable laws

Our focus: epistemic/plausibilistic/ontic interpretations
Formal defaults

Default: A default over a base language L is an expression

$$\varphi \rightsquigarrow \psi$$ read as “if φ, then by default ψ”

where $\varphi, \psi \in L$ and \rightsquigarrow denotes a defeasible implication

Strict implication: necessary implications without exceptions

$$\varphi \rightarrow \psi$$ read as “φ strictly implies ψ”

not to be confused with material implication $\varphi \rightarrow \psi$ over L

Conditional language:

$L(\rightsquigarrow, \rightarrow) = \{\varphi \rightsquigarrow \psi, \varphi \rightarrow \psi \mid \varphi, \psi \in L\}$

Note: Defaults typically encode contingent information
Propositional and first-order defaults

Propositional defaults:
- Tweety is a bird plausibly implies that Tweety can fly
 \[\text{Bird(Tweety)} \leadsto \text{Canfly(Tweety)} \]

First-order defaults:
- Birds normally can fly
 \[\text{Bird}(x) \leadsto \text{Canfly}(x) \text{ (open/schematic defaults)} \]
 \[\text{Bird}(x) \leadsto_{x} \text{Canfly}(x) \text{ (default quantifier, more expressive)} \]

Most work on DR is essentially propositional \(\rightarrow \text{our focus} \)
Default inference

Default inference: defeasible consequence relation exploiting defeasible and strict implication

Standard default inferential task: for $\Sigma \subseteq L, \Delta \subseteq L(\sim, \rightarrow)$

$$\Sigma \cup \Delta \vdash \psi \text{ or } \Sigma \vdash_{\Delta} \psi$$

In addition one may also consider appropriate monotonic inference relations $\vdash \subset \vdash$ extending the basic logical inference on L:

$$\Sigma \cup \Delta \vdash \psi \text{ or } \Sigma \vdash_{\Delta} \psi$$
Examples

A prototypical domain for benchmarks ...

P,B,F for *Tweety is a penguin, a bird, can fly*
P, B, F are assumed logically independent

- \(\{ P, P \rightarrow B, B \sim F \} \parallel F \)
- \(\{ P, P \rightarrow B, B \sim F \} \vdash P, B \)
- \(\{ P, \neg F, P \rightarrow B, B \sim F \} \not\parallel \mathbf{F} \) (exception tolerance)
- \(\{ P, P \rightarrow B, B \sim F, P \sim \neg F \} \parallel \neg F \) (specificity principle)
Reiter’s default rules

Reiter’s Default Logic (RDL) 1980 an influential NM formalism

RDL is based on context-dependent rules with autoepistemic assumptions, e.g. expressed as

\[B : F / F \sim \text{If Tweety is a bird, and it is epistemically possible/consistent that he can fly, then assume that he can fly} \]

Reiter’s general default rules: over classical \((L, \vdash)\):

\[\varphi : \eta_1, \ldots, \eta_n / \psi \ (\varphi, \eta_i, \psi \in L) \]

\(\varphi\) antecedent, \(\eta_i\) justifications, \(\psi\) consequent

“If \(\varphi\) given and each \(\eta_i\) is consistent, then conclude \(\psi\)”
Reasoning with Reiter’s rules

Reiter’s rules can be used to build defeasible proofs (arguments) producing maximal consistent speculative consequence sets - called \textit{extensions} - closed under the base logic. There may be

- **Multiple:** $W \cup D = \{\varphi\} \cup \{\varphi : \psi / \psi, \varphi : \neg \psi / \neg \psi\}$

 Applying one rule blocks the other one

 \rightarrow the application order is relevant!

 2 extensions: $E_1 = \text{Cn}(\{\varphi, \psi\}), E_2 = \text{Cn}(\{\varphi, \neg \psi\})$

- **One:** $W \cup D = \{\varphi, \neg \chi\} \cup \{\varphi : \psi / \psi, \psi : \chi / \chi\}$

 1 extension: $E = \text{Cn}(\{\varphi, \psi, \neg \psi\})$

- **None:** Consider the paradoxical rule: $D = \{\text{T} : \neg \psi / \psi\}$

 If $\neg \psi$ is consistent with E, then $\psi \in E$

 If not, then ψ is not derivable, and $\psi \not\in E$
Extension-based default reasoning

Extensions: acceptable speculative consequence sets $E = Cn(E)$, which can be defined in various ways (not restricted to RDL)

Extension-based NMR: $Ext : (W, D) \mapsto Ext(W, D) \subseteq 2^L$

Skeptical inference: $W \cup D \models^Ext \psi$ iff $\psi \in \bigcap Ext(W, D)$
Fixed point definition

Reiter’s rules refer to the set of expected consequences S the justifications should be consistent with. Ideally, S should be the actual constructed extension E

Fixed point operator: links expected with actual consequences:

$F_{(D,W)}(S)$ is the smallest $S' = Cn(S')$ with $W \subseteq S'$ and closed under all default rules $\varphi : \eta_1, \ldots, \eta_n / \psi$ in D with $S \not\vdash -\eta_i$, i.e. whose justifications are consistent with S

Reiter’s extensions: $Ext_{rdl}(D, W) = \{ E | F_{(D,W)}(E) = E \}$

- Normal default theories ($\varphi : \psi / \psi$) always have extensions
- Prerequisite-free semi-normal ones ($T : \eta \land \psi / \psi$) may have none
- Extensions are mutually inconsistent (no $E \subset E'$)
Some links

Strong links with logic programming and formal argumentation, which differ by their restricted languages and extension concepts

Clauses in logic programs: \(a_i, b, s_j \) ground literals

\[
\begin{align*}
b \leftarrow a_1, \ldots, a_n, \text{not}(s_1), \ldots, \text{not}(s_m) & \sim \\
& a_1 \land \ldots \land a_n : \neg s_1, \ldots, \neg s_m / b
\end{align*}
\]

Stable sets \(\sim \) Reiter extensions restricted to ground atoms
Reiter’s default inference

Reiter defaults: usually interpreted as normal default rules

Translation:

\[\tau : \varphi \rightsquigarrow \psi \leftrightarrow \varphi : \psi/\psi \quad \text{and} \quad \tau : \varphi \rightarrow \psi \leftrightarrow \varphi : \mathbf{T}/\psi \]

\[\Sigma \cup \Delta \models^{rdl} \psi \iff \psi \in \bigcap \text{Ext}_{rdl}(\Delta^\tau, \Sigma) \]

Existence of extensions is here guaranteed! \((E \vdash F\) possible)

Alternative default implementations possible:

\[\varphi \rightsquigarrow \psi \leftrightarrow \mathbf{T} : \varphi \rightarrow \psi/\varphi \rightarrow \psi \quad \text{resp.} \quad \mathbf{T} : \varphi \land \psi/\varphi \rightarrow \psi \]

but no clear advantages - only some trade-offs
Digression - KLM principles

In the 80s/90s: proliferation of DR and NMR formalisms

→ e.g.: to repair perceived inadequacies of earlier proposals

→ but: iterating, no end in sight ...

→ seeking rationality principles to evaluate and classify the beasts

In fact: it is easier to discuss and analyze abstract principles than examples tainted by diverging implicit world knowledge!

→ Principles for nonmonotonic inference relations - on L, typically keeping defaults fixed [Gabbay 85, Kraus et al. 90, Makinson 94], with representation theorems based on possible worlds semantics
KLM-principles for RDL I

- **Supraclassicality (SC):** \(\Sigma \vdash \psi \) implies \(\Sigma \models \neg \Delta \psi \)
- **Left Logical Equivalence LLE:**
 \(\Sigma \models \Sigma' \) and \(\Sigma \models \neg \Delta \psi \) implies \(\Sigma' \models \neg \Delta \psi \)
- **Right Weakening RW:**
 \(\Sigma \models \neg \Delta \psi \) and \(\psi \vdash \psi' \) implies \(\Sigma \models \neg \Delta \psi' \)
- **Right Conjunction AND:**
 \(\Sigma \models \neg \Delta \psi \) and \(\Sigma \models \neg \Delta \psi' \) implies \(\Sigma \models \neg \Delta \psi \land \psi' \)
- **Cautious Monotony CM:**
 \(\Sigma \models \neg \Delta \varphi \) and \(\Sigma \models \neg \Delta \psi \) implies \(\Sigma \cup \{ \varphi \} \models \neg \Delta \psi \)
- **Cautious Transitivity CUT:**
 \(\Sigma \models \neg \Delta \varphi \) and \(\Sigma \cup \{ \varphi \} \models \neg \Delta \psi \) implies \(\Sigma \models \neg \Delta \psi \).
- **Reasoning by Cases OR:**
 \[\Sigma \cup \{ \varphi \} \vdash_\Delta \psi \text{ and } \Sigma \cup \{ \varphi' \} \vdash_\Delta \psi \implies \Sigma \cup \{ \varphi \lor \varphi' \} \vdash_\Delta \psi \]

- **Rational Monotony RM:**
 \[\Sigma \vdash_\Delta \psi \text{ and } \Sigma \not\vdash_\Delta \neg \varphi \implies \Sigma \cup \{ \varphi \} \vdash_\Delta \psi \]

- **Consistency Preservation CP:**
 \[\Sigma \vdash_\Delta \mathbf{F} \implies \Sigma \vdash \mathbf{F} \]
KLM-principles for RDL

⊢_{rdl} satisfies SC, LLE, RW, AND, CUT

Note that CUT is a prerequisite for incremental reasoning.

⊢_{rdl} violates Cautious monotony:
Let \(\Delta = \{ \phi \rightarrow \psi, \psi \rightarrow \chi, \chi \rightarrow \neg \psi \} \), then
\[
\{ \phi \} \cup \Delta \vdash_{rdl} \psi, \chi \text{ but } \{ \chi, \phi \} \cup \Delta \not\vdash_{rdl} \psi
\]
because \(Cn(\{ \phi, \chi, \neg \psi \}) \) is an extension.

⊢_{rdl} also violates OR:
\[
\{ \phi \lor \neg \phi \} \cup \{ \phi \rightarrow \psi, \neg \phi \rightarrow \psi \} \not\vdash \psi \text{ (no triggering)}
\]
Nonmonotonic modal logics

Nonmonotonic modal logics: represent $W \cup D$ in a modal logic AEL, GK, ... [McDermott, Doyle 80, Moore 83, Lin Shoham 92]

\rightarrow more expressivity, flexibility, transparency

[Tru 91]: translate Reiter defaults using a knowledge modality K:

- $\varphi \in L \mapsto K(\varphi)$
- $\varphi : \eta/\psi \mapsto K(\varphi) \land K(\neg K(\neg \eta)) \rightarrow K(\psi)$

Extension concept Ext^X for any modal logic X ($\Phi \subseteq L(K)$):

$$Ext^X(\Phi) = \{ E \subseteq L(K) \mid E = \{ \psi \in L(K) \mid \Phi \cup \neg K(L(K) - E) \vdash_X \psi \}$$

$Ext_{rdl}(\Phi) = Ext^X(\Phi)$ for $T \subseteq X \subseteq S4$ restricted to L [Tru 91]

Logic of defaults: allows to prove the equivalence of default bases
Specificity principle

Intuition: if defaults conflict, prefer the most specific one

If φ subsumes φ' and ψ, ψ' conflict
i.e. $\varphi \vdash \varphi'$ or $\varphi \rightarrow \varphi' \in \Delta$, and $\psi \vdash \neg \psi'$:

$$
\varphi' \sim \psi' \preceq_{\text{spec}} \varphi \sim \psi \quad (\text{... is at least as specific as ...})
$$

Also desirable for defeasible subsumption: $\varphi \sim \varphi' \in \Delta$

Student, adults, jobs: \{s, s \sim a, a \sim j, s \sim \neg j\} $\models a, \neg j$

But: how to prioritize given longer conflicting chains of defaults?

Early try: theories of inheritance nets [Touretzky 86, Hory 94]

However: low expressivity, purely syntactic, clash of intuitions
The specificity issue for RDL

No specificity in RDL: it fails in its simplest form

\[\{p, p \rightarrow b, b \sim f, p \sim \neg f\} \not\models^{rdl} f, \neg f \]

Two extensions \(Cn(\{p, b, f\}), Cn(\{p, b, \neg f\}) \)

Repair by encoding specificity with semi-normal rules? But:

- semi-normal default theories may have no extensions
- very cumbersome, possible side-effects
- \(\rightarrow \) maybe better with explicit preferences

Defeasible specificity hard to characterize, but we may try ...
Preferences for default reasoning

Which preferences? What’s their meaning? How to exploit them?

Extrinsic preferences: external attributions
- authority of the source (e.g. for default norms)
- utility, usefulness (for practical reasoning)
- application order (procedural, execution needs)

Our topic: **Intrinsic preferences**: fixed by the defaults
- strict/defeasible specificity
- reliability, strength
- aggregated preference structure
Default reasoning with preferences

Simplest: meta-level preferences over proper defaults $\Delta \cap L(\sim)$

\rightarrow preferences guide the default inference process: many ways

Standard default inference \sim parametrized by a transitive \prec:

$$\Sigma \cup \Delta \mid \sim \prec \psi$$

Several approaches based on Reiter’s account: e.g. [Brewka 94]

(NMR tradition: $\delta < \delta'$ means “δ preferred to δ'”)
Prioritized default logics

Prioritized default theory: \((W, D, <)\), where

- \((W, D)\) is a default theory
- \(D = D_s \cup D_n\) collects strict resp. normal default rules
- \(< \subseteq D^2_n\) is a strict, well-founded partial order
 i.e., every subset has \(<\)-minimal element(s) (true for finite \(<\))

Why partiality? \(<_{\text{spec}}\) may be partial, or total + partially known

Why well-foundedness? Bottom-up construction of extensions

Outcome: handles transparent inheritance/specificity scenarios
Prioritized extensions - an example

Greedy quasi-inductive definition with priorities:

E is a prioritized extension of $(W, D, <)$, or $E \in Ext_{pdl}$, iff

there is a well-ordering \prec of D_n extending $< (\subseteq \prec)$ s.t.

$E = \bigcup E^{\prec}_\alpha$ where $E^{\prec}_0 = Cn_{D_s}(W)$,

$E^{\prec}_{\alpha+1} = Cn_{D_s}(E^{\prec}_\alpha \cup \{ cons(\delta) \})$,

if there is a \prec-minimal default $\delta \in D$ active in E^{\prec}_α

$(\varphi : \psi / \psi$ is active in X iff $X \vdash \varphi$ and $X \not\vdash \neg \psi, \psi)$

otherwise $E^{\prec}_{\alpha+1} = E^{\prec}_\alpha$
Some problems

- **Risk of incoherence:** by complex, meaning-blind interactions between defaults, preferences and the logical structure (especially for intrinsic preferences) ignoring each other

- **Complex specificity:** Specificity orderings may achieve logical coherence, but viable transparent notions of defeasible specificity are elusive as the theory of inheritance nets has shown

- **RDL legacy:** PDL inherits several deficiencies of RDL

- **Greedy approach:** possible tensions between the application order and the chosen preference order

e.g. $a \rightsquigarrow b < T \rightsquigarrow \neg b < T \rightsquigarrow a : Cn(\{a, \neg b\})$ or $Cn(\{a, b\})$?

Alternative definitions: either similar issues, or no extensions
Qualitative plausibility models

Default conditionals:

$$\varphi \rightsquigarrow \psi : \varphi \text{ plausibly/normally implies } \psi$$

Idea: Defaults seen as constraints over epistemic orders

Models: Preferred model structures over $$\mathcal{L} = (L, \models)$$:

- $$\langle W, \leq, w_0 \rangle$$ with $$w_0 \in W \subseteq [T]_\mathcal{L}$$, and
- $$\preceq$$ a preorder over $$W$$ ($$\preceq = \leq \cap \nleq$$)

 ($$v \preceq w$$: $$v$$ is at least as preferred/plausible as $$w$$)

Satisfaction relation: $$\models_{pr}$$ for $$L \cup L(\rightarrow) \cup L(\rightsquigarrow)$$.

- $$\langle W, \leq, w_0 \rangle \models_{pr} \varphi$$ iff $$w_0 \models \varphi$$
- $$\langle W, \leq, w_0 \rangle \models_{pr} \varphi \rightarrow \psi$$ iff $$[\varphi] \cap W \subseteq [\psi]$$
Preferential conditional semantics

Naively: \((W, \preceq, w_0) \models_{min} \varphi \rightsquigarrow \psi\) iff \(\text{Min}_{\preceq}([\varphi]) \subseteq [\psi]\)

But: There may be no minima - and imposing them artificially (stopperedness, smoothness) is neither natural nor necessary

Example: \(W = \{w, w_1, w_2, \ldots\}\) with \(w \models \neg \varphi, w_i \models \varphi,\) and let \(\preceq\) be an infinite descending chain \(\ldots < w_3 < w_2 < w_1.\) Then \((W, \preceq, w_0) \models_{min} T \rightsquigarrow \neg \varphi\) - despite arbitrarily preferred \(\varphi\)-worlds

Generalized semantics: \((W, \preceq, w_0) \models_{min} \varphi \rightsquigarrow \psi\) iff
for each \(w \models \varphi,\) there is \(w \succeq v \models \varphi\) s.t. for all \(v \succeq v' \models \varphi, v' \models \psi\)

Now: \((W, \preceq, w) \models_{min} \varphi \rightarrow \psi\) iff \((W, \preceq, w) \models_{min} \varphi \land \neg \psi \rightsquigarrow F\)
Preferential conditional logic I

\models_{min} defines a monotonic entailment relation \vdash_{pcl}:

$$\Sigma \cup \Delta \vdash_{pcl} \gamma \ \text{iff} \ \left[\Sigma \cup \Delta \right]_{pcl} \subseteq \left[\gamma \right]_{pcl} \ (\text{for} \ \gamma \in L \cup L(\neg, \rightarrow))$$

Axioms of preferential conditional logic \vdash_{pcl}:

- $\varphi, \varphi \rightarrow \psi / \psi$ (Modus Ponens rule)
- $\varphi \sim \varphi$ (Reflexivity)
- If $\vdash \varphi \leftrightarrow \varphi'$ then $\varphi \sim \psi / \varphi' \sim \psi$ (Left logical equivalence)
- If $\vdash \psi \rightarrow \psi'$ then $\varphi \sim \psi / \varphi \sim \psi'$ (Right weakening)
- $\varphi \sim \psi, \varphi \sim \psi' / \varphi \sim \psi \land \psi'$ (Right conjunction)
Preferential conditional logic II

• $\varphi \leadsto \psi$, $\varphi' \leadsto \psi / \varphi \lor \varphi' \leadsto \psi$ (**Reasoning by cases**)
• $\varphi \leadsto \varphi'$, $\varphi \leadsto \psi / \varphi \land \varphi' \leadsto \psi$ (**Cautious monotony**)
• $\varphi \leadsto \varphi'$, $\varphi \land \varphi' \leadsto \psi / \varphi \leadsto \psi$ (**Cautious transitivity**)
• $\varphi \leadsto \text{F} / \neg \varphi$ (**Necessity**)
• $\varphi \rightarrow \psi$ if and only if $\varphi \land \neg \psi \leadsto \text{F}$ (**Strict implication**)

Object-level modus ponens fails: $\varphi, \varphi \leadsto \psi \not\vdash_{pcl} \psi$

because the actual world can be exceptional!
Preferential entailment

How to specify nonmonotonic reasoning with default conditionals?

Simplest approach: $\vdash^p \; (\text{Preferential entailment/System P})$

$\{\varphi_1, \ldots, \varphi_n\} \cup \Delta \vdash^p \psi$ iff $\Delta \vdash_{pcl} \varphi_1 \land \ldots \land \varphi_n \vdash \psi$

Basic defeasible modus ponens: $\{\varphi\} \cup \{\varphi \vdash \psi\} \cup \Delta \vdash^p \psi$

$\{\varphi, \neg \psi\} \cup \{\varphi \vdash \psi\} \cup \Delta \not\vdash^p \psi$ if $\{\varphi \vdash \psi\} \cup \Delta \not\vdash \varphi \rightarrow \psi$

Simple specificity: $\{s, s \vdash a, a \vdash j, s \vdash \neg j\} \vdash^p a, \neg j$

Defeasible monotony fails: $\varphi \vdash \psi \not\vdash_{pcl} \varphi \land \chi \vdash \psi$

hence $\{\varphi, \chi\} \cup \{\varphi \vdash \psi\} \not\vdash^p \psi$ (only if $\varphi \land \chi \not\vdash \psi$)
System Z I

In System P, irrelevant generic info χ can block an inference!

Idea: Inference based on plausibility maximization

Rational closure [Lehmann, Magidor 92], System Z [Pearl 90]

Z-algorithm: (our variant) for finite $\Sigma \cup \Delta$:

1. Translate $\varphi \rightarrow \psi$ into $\varphi \land \neg \psi \sim F$

2. Construct by induction $(\Delta_{\geq i} \mid 0 \leq i)$ and $(\rho_i \mid 0 \leq i)$ s.t.
 - $\rho_0 = T$, $\Delta_{\geq i} = \{ \varphi \rightarrow \psi \in \Delta \mid \varphi \vdash \rho_i \}$
 - $\rho_{i+1} = \bigvee \{ \varphi \land \neg \psi \mid (\varphi \rightarrow \psi) \in \Delta_{\geq i} \}$

For $i < j$ we have $\rho_j \vdash \rho_i$ and $\Delta_{\geq j} \subseteq \Delta_{\geq i}$.

For finite Δ, there is a smallest N s.t. $\Delta_{\geq N} = \Delta_{\geq N+1}$, $\rho_N \not\vdash \rho_{N+1}$
System Z II

Z-rank \sim degree of exceptionality

Z-rank of defaults: $Z(\delta) = \text{maximal } n \text{ s.t. } \delta \in \Delta_{\geq n}$

Z-rank of worlds: $Z(w) = \text{max} \{n \mid w \models \rho_n\}$, i.e. largest $Z(\delta)$ s.t. w violates δ ($Z(\varphi \leadsto \mathbf{F}) = \infty$)

There is a canonical ranked model $(W^Z_\Delta, \preceq^Z_\Delta)$ with

- $W^Z_\Delta = [\neg \rho_\infty] = \{w \in [\mathbf{T}]_\mathcal{L} \mid Z(w) < \infty\}$
- $v \preceq^Z_\Delta w$ iff $Z(v) \leq Z(w)$

Z-entailment (System Z):

$\{\varphi_1, \ldots, \varphi_n\} \cup \Delta \models^z \psi$ iff $(W^Z_\Delta, \preceq^Z_\Delta) \models_{\text{min}} \wedge \varphi_i \leadsto \psi$
Properties of System Z

\vdash^\sim_Δ verifies all the KLM-principles:

SC, LLE, RW, AND, OR, CUM (= CUT+CM), RM

Defeasible transitivity:

\[
\{s, s \rightsquigarrow a, a \rightsquigarrow j\} \vdash^\sim a, j
\]

\[
\{s, \neg j, s \rightsquigarrow a, a \rightsquigarrow j\} \vdash^\sim a, \neg j
\]

Defeasible specificity:

\[
\{s, s \rightsquigarrow \neg j, s \rightsquigarrow a, a \rightsquigarrow j\} \vdash^\sim a, \neg j \quad (\text{also } \{\ldots\} \not\vdash^\sim j)
\]

LLE for defaults: $\Delta \vDash_{pcl} \Delta'$ implies $\vdash^\sim_\Delta = \vdash^\sim_{\Delta'}$.
Problems for System Z

Simple exceptional inheritance fails:

\{\textit{dutch}, \neg \textit{tall}, \textit{dutch} \rightsquigarrow \textit{tall}, \textit{dutch} \rightsquigarrow \textit{loud}\} \not\models^z \textit{loud}

The Z-model of Δ is given by: $\textit{dtl} \prec \neg \textit{tl} \sim \textit{dtl} \sim \textit{dtl} \sim \textit{dtl} \sim \neg \textit{tl} \sim \textit{dnl}$
i.e. $Z(\textit{dtl}) = 0$ and $Z(\neg \textit{tl}) = Z(\textit{dtl}) = Z(\neg \textit{tl}) = 1$

Hence $\textit{dutch} \wedge \neg \textit{tall} \not\models^z \textit{loud}$: no exceptional inheritance

Replacing \textit{dutch} by \textbf{T}, we can also falsify the \textit{Irrelevance Principle}.

\textbf{IRR}: If $\Sigma \cup \Delta$ and $\Sigma' \cup \Delta'$ \not\models_{pcl} \textbf{F} have disjoint vocabularies, then $\Sigma \cup \Delta \models \psi$ iff $\Sigma \cup \Sigma' \cup \Delta \cup \Delta' \models \psi$
System LEX I

Idea: compare not just the highest-ranked violated defaults but also lower-ranked ones, as well as their number at the different ranks

Lexicographic entailment [Lehmann 1995]: \(\models^{lex} \)

Violation sequences for worlds: \(\text{lex}_\Delta(w) = (z_i(w) \mid i \leq \infty) \)
where \(z_i(w) = |\{\delta \in \Delta \mid w \models \varphi_\delta \land \neg \psi_\delta, Z(\delta) = i\}| \)
\(\Delta_{\text{dutch}}: \text{lex}(d \triangleright tl) = (1, 0, \ldots 0), \text{lex}(d \triangleright t \triangleright l) = (2, 0, \ldots 0) \)
\(\Delta_{\text{imp}} = \{p \leadsto F\}: \text{lex}(p) = (0, 0, \ldots 1), \text{lex}(\neg p) = (0, 0, \ldots 0) \)
System LEX II

Lex-ordering: \(v \preceq^{lex} w \) iff \(z_\infty(w) \neq 0 \), or
\(z_\infty(w) = 0 \) and for the highest \(i \) with \(z_i(v) \neq z_i(w) \), \(z_i(v) \leq z_i(w) \)

LEX: \(\Sigma \cup \Delta \models^{lex} \psi \) iff \((W_{\Delta}^{lex}, \preceq^{lex}_{\Delta}) \models_{min} \wedge \varphi_i \leadsto \psi\)

Winged birds example: \(\Delta = \{ p \rightarrow b, b \leadsto f, p \leadsto \neg f, b \leadsto w \} \)
\(\{ p \} \cup \Delta \models^{lex} \neg f, w \) because
\(\text{lex}(pb\neg f\neg w) = (2, 0, \ldots 0), \text{lex}(pbf\neg w) = (1, 1, \ldots 0), \)
\(\text{lex}(pb\neg fw) = (1, 0, \ldots 0), \text{lex}(pbfw) = (0, 1, \ldots 0) \)
\(pb\neg fw \) is obviously the most plausible world
Properties and problems

LEX extends Z: $\sim^z \subset \sim^{lex}$, hence it is more speculative.

Static priorities: Z-ranks of defaults are pre-computed, no inductive prioritization considering e.g. the fine-grained preference status of default antecedents.

Radical ad hoc prioritization: Violating a more specific conflicting defaults has automatically more weight than violating two independent less specific defaults - which is probabilistically unsound and in conflict with irrelevance considerations.
Beyond plausibility orders

Drawbacks of qualitative plausibility orders:

- For $w \prec w'$ and $v \prec v'$, the relative plausibility of w' w.r.t. w cannot be compared to that of v' w.r.t. v
- No proper conditional independence notion
- Insufficient expressiveness/granularity
- Translation between/aggregation of plausibility contexts unclear
- Expected utility hard to model

Idea: Use plausibility valuations from world sets to an additive structure of ordered values

Fine-grained example: probability measures $P : Prop \rightarrow [0, 1]$
Plausibility valuations

General plausibility val. [Friedman, Halpern 96]:

\[Pl : B \rightarrow (V, \bot, \top, \prec) \text{ with} \]
\[Pl(\emptyset) = \bot, \quad Pl(W) = \top \quad \text{and} \quad Pl(A) \leq Pl(B) \text{ if } A \subseteq B \]

Desiderata

- Conditional plausibility + reasonable independence concept
- \(\prec \) total order (partial order = set of total ones)

Simplest solution: Ranking measures [Spohn 88, 12, Wey 95]

Ranking measures generalize

- Spohn’s rk-functions measuring the implausibility/surprise of propositions, used to model revisable graded plain belief
- Real-valued multiplicative possibility [Dubois, Prade 94]
Real-valued ranking measures

Real-valued ranking measures (integers not enough!)

Let $\mathbb{B}_\mathcal{L}$ be the boolean algebra of \mathcal{L}-propositions

$R : \mathbb{B} \to ([0, \infty], +, \leq)$ is a real-valued ranking measure (rmk) iff

- $([0, \infty], 0, +, \geq)$: ordered additive structure of pos. reals with ∞
- $R(W) = 0, R(\emptyset) = \infty$ (expresses impossibility)
- $R(A \cup B) = \min \{ R(A), R(B) \}$ for all $A, B \in \mathbb{B}$

Conditional ranking measure:

$R(B|A) = R(A \cap B) - R(A)$ for $R(A) \neq \infty$, else $R(B|A) = \infty$.

R_0 is the uniform rkm with $R_0(A) = 0$ for $A \neq \emptyset$. $R(\varphi) := R([\varphi])$
Ranking epistemology

Ranking measure values \sim degrees of implausibility/surprise

Ranking measures may model belief states (Spohn):

Belief strength in φ is r iff $R(\neg \varphi) = r$

Conventional threshold: $Bel(\varphi)$ iff $R(\neg \varphi) \geq 1$ ($R(\varphi) = 0$)

Belief is closed under conjunction (plain belief) because

$R(\neg(\varphi \land \psi)) = R(\neg \varphi \lor \neg \psi) = \min\{R(\neg \varphi), R(\neg \psi)\} \geq 1$

$R(\neg \varphi) = \infty$: $\neg \varphi$ is epistemically impossible, i.e. φ a dogm

Probabilistic link: $R(A) = r \sim P(A) = O(\varepsilon^r)$,

for infinitesimals $0 < \varepsilon \ll 1$
Ranking measure semantics

Rkm semantics for default \sim and strict implication \rightarrow:

$R \models_{rk} \varphi \sim \psi$ iff $R(\varphi \land \psi) + 1 \leq R(\varphi \land \neg \psi)$ iff $R(\neg \psi|\varphi) \geq 1$

$R \models_{rk} \varphi \rightarrow \psi$ iff $R(\varphi \land \psi) + \infty \leq R(\varphi \land \neg \psi)$ iff $R(\varphi \land \neg \psi) = \infty$

$[\Delta]_{rk} = \{R \mid R \models_{rk} \delta \text{ for all } \delta \in \Delta\}$

We sometimes need a weaker satisfaction $\models^>_{rk}$ using $R(\neg \psi|\varphi) > 0$

Monotonic rk-entailment: $\Delta \vdash_{rk} \delta$ iff $[\Delta]_{rk} \subseteq [\delta]_{rk}$

\vdash_{rk} satisfies the rules for preferential conditional logic
Rkm-based default entailment

Goal: A rkm-based framework to specify default inference

Idea: Rkm semantics + preferred model theory for conditionals

Preferred rkm choice function: $\mathcal{I} : \Delta \mapsto \mathcal{I}(\Delta) \subseteq [\Delta]_{rk}$

Rkm-based default entailment w.r.t. \mathcal{I}: $\vdash^\mathcal{I}$:

$\Sigma \cup \Delta \vdash^\mathcal{I} \psi$ iff for all $R \in \mathcal{I}(\Delta)$ $R \models_{rk}^> \Sigma \Rightarrow \psi$

Defeasible modus ponens:

$\{\varphi\} \cup \{\varphi \Rightarrow \psi\} \cup \Delta \vdash^\mathcal{I} \psi$ ({$\varphi \Rightarrow \psi$} $\cup \Delta \vdash_{rk} \varphi \Rightarrow \psi$)

Preferentiality: $\vdash^\mathcal{I}_\Delta$ verifies SC, LLE, RW, AND, CUT, CM, OR
Rkm-based reconstructions

Preferential entailment: $\neg^p = \neg^p$ where $I_p(\Delta) = [\Delta]_{rk}$

System P is the weakest \neg^I because $I_p(\Delta)$ is maximal

Conditional monotonicity: $\Sigma \cup \Delta \vdash^p \psi$ implies $\Sigma \cup \Delta \cup \Delta' \vdash^p \psi$

For finite $\Delta \not\vdash_{rk} F$, there is a unique rkm-mode R^z_Δ which attributes the lowest possible rkm-values to each proposition:

$$R^z_\Delta(A) = \inf_{\leq} \{ R(A) \mid R \vdash_{rk} \Delta \}$$

System Z: $\neg^z = \neg^I_z$ with $I_z(\Delta) = \{ R^z_\Delta \}$

LLE for defaults: for Systems P, Z we have

$[\Delta]_{rk} = [\Delta']_{rk}$ implies $\neg^I_\Delta = \neg^I_{\Delta'}$
Reconstruction of System LEX

Semantic problems with System LEX:

Non-standard: Reconstructing \sim^{lex} requires infinite rkm-values:

$1 < 1+1 < \ldots N < \ldots N+N < \ldots N^2 < N^2+1 < \ldots N^2+N < \ldots N^2+N^2 < \ldots N^3 < \ldots < \infty$

$(1,0,\ldots,0) < (2,0,\ldots,0) < \ldots (0,1,\ldots,0) < \ldots (0,2,\ldots,0) < \ldots \infty$

\rightarrow LEX imposes excessively high implausibility values

Context dependence: The relative rkm-values may depend on the rkm-value of a generic context X:

$$R^{lex,N}_{\{T\sim a\}}(\neg a) = 1 \quad \text{but} \quad R^{lex,N}_{\{X\sim a,T\sim \neg X\}}(\neg a \mid X) = N$$

Are there less extreme rkm-inference notions supporting inheritance?
Ranking measure constructions

How to find reasonable $R \models_{rk} \Delta$ respecting the structure of Δ?

Idea: Focus on those R obtained by iterated Spohn-style revision on the uniform rkm prior R_0 with $\varphi \rightarrow \psi$ for $\varphi \nabla \psi \in \Delta$

Informally: Specify ranking models by adding context-dependent penalties ≥ 0 for each default a world violates

Minimal change when strengthening belief in φ: make $\neg \varphi$-worlds uniformly more implausible

Ranking construction models: Let $\Delta = \{\varphi_i \nabla \psi_i \mid i \leq n\}$

$$Constr(\Delta) = \{ R \models_{rk} \Delta \mid R = R_0 + \sum_{i \leq n} a_i [\varphi_i \land \neg \psi_i], a_i \in [0, \infty]\}$$

Fact: If $\Delta \not\models F$, then $Constr(\Delta) \neq \emptyset$
Construction-based default entailment I

Strategy: Default inference based on preferred rkm-constructions, i.e. \sim^I with $I(\Delta) \subseteq Constr(\Delta)$

System J: $\sim^j = \sim^{Ij}$ where $I^j(\Delta) = Constr(\Delta)$

Exceptional inheritance: for logically independent a, b,

$\{\neg a, T \rightsquigarrow a, T \rightsquigarrow b\} \sim^j b$

$R \models_{rk} \neg a \rightsquigarrow b$ if $R = R_0 + x(T \land \neg a) + y(T \land \neg b)$ for $1 \leq x, y$

because then $R(\neg a \land b) + 1 = x + 1 \leq x + y = R(\neg a \land \neg b)$
Construction-based default entailment II

Advantages: Simplicity, robustness, intuitive behaviour

System J^+: $\mathcal{I}^+(\Delta) = \text{rk-construction models with } a_i \geq 1$

- $\{
eg a\} \cup \{T \leadsto a, T \leadsto a \lor b\} \not\sim^j b$, but
- $\{
eg a\} \cup \{T \leadsto a, T \leadsto a \lor b\} \sim^{j^+} b$

Systems J, J^+ may be too cautious by not fully exploiting the idea of plausibility maximization
Minimal rkm-constructions

Idea: Maximizing plausibility by minimizing shifting

JM: $\mathcal{I}^{jm}(\Delta) = \text{set of } R \in Constr(\Delta) \text{ with pointwise minimal shifting vectors } \vec{a}_i$

Non-uniqueness:

$\mathcal{I}^{jm}(\{T \leadsto a, T \leadsto b, T \leadsto a \land b\})$ is uncountable

$\mathcal{I}^{jm}(\Delta) = \{R_0 + x[\neg a] + x[\neg b] + y[\neg a \lor \neg b] \mid x + y = 1\}$

Minimal rkm-constructions have not been born equal ...
Big Birds Hammer

Big Birds Hammer: Birds are normally small, birds can normally fly, exceptional birds (small or unable to fly) normally cannot fly. What about the flying abilities of big birds?

\[\{b, \neg s\} \cup \{b \sim f, b \sim s, b \land \neg(s \land f) \sim \neg f\} \sim \neg f? \]

By specificity one may expect \(\{b, \neg s\} \cup \Delta \nsim \neg f \)

(\(\text{which holds for System Z, minimal information entailment} \))

But \(\mathcal{L}^{im}(\Delta) = \{(2-x)[b \land \neg s \land f] + x[b \land \neg s] + 1[b \land \neg f] \mid x \in [0, 2]\}, \)

\(R^{1}(b \land \neg s \land f) = 2 = R^{1}(b \land \neg s \land \neg f), \) hence \(\{b, \neg s\} \cup \Delta \not \models^{im} \neg f \)

The best fitting solution: \(R^{0} = 2[b \land \neg s \land f] + 1[b \land \neg f] \)
Justifiable constructibility

Idea: Ranking constraints should not be over-satisfied

Justifiable constructibility:

\[R = \sum_{i \leq n} a_i[\varphi_i \land \neg \psi_i] \] is justifiably constructible model of \(\Delta \) iff proper shifting of \([\varphi_i \land \neg \psi_i]\), i.e. \(a_i > 0 \), implies satisfaction as an equality constraint: \(R(\varphi_i \land \psi_i) + 1 = R(\varphi_i \land \neg \psi_i) \)

System JJ: \(\mathcal{I}_{jj}(\Delta) \) = justifiably constructible rk-models of \(\Delta \)

Fact: \(\mathcal{I}_{jj}(\Delta) \subseteq \mathcal{I}_{jm}(\Delta) \)

Big Birds Hammer: JJ provides the unique correct solution:

\[\mathcal{I}_{jj}(\Delta_{bbh}) = \{2[b \land \neg s \land f] + 1[b \land \neg f]\} \]
Non-uniqueness: If $\Delta = \{ T \leadsto a, T \leadsto b, T \leadsto a \land b \}$, then $\mathcal{I}^{jj}(\Delta) = \mathcal{I}^{jm}(\Delta)$ is again uncountable.
Canonical preferred ranking models

Goal: Specify for each Δ a canonical preferred rkm model improving on Systems Z/LEX. Two main strategies:

- **Ranking measure fusion:** “take the average”
- **Canonical rkm construction:** liike for System Z/LEX

Ranking measure fusion: For each rk-choice \mathcal{I}, let $\hat{\mathcal{I}}$ be s.t.

$$\hat{\mathcal{I}}(\Delta) = \{R^*_\Delta\} \text{ with } R^*_\Delta(A) = \inf_{\subseteq} \{R(A) | R \in \mathcal{I}(\Delta)\}$$

R^*_Δ is the most plausible lower bound of the \mathcal{I}-preferred Δ-models

Example: for System Z, $\mathcal{I}^z(\Delta) = \hat{\mathcal{I}}^p = [\Delta]_{rk}$

Fact: $R^*_\Delta \in Mod_{rk}(\Delta)$, but $R^*_\Delta \not\in Constr(\Delta)$ is possible
System JJR

JJR: $\mathcal{I}^{jjr}(\Delta) = \hat{\mathcal{I}}^{jj}(\Delta) = \{R^{jjr}_\Delta\} - \text{the best of both worlds?}

If the justifiably constructible model is unique, it is the JJR-model

For $\Delta = \{T \leadsto a, T \leadsto b, T \leadsto a \wedge b\}$, $R^{jjr}_\Delta = 1[-a \lor -b]$

(it is the Z-model of Δ and justifiably constructible)

Constructibility counterexample: Nested crossing

$\Delta_{nc} = \{T \leadsto a, T \leadsto b, T \leadsto r, T \leadsto s, T \rightarrow (a \wedge b \leftrightarrow r \wedge s)\}$

$\mathcal{I}^{jj}(\Delta_{nc}) = \{x[-a] + x[-b] + (1 - x)[-r] + (1 - x)[-s] \mid x \in [0, 1]\}$

$R^{jjr}_{\Delta_{nc}} = 1[-(a \wedge b)] + 1[-(a \lor b \lor r \lor s)] + \infty[-(a \wedge b \leftrightarrow r \wedge s)]$

$\notin Constr(\Delta_{nc})$
Canonical preferred rk-constructions

Goal: Incremental construction of a canonical rkm-model R^*_Δ of Δ in the spirit of System Z

Examples: the only rk-constructible ones I am aware of ...

System JZ, JLZ [Wey 98, 03]

Philosophy: Minimize the rk-construction efforts everywhere

Let $\Delta = \{ \varphi_i \Rightarrow \psi_i \models i \leq n \}$

We seek a “minimally constructed” $R^*_\Delta = \Sigma_i a_i[\varphi_i \land \neg \psi_i]$
JZ-construction

Guiding principles of the JZ-construction

- *Justifiable constructibility*: no superfluous shifting
- *No default redundancy*: equivalent defaults considered once
 \[w.l.o.g.: ([\varphi_i \land \lnot \psi_i], [\varphi_i]) = ([\varphi_j \land \lnot \psi_j], [\varphi_j]) \]
 implies \(i = j \)
- *Bottom-up plausibility maximization*: first construct the most plausible layers, ignoring the necessarily less plausible ones
- *Local shifting minimization*: when constructing a layer, realize the not-yet-settled defaults by lexicographically minimizing the longer shifts first

Note: Here the priorities are dynamic, not as for System Z, LEX
System JZ

System JZ: flagship proposal for rkm-based default inference

JZ-idea: Proceed rank by rank, trying to locally approximate ranking minimization (system Z) by local ranking constructions lexicographically minimizing the shifting efforts for each target rank

Relative plausibility maximization: $PM(R, \Delta)$

An auxiliary notion generalizing $R^{\Delta}_z = PM(R_0, \Delta)$

The most plausible rkm-model of Δ above R for $R(\land \Delta \rightarrow) \neq \infty$

$$PM(R, \Delta)(A) = \inf_{\leq \{ R'(A) \mid R \leq R', R' \models_{rk} \Delta \}}$$
JZ-algorithm I

Induction: We jointly construct sequences \(R_i, R_i^*, \Delta_i, \Delta'_i, \)

Start: \(i = 0: R_0 = R, R_0^* = PM(R_0, \Delta) = R_\Delta^*, \Delta_0 = \emptyset, s_0 = 0 \)

Step: \(i \rightarrow i + 1: R_i \) preceding partial ranking construction, \(R_i^* = PM(R_i, \Delta), \Delta_i \) collection of settled defaults at stage \(i \)

\(s_{i+1} \) smallest \(s > s_i \) of the form \(s = R_i^*(\varphi_j \land \neg\psi_j) \) for \(\delta_j \in \Delta - \Delta_i \)

\(\Delta'_{i+1} = \{ \delta_j \in \Delta - \Delta_i \mid R_i^*(\varphi_j \land \neg\psi_j) = s_{i+1} \} \)
JZ-algorithm II

\[R_{i+1} = R_i + \sum_{\delta_j \in \Delta_{i+1}} a_i[\varphi_j \land \neg \psi_j], \]

where \(\vec{a} \) is the lex-length-minimal tuple \(\vec{x} \) with, for all \(h \leq n, \)

\[
(R_i + \sum_{\delta_j \in \Delta_{i+1}} x_j[\varphi_j \land \neg \psi_j] + \\
\sum_{\delta_j \not\in \Delta_i \cup \Delta_{i+1}} \infty[\varphi_j \land \neg \psi_j])(\varphi_h \land \neg \psi_h) \
\geq s_{i+1}
\]

i.e. reaching \(s_{i+1} \) while ignoring all the shiftable propositions \(\varphi_h \land \neg \psi_h \) which verify \(R^*_i(\varphi_h \land \neg \psi_h) > s_{i+1} \)

\[R^*_{i+1} = PM(R_{i+1}, \Delta) \text{ and } \Delta_{i+1} = \Delta_i \cup \Delta'_{i+1} \]

Stop: If \(s_{i+1} \) does not exist, then \(R^z_{\Delta} = R_{i+1} = R_i. \)
Examples I

Nested crossing:

\[\Delta_{nc} = \{ T \leadsto a, T \leadsto b, T \leadsto r, T \leadsto s, T \rightarrow (a \land b \leftrightarrow r \land s) \} \]

\[R_0^* = PM(R_0, \Delta) = 1[\neg a \lor \neg b] + \infty[\neg(a \land b \leftrightarrow r \land s)] \]

\[R_0^*(\neg a) = ... = R_0^*(\neg s) = 1 < \infty = R_0^*(\neg(a \land b \leftrightarrow r \land s)) \]

hence \(s_1 = 1 \)

The lex-length-minimal coeff. \(a_i \) s.t. for \(R_1 = a_1[\neg a] + ... + a_4[\neg s] \)
we have \(R_1 + \infty[...] (\neg a), ..., R_1 + \infty[...] (\neg s) \geq s_1 = 1 \) are \(a_i = 1/2 \)
Examples II

\[\Delta_1 = \Delta'_1 = \{ \text{T} \sim a, \text{T} \sim b, \text{T} \sim r, \text{T} \sim s \} \]

\[R_1^* = PM(R_1, \Delta) = R_1 + \infty[\neg(a \wedge b \leftrightarrow r \wedge s)], \text{ now } s_2 = \infty \]

The lex-length-minimal coefficient for \(\neg(a \wedge b \leftrightarrow r \wedge s) \) is \(\infty \)

\[\Delta_2 = \Delta, \text{ hence induction stops here and} \]

\[R^{jz}_{\Delta_{nc}} = 1/2[a] + ... + 1/2[s] + \infty[\neg(a \wedge b \leftrightarrow r \wedge s)] \]

is justifiably constructible.

Observe: The symmetries of \(\Delta_{nc} \), justifiable constructibility, and canonicity are enough to fix the result

Note: \(R^{jz}_{\Delta_{nc}}(\neg a \wedge \neg b) = 3/2 \) - thus we need rational rkm-values!
Examples III

Big Birds Hammer light: Birds are normally small, birds can normally fly, big birds are normally unable to fly

\[
\Delta_{bbl} = \{b \leadsto f, b \leadsto s, b \land \neg s \leadsto \neg f\}, \quad \Sigma_{bbl} = \{b, \neg s\}
\]

\[
R_0^* = R_{\Delta_{bbl}}^z = 1[b \land \neg f] + 2[b \land f \land \neg s] \quad \text{(just to describe it)}.
\]

Hence, in the first round we will only shift \(b \land \neg f\) and \(b \land \neg s\), ignoring the less plausible part \(b \land \neg s \land f\). We have \(s_1 = 1\) and \(\Delta_1 = \{b \leadsto f, b \leadsto s\}\).

Shifting \(b \land \neg s\) is then redundant and \(R_1 = 1[b \land \neg f] + 0[b \land \neg s]\).

\(R_1^*\) is now just \(R_1 + 2[b \land f \land \neg s]\), which puts \(b \land f \land \neg s\) to 2, the next target rank is thus \(s_2 = 2\). Hence \(R_2 = R_1 + 2[b \land f \land \neg s]\).

Because \(\Delta_2 = \Delta_{bbl}\), we stop and \(R_{\Delta_{bbl}}^{jz} = 1[b \land \neg f] + 2[b \land f \land \neg s] \)
While \(\{b, \neg f\} \cup \{b \rightsquigarrow f, b \rightsquigarrow s\} \models^j s, \)
we have \(\{b, \neg f\} \cup \{b \rightsquigarrow f, b \rightsquigarrow s, b \land \neg s \rightsquigarrow \neg f\} \not\models^j s, \neg s \)
Properties and principles

System JZ verifies:

• all KLM postulates
• Irrelevance principle (and exceptional inheritance) (IRR)
• Representation/Language Independence (RI)
• Local default equivalence

System JZ violates:

• LLE for defaults

But this is actually unavoidable if we insist on IRR and RI
Desirable inference

Let us call a default inference notion desirable iff:

- **Supraclassicality for** $\models w.r.t. \vdash: \vdash \subseteq \models$
- **Basic nontriviality:** $\{\neg \varphi, T \models \varphi\} \not\models \varphi$ if $\varphi \not\models F$, $\neg \varphi \not\models F$
- **Representation invariance for** \models:
 for semantically invariant boolean isomorphisms $f : L \to L$
 $\Gamma(\varphi) \models \psi$ iff $\Gamma(f(\varphi)) \models f(\psi)$
- **LLE for defaults:** $\models_\Delta = \models_{\Delta'}$ if $\Delta \models_{rk} \Delta'$
- **Exceptional inheritance:**
 $\{\neg a\} \cup \{T \models a, T \models b\} \models b$ for logically independent a, b
 (follows from Irrelevance and and Representation invariance)
Exceptional inheritance paradox

Theorem: There are no desirable default inference notions!

What can we do? What to violate?

- Supraclassicality/nontriviality: untouchable cornerstones of default reasoning
- Representation invariance: conditio sine qua non for semantic-based approaches
- LLE for defaults: only very weak conditional logics for defaults
- Exceptional inheritance: only very weak inheritance patterns: e.g. System Z