Obesity Rates of Cohorts in Middle Age: Increasing Burden, Increasing Educational Inequalities

Louis Chauvel & Anja Leist, University of Luxembourg
Annual Meeting of the Gerontological Society of America, Boston, November 2018

We have no commercial relationships to disclose.
Motivation

Importance of investigating obesity as risk factor of adverse health, functional limitations and chronic conditions

Inequalities in BMI and obesity are well established

- SES-BMI gradients stronger in women, vary across racial/ethnicity groups 1970s-2008 (Grabner 2012)
- Stronger increases in obesity rates in women 2005-2014 (Flegal et al. 2016), some levelling off cautiously noted (Rokholm et al. 2012)

Cohort inequalities?

- Strong cohort component suspected but evidence is scarce
- Available age-period-cohort analyses have problematic assumptions (Bell & Jones 2014)
- Characteristics of cohorts entering older ages necessary for social and healthcare planning

Data and Method

- National Health Interview Surveys (cross-sectional, annual data collection)

Age-Period-Cohort analysis

- 5-year periods 1976-2014 and five-year age groups 20-60
- Age-Period-Cohort Trended Lag Analysis (Chauvel & Schröder 2014; Bar-Haim, Chauvel, Hartung 2018) to detect fluctuations of prevalence of obesity across years
- Age-Period-Cohort Gap-Oaxaca Analysis to estimate the gradient related to education across age, period, cohort
Method Intro

The Lexis diagram to plot age against period to detect cohort change

Figure: Simulated (against empirical) data on suicide rates per 100,000 population taken from Chauvel, Leist & Ponomarenko (2016)

Method

0. Age-Period-Cohort model
 • Unidentifiable w/o further constraints

1. Age-Period-Cohort Detrended
 • Detects deviations from the linear trend of age, period and cohort
 • Cannot identify actual linear trends
 • Detects lucky/protected and unlucky/disadvantaged cohorts

1 Chauvel & Schröder 2014; Chauvel, Leist, Ponomarenko 2016; Stata: ssc install apcd
Method

2. Age-Period-Cohort Trended Lag
 • Constraints to identify social change via cohort vector
 • Age linear trend constrained to average within-cohort age effect; sum of age and period vectors zero; period linear trend zero

3. Age-Period-Cohort Gap/Oaxaca model
 • Blinder-Oaxaca decomposition in each cell of the Lexis table to derive differences between groups: Mean BMI of lower-educated minus mean BMI of higher-educated group
 • APCT-lag to detect the intensity of the cohort gap (constant), its evolution over time and non-linear accelerations of decelerations in the cohort trend

1 Bar-Haim, Chauvel, Hartung, 2018; Bar-Haim et al. 2018; Stata: ssc install apcgo

Descriptives

• Total of 4,071,692 observations 1976-2014, age 20-60
• 2,054,190 observations do not have information on BMI
• 17,080 observations without information on education
• 2,000,422 observations with information on BMI and education
• Age-Period-Cohort analysis requires the omission of first and last five-year age group:

• Final sample: 1,257,802 observations
• Higher education = BA holders or higher, 299,986 observations (23.84 %)
Descriptives

<table>
<thead>
<tr>
<th></th>
<th>M (Std)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample</td>
<td>25.37 (4.87)</td>
<td>1,257,802 (100)</td>
</tr>
<tr>
<td>Obese (BMI>=30)</td>
<td>34.00 (4.02)</td>
<td>211,249 (16.8)</td>
</tr>
<tr>
<td>Overweight (BMI>=25)</td>
<td>27.01 (1.42)</td>
<td>421,385 (33.5)</td>
</tr>
<tr>
<td>Underweight (BMI<=18)</td>
<td>17.21 (0.86)</td>
<td>20,029 (1.59)</td>
</tr>
</tbody>
</table>

Strategy of Data Analysis

- Social trends with APC Trended Lag
- Educational gaps with APC Gap Oaxaca
- Stratified by gender (1)
- Stratified by gender; education; race/ethnicity (non-Hispanic White: non-Hispanic Black; Hispanic) (2)
1a. Obesity Trends in Women (apctlag)

- Social change in obesity rates in women across the window of observation (1976-2014)
- Slope increases in steepness for cohorts born 1960+

1b. Educational Gaps in Obesity Rates between Low- and High-educated Women (apcgo)

- BA holders versus non-BA holders
- Increasing inequalities = sharp change in steepness of the gradient for those cohorts born 1960+
1c. Obesity Trends in Men (apctlag)

- Social change in obesity rates in men across the window of observation (1976-2014)
- Less steep increases for men

1d. Educational Gaps in Obesity Rates between Low- and High-educated Men (apcgo)

- BA holders versus non-BA holders
- Increasing inequalities for those cohorts born before and after 1960 in men
Are there Race or Ethnicity Differences?

- Information on self-reported main racial background and Hispanic ethnicity

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>BMI mean (std)</th>
<th>Obesity rate in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hispanic White</td>
<td>912,544</td>
<td>25.32 (4.75)</td>
<td>14.8</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>155,045</td>
<td>27.22 (5.59)</td>
<td>26.2</td>
</tr>
<tr>
<td>Hispanic</td>
<td>135,692</td>
<td>26.8 (4.92)</td>
<td>22.2</td>
</tr>
</tbody>
</table>

2a. Trends in Women (apctlag)
2b. Trends in Men (apctlag)

- Strong gaps for cohorts born 1925-1940
- Gradients smaller for cohorts 1945-1960, before widening again for cohorts born 1960+
- Situation for Black low-educated women will be worse than for White counterparts

2c. Gaps b/w White and Black Women for Low Educated (apcgo)
Discussion

• Women of cohorts born 1960s and later entering old age in the next decade will present sharply increased obesity rates with associated challenges for social and healthcare systems
• In general similar patterns in increases of obesity rates for Black and White non-Hispanic men and women, and Hispanic men and women but different gap trajectories
• Possible explanations
 • Obesogenic environment; HFCS; sweetened beverages
 • Living conditions…

Annex Slides
Annex 1: BMI Trends in women (apctlag)

- Trends in BMI linear, capturing the increasing BMI across the weight/height distribution in the window of observation.

Annex 2: Educational Gaps in BMI in Women (apcgo)

- Gap analysis for BMI more pronounced than for obesity for cohorts born after 1960.
Annex 3: BMI Trends in Men (apctlag)

- Linear increase

Annex 4: Educational Gaps in BMI in Men (apcgo)

- No clear cohort trend
Annex 5. Trends in Hispanics (apctlag)

- Gaps between Hispanic and non-Hispanic women with low education are closing across the window of observation and are zero for cohorts born 1965+

Annex 6. Gaps in Obesity Rates between Low-educated Hispanic and non-Hispanic Women (apcgo)

- Gaps between Hispanic and non-Hispanic women with low education are closing across the window of observation and are zero for cohorts born 1965+
Annex 7. Educational Gaps in Obesity Rates between Hispanic and non-Hispanic Men (apcgo)

- BA holders versus non-BA holders
- Stable inequalities for those cohorts born before and after 1960 in men

Annex 8. Gaps b/w White and Black Men for Low-educated (apcgo)

- Smaller gaps in obesity rates
- Wide confidence intervals
- Gap closed for cohort born 1940 but widening again for cohorts 1960+
Annex 9. Gaps b/w White and Black Men for High-educated (apcgo)

- Wide confidence intervals
- Smaller gaps in obesity rates
- Cohorts born 1925 to 1940 close gap b/w White and Black men
- Cohorts born 1960+ widening again but w/wide CIs