A systems-wide understanding of photosynthetic acclimation in algae and higher plants

Fiona Wanjiku Moejes1,2,*, Anna Matuszyńska1,*, Kailash Adhikari3, Roberto Bassi4, Federica Cariti5, Guillaume Cogne6, Ioannis Dikaios4, Angela Falciatore7, Giovanni Finazzi8, Serena Flori8, Michel Goldschmidt-Clermont5, Stefano Magni1, Julie Maguire3, Adeline Le Monnier9, Kathrin Müller1, Mark Poolman2, Dipali Singh2, Stephanie Spelberg1, Giulio Rocco Stella7, Antonella Succurro1, Lucilla Taddei7, Brieuc Urbain8, Valeria Villanova9, Claudia Zabke10 and Oliver Ebenhöh1

1 Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany
2 Bantry Marine Research Station, Gearhies, Bantry, Co. Cork, Ireland P75 AX07
3 Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
4 University of Verona, Department of Biotechnology, Italy
5 Department of Botany and Plant Biology, University of Geneva, Switzerland
6 LUNAM, University of Nantes, GEPEA, UMR-CNRS 6144, France
7 Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l’Ecole de Médecine, 75006 Paris, France
8 Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), Université Grenoble Alpes (UGA), Grenoble 38100, France
9 Fermentalg, Libourne, France
10 University of Aberdeen, Scotland

Received 12 December 2016; Accepted 28 March 2017

Editor: Christine Raines, University of Essex, UK

Abstract

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for

Abbreviations: Dd, diadinoxanthin; Dt, diatoxanthin; FBA, flux balance analysis; LHC, light harvesting protein complexes; LHCSR, light-harvesting complex stress-related; NPQ, non-photochemical quenching; ODE, ordinary differential equation; PBR, photobioreactor; PS, photosystem; PsbS, subunit S of photosystem II; ROS, reactive oxygen species; Vx, violaxanthin; Zx, zeaxanthin

© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com
industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.

Key words: Acclimation, biodiversity, European Training Network, interdisciplinary training, mathematical modelling, microalgal cultivation, non-photochemical quenching, PhD training, photosynthetic optimisation.

Introduction

Most life on Earth depends on oxygenic photosynthesis. Photosynthetic organisms such as algae, plants and mosses have the ability to convert solar energy and carbon dioxide (CO₂) into biomass and oxygen. Photosynthetic organisms can be found in highly fluctuating natural environments, which exposes them to stressful conditions, particularly regarding light. While light is a necessary source of energy, too much light can cause severe damage (Niyogi and Truong, 2013; Finazzi and Minagawa, 2014). It was therefore essential for plants and algae to develop mechanisms to optimise energy capture, conversion and dissipation under different light conditions via specific short- and long-term responses. Long-term responses imply ultrastructural changes in the cell and in most cases de-novo synthesis or breakdown of proteins, pigments, and redox cofactors. For instance, under limiting light conditions, photosynthetic cells tend to increase their light-harvesting capacity (Sukénik et al., 1987). This involves the biosynthesis of new photosynthetic pigments as well as increasing expression of genes coding for light harvesting protein complexes (LHC) in plants. Conversely, plants tend to decrease the number of LHC proteins when exposed to high levels of light (Anderson et al., 1995), to avoid absorption of excess light. This leads to feedback regulation, where the level of irradiance regulates the antenna size of photosystems on the long-term scale of several hours or days (Smith et al., 1990; Melis, 1991; Ballottari et al., 2007).

Short-term responses, in the order of seconds to minutes, which are the focus of this review, are typically reversible and do not require extensive changes in either gene expression or in the structure of the photosynthetic apparatus. Under high light exposure, excessive photon flux leads to over-excitation of light harvesting complexes, increasing the accumulation of chlorophyll triplets. This triggers the production of potentially damaging reactive oxygen species (ROS; Krieger-Liszkay et al., 2008). To reduce this risk, photosynthetic organisms must increase thermal dissipation of the excess light. This is typically achieved via a process of photosynthesis regulation known as non-photochemical quenching of chlorophyll fluorescence (NPQ), a key rapid response strategy (Müller et al., 2001).

Photosynthetic acclimation is an excellent example of the complexity of biological systems, where different molecular and submolecular processes interact on different timescales. Consequently, diverse experimental approaches are employed to investigate and understand this process. The acceleration in the development of modern experimental techniques, coupled with a rapid growth in systems biology approaches, has allowed for our knowledge of photosynthetic acclimation to broaden. In particular, theoretical and mathematical models are becoming an increasingly useful and utilised approach. Their power lies in providing general theoretical frameworks in which data can be interpreted in a far more sophisticated way than with intuition or purely statistical methods alone. Thus, mathematical models are essentially a simplified representation of the real system. This simplification allows for the identification of common fundamental principles and phenomena and often forms the basis for novel hypotheses. Moreover, they facilitate new predictions and allow for investigations that are often experimentally challenging, if not impossible. Mathematical models can take many forms, depending on the research aim in question (Pfau et al., 2011).

In the context of photosynthesis, the range extends from detailed models of processes occurring within photosystem II (PSII) on the timescale of picoseconds to nanoseconds (reviewed in Lazár and Jablonský, 2009) to biochemically structured models of culture growth in bioreactors (Cornet et al., 1998; Cogne et al., 2011) and models of photosynthetic evolution (Heckmann et al., 2013).

This review aims to provide an overview of recent insights on photosynthetic acclimation and consequences on microalgal cultivation, resulting from research by members of the Marie Curie Initial Training Project, AccliPhot, which employed a multidisciplinary approach. We place these findings in the wider context of current research activities.

Short-term stress responses of the photosynthetic apparatus

Oxygen is a strong inhibitor of several stages of photosynthesis, including light harvesting, electron transport and CO₂ fixation. During evolution, phototrophs colonised different environments, with the transition from water to land being particularly challenging. Increased variability in temperature, water availability, light intensities, and UV radiation, made robust protection against oxidative stress a critical requirement for successful evolution.

Among these mechanisms, NPQ is of particular relevance. NPQ refers to the experimentally observable reduction of fluorescence emitted by PSII under light exposure. Based on their different relaxation kinetics (Horton et al., 1996), three main components of NPQ have been proposed. The fastest, energy-dependent component, qE, relaxes in approximately one minute. The second, qT, which relaxes within minutes,
has been proposed to correspond to state transitions (Joliot and Finazzi, 2010). Finally, the slowest component, qI, either represents photoinhibition or a particular form of energy quenching (Dall’Osto et al., 2005). The exact contribution of each component varies between organisms and environmental conditions. As a general rule, qE is the major component in moderate to high levels of light, whilst the development of state transitions is supposed to play a role in balancing excitation between the two photosystems and is therefore prominent under low light conditions, where photosynthesis is limited by absorption. Finally, photoinhibition becomes predominant when incident light exceeds photosynthetic capacity.

Energy-dependent quenching, qE

Energy-dependent quenching, qE, derives its name from the fact that it directly depends on an excess of absorbed light energy, which leads to a rapid acidification of the luminal space (Horton et al., 1996), immediately activating a signal for the feedback regulation of light harvesting (Niyogi and Truong, 2013). In higher plants, qE is the major component of NPQ. For decades, two major research questions have been the subject of investigation: i) what is the exact structural basis for the dissipation of excess absorbed light energy? ii) what are the precise molecular mechanisms and signalling pathways triggering this? Whilst the focus of this review is on the second question, it is apparent that both questions are fundamentally interrelated and that an understanding of the structural basis of qE forms the basis to understand the underlying mechanisms. Even though the precise location of the quenching sites and the structural and molecular basis for the energy dissipation are still not entirely understood (Holzwarth et al., 2009; Johnson et al., 2009; Zulfugarov et al., 2010; Betterle et al., 2010; Minagawa, 2013), recent advances have been made that clearly identify the xanthophyll pigments and the PsbS protein, subunit S of PSII, as two major factors for qE in higher plants (Ruban, 2016; Sacharz et al., 2017). Below, we summarise recent research results regarding the role of these two factors, and illustrate differences and common principles across different photosynthetic organisms.

Xanthophyll cycles

In response to high light levels, when the lumen pH drops below 6, specialised enzymes are activated and reversibly convert specific pigments, namely oxygenated carotenoids called xanthophylls, into their de-epoxidised forms in a process known as the xanthophyll cycle. Plant xanthophylls include lutein, neoxanthin, violaxanthin (Vx) and β-carotene. During NPQ, the Vx de-epoxidase (VDE) converts Vx into zeaxanthin (Zx) in two steps, which under low light levels is reversed by the enzyme zeaxanthin epoxidase (ZEP; Hager, 1967). This conversion occurs on a timescale of minutes and is purported to facilitate a conformational change in LHCCI, switching PSII into a quenched state (Nilkens et al., 2010; Sacharz et al., 2017).

The diatom equivalent of the xanthophyll cycle is known as the diadinoxanthin cycle (Lohr, 2011). It is comprised of diadinoxanthin (Dd) and diatoxanthin (Dt; Olaizola et al., 1994), which together with fucoxanthin and chlorophyll a/c form the main components of the LHC antennae in diatoms (Beer et al., 2006). The diadinoxanthin cycle is a one-step de-epoxidation from Dd to Dt via the enzyme diadinoxanthin de-epoxidase (DDE), which is active at a low pH. It was demonstrated that the photoprotective pigment Dt is linearly correlated with the extent of qE in diatoms (Goss et al., 2006). In low light, the reverse reaction is catalysed by DTE (diatoxanthin epoxidase).

In a comparison of the genes involved in the xanthophyll cycle to those in the Dd cycle, more copies of the genes putatively involved in de-epoxidase (VDE, VDL1, VDL2, VDR) and epoxidase (ZEPI, ZEP2 and ZEP3) reactions have been found in diatom genomes (Coesel et al., 2008). To further our fundamental understanding of qE, the involvement of these components in diatom photoprotection must be understood. This was achieved by the modulation of their expression levels by gene knock-down and gene knock-out approaches in the model organism Phaeodactylum tricornutum. Results suggest that not all the VDEs are directly involved in the xanthophyll cycle and that some of them are rather biosynthetic enzymes. Moreover, deregulating the relative content of the Dd and Vx pigment pools indicates that the Vx pool is not involved in the NPQ of diatoms and, furthermore, could be interfering with the photoprotective function of the Dd pool (Stella, 2016).

LHC protein superfamily and its variants

As demonstrated repeatedly, a key factor in inducing a quenching state in higher plants is the PsbS protein (Crouchman et al., 2006; Sacharz et al., 2017), which is rapidly protonated by a decreased lumen pH. The precise nature of the proteins involved in quenching induction that are protonated by a low lumen pH vary greatly between organisms and throughout evolution. However, a common principle appears to hold. In green algae, the light-harvesting complex stress-related (LHCSR) protein is required for quenching (Peers et al., 2009); in the moss Physcomitrella patens, descendent from an evolutionary intermediate between algae and higher plants, both LHCSR and PsbS proteins are present and actively contribute to the activation of NPQ (Alboresi et al., 2010); and in diatoms LH CX proteins play a similar role in the activation of qE (Bailleul et al., 2010; Zhu and Green, 2010; Lepetit et al., 2013).

Genetic analysis in the model plant Arabidopsis thaliana, has pinpointed PsbS as an essential component of qE (Li et al., 2000, 2004). PsbS acts as sensor of lumen pH through protonation of its acidic residues on the luminal side of the thylakoid. This promotes the rearrangement of the LHCCI-PSII supercomplex (Betterle et al., 2009; Goral et al., 2012) leading to qE activation. Moreover, PsbS is crucial for survival under fluctuating light conditions (Kühlheim et al., 2002).

In contrast to PsbS in A. thaliana, LHCSR proteins are not constitutively present in the model green alga Chlamydomonas reinhardtii, but require high light exposure (Tokutsu and Minagawa, 2013; Petroutsos et al., 2016), active photosynthetic electron flow (Maruyama and Tokutsu, 2014),
and a calcium binding protein (CAS) and Ca\(^{2+}\) sensing signals (Petroutsos et al., 2011) to be accumulated in the thylakoids. In \textit{C. reinhardtii}, two LHCSR proteins actively participating in NPQ are encoded in the genome, LHCSR1 and LHCSR3 (Peers et al., 2009; Tokutsu and Minagawa, 2013). The two isoforms possess similar promoter regions followed by an almost identical polypeptide sequence (Maruyama and Tokutsu, 2014). In contrast to PsbS, which has four transmembrane helices and does not bind pigments, LHCSR shares the typical three-helix protein motif as well as the pigment binding capacity of LHCCI proteins (Bonente et al., 2011; Fan et al., 2015). Moreover, LHCSR3 binds pigments such as chlorophyll \textit{a/b}, lutein, Vx, and Zs (Bonente et al., 2011), which presumably act as a quencher (Tokutsu and Minagawa, 2013). Like PsbS, the protein LHCSR3 also acts as a sensor for luminal acidification, with several residues, aspartate and glutamate, being essential for NPQ induction (Ballottari et al., 2016).

Novel insights into the regulation of photoprotection mediated by both perception of light colour and metabolism in \textit{C. reinhardtii} were recently obtained (Petroutsos et al., 2016) and a molecular link between photoresponse, photosynthesis, and photoprotection identified. The results showed that \textit{C. reinhardtii} is able to detect changes in light wavelength using its photoreceptors, and this also induces photoprotection via the regulation of LHCSR3 (Petroutsos et al., 2016). Moreover, besides light, downstream metabolism can affect the NPQ capacity of \textit{C. reinhardtii} through negative feedback of LHCSR3 accumulation in the thylakoids (Polukhina et al., 2016). These results comprehensively underline how the different processes linked to photosynthesis, namely light absorption, dissipative electron flow and carbon assimilation for metabolism, are tightly interconnected to allow for the successful acclimation of microalgae to their environment.

LHCSR1 and LHCSR2 in \textit{Physcomitrella patens}. Organisation of thylakoid membranes is very similar in algae, mosses and plants, suggesting that LHCSR could possibly be functional if inserted in planta. Recent studies show that LHCSR1 from \textit{P. patens} can be overexpressed in \textit{Nicotiana benthamiana} and \textit{Nicotiana tabacum} leading to the accumulation of the protein \textit{in vivo} (Pinnola et al., 2015). However the role of LHCSR in NPQ and which co-factors are required to obtain a fully functional protein in a heterologous expression system remained unclear. By employing a reverse genetic approach using the \textit{npq4} mutant of \textit{A. thaliana}, which lacks PsbS and is thus unable to perform NPQ, as the host for the expression of the full coding sequence of LHCSR1 from \textit{P. patens}, LHCSR1 was successfully expressed as a mature protein in the thylakoid membranes of \textit{A. thaliana npq4}. This expression of LHCSR1 partially overcame the inability of the \textit{npq4} mutant to perform NPQ. When expressed \textit{in planta}, LHCSR1 retains its major structural and functional characteristics such as its ability to bind pigments. Its direct dependence on Zs (Pinnola et al., 2013) was shown by \textit{in vivo} insertion of LHCSR1 in \textit{A. thaliana npq1npq4}, a mutant deficient of Zs and PsbS, generating transgenic plants that stably express LHCSR1 and yet were completely unable to perform NPQ.

Diatoms can reach higher NPQ levels when compared to land plants and green algae (Ruban et al., 2004; Finazzi and Minagawa, 2014; Giovagnetti and Ruban, 2017) which may contribute to their ability to dominate phytoplankton communities in turbulent water environments (Smetacek, 1999). Studies of the molecular mechanisms of light acclimation in the diatom \textit{Phaeodactylum tricornutum} showed that the LHXC1, a member of the LHC protein family, contributes to the dissipation of excess light energy through NPQ (Bailleul et al., 2010). However, LHXC1 is only one member of the expanded LHXC family that diatoms possess. By performing an \textit{in silico} investigation of the diatom genomes, between 4-17 LHXCx in different species were found (Taddei et al., 2016). In order to further dissect their involvement in excess light energy dissipation, an extended characterisation was performed of \textit{P. tricornutum} LHXC gene family expression and photosynthetic physiology in cells exposed to different light and nutrient stress conditions. It revealed that amongst the four isoforms identified in \textit{P. tricornutum}, only LHXC1 is constitutively expressed. The other isoforms are either induced or repressed by specific treatments, including LHXC4, which is the only isoform induced in the absence of light. It was also observed that the amount of the \textit{LHXCx4} mRNA rapidly decreases following a dark to light transition and that chloroplast-derived signals participate in inhibiting its expression. This poses novel intriguing questions on the role of this isoform in the regulation of chloroplast physiology.

The results reveal a complex regulatory landscape and the existence of multiple stress signalling pathways that tightly control the amount of each LHXC isoform in the cell. We conclude that the observed LHXC gene family expansion reflects a functional diversification of these proteins and may contribute to the regulation of the chloroplast physiology in highly variable ocean environments.

\textbf{State transitions, qT}

State transitions are another important component of NPQ that refer to the mechanisms of excitation energy redistribution between photosystems (Allen, 1992; Golshmidt-Clermont and Bassi, 2015; Minagawa and Tokutsu, 2015). In plants and green algae, the physical segregation of PSII and PSI imposes the existence of different antenna systems, which excite the two photosystems independently. Thus, state transitions optimise the relative absorption capacity of PSs via redox regulation by reversible activation of specific proteins.

The reduced state of the plastoquinone (PQ) pool and cytochrome b6/f (cyt b6/f) complex triggers the activation of the protein kinase STN7 (State Transition 7; in algae, Stt7), which phosphorylates subunits of the LHC complex of PSI, some of which can migrate laterally towards PSI (Rochaix et al., 2012). Under some conditions PSII is more strongly excited than PSI. This may occur due to the different absorption spectra of chl \textit{a/b}, for example wavelengths around 460 nm are absorbed efficiently by chl \textit{b} but hardly by
chl \(\alpha \). Under these conditions antenna migrate from PSII to PSI, a process termed state 1 to state 2 transition (Bellafiore et al., 2005). This changes the relative cross-sections towards PSI, balancing the light excitation of both photosystems. The reverse reaction is driven by the protein phosphatase protein phosphatase 1/thylakoid associated phosphatase 38 (PPH1/TAP38) that dephosphorylates the LHClI associated with PSI and allows for its reallocation to PSII, also referred to as the state 2 to state 1 transition (Pribil et al., 2010; Shapiguzov et al., 2010). This mechanism is absent in diatoms (Owens and Wold, 1986), and present at moderate levels in plants (Niyogi, 1999). It represents a much larger component in the green algae \(C.\) reinhardtii, where it can reallocate a large fraction of its antenna between photosystems (Delosme et al., 1996). Whilst state transitions in plants are attributed to optimise light absorption in low light, in \(C.\) reinhardtii this process also contributes to photoprotection under high light levels (Allorent et al., 2013) and it is still debated whether it involves a different mechanism than the simple physical displacement of LHClI between the two photosystems (Nagy et al., 2014; Ünlü et al., 2014; Nawrocki et al., 2016).

Whilst the functions of the antagonistic kinases and phosphatases (STN7, STN8, PPH1/TAP38 and PBCP) have been thoroughly investigated in \(A.\) thaliana, in \(C.\) reinhardtii information regarding mutants other than \(str7 \), which is incapable of phosphorylating antenna and is thus locked in state 1, was still missing (Fleischmann and Rochaix, 1999; Dépège et al., 2003). This heightened the need for the investigation of other kinase and phosphatase mutants. Preliminary analysis of an algal mutant deficient in PPH1 indicates that the substrate specificity of the algal phosphatase may be somewhat different from its \(A.\) thaliana ortholog. Similar studies showed \(A.\) thaliana to differ from monocots such as barley or maize, where phosphorylation of the minor LHClI antenna CP29 appears to play a role in the regulation of energy-dependent non-photochemical quenching (qE) (Betterle et al., 2015).

Energy spillover as a photoprotective mechanism

In red algae and cyanobacteria, the traditional mechanisms involved in NPQ are missing and therefore these organisms possess alternate systems to cope with changing environments. The structure of the thylakoid membranes is much simpler than in plants and green algae, and in particular there is no clear spatial segregation of PSI and PSII. Red algae and cyanobacteria possess specific stromal-exposed antenna proteins called phycobilisomes (PBSs). These allow for a direct transfer of absorbed energy from PSII to PSI in a process termed energy spillover. In red algae (Yokono et al., 2011; Kowalczyk et al., 2013) and cyanobacteria (Zhang et al., 2007), it has been shown that this process represents a major contribution to the reduction of chlorophyll fluorescence. Since this mechanism is completely unrelated to PsbS and xanthophyll-related qE quenching, and is triggered by a reduced PQ pool rather than by a low pH (Kowalczyk et al., 2013), the molecular mechanisms underlying NPQ in cyanobacteria and red algae appear to differ significantly from plants and green algae. However, recent evidence points towards LHClI complexes in the thylakoid membranes of higher plants, which are neither associated with PSII nor PSI, that may perform a similar role and also facilitate energy spillover in plant chloroplasts (Tikkkanen and Aro, 2014) both in vivo (Jajoo et al., 2014; Grieco et al., 2015), as well as in reconstituted thylakoids in vitro (Akhtar et al., 2016).

In diatoms, both photosystems share similar antennas, namely fucoxanthins (FCPs) and chlorophyll \(a/c \) binding proteins. Data suggests that the two photosystems may contain specialised antenna pools (Veith et al., 2009). Contrary to what is found in plants, the similarity between FCPs translates into a more homogeneous absorption spectrum of the two photosystems. Despite diatoms not performing state transitions in light (Owens and Wold, 1986), they have succeeded in optimising light utilisation achieving an efficient excitation energy balance at both limiting and saturating light conditions. The peculiar structure of their thylakoids, which is an intermediate between the unstructured one seen in cyanobacteria and red algae and the highly structured one observed in plants and green algae, shows no clear segregation of PSI and PSII. However, the possible existence of energy spillover was never investigated. Using several complementary approaches - spectroscopy, biochemistry, electron microscopy with immunolabelling and 3-dimensional reconstitution - a comprehensive 3D map of the photosynthetic membranes and intracellular compartments was generated. This multidisciplinary study reveals how the external membrane systems, namely the envelope, are organised and operate for the transfer of compounds produced in other intracellular compartments (Flori et al., 2016). It also illustrated how exchanges of ATP/NADPH between plastids and mitochondria and the involvement of mitochondrial respiration contribute to the optimisation of photosynthesis in diatoms (Bailleul et al., 2015).

Photoinhibition

Photoinhibition as a result of prolonged over-excitation of the photosynthetic machinery contributes to the slowest component of NPQ. Photoinhibition mainly constitutes the degradation and disassembly of the core subunit of photosystem II, PsbA or D1 protein (Barber and Andersson, 1992; Aro et al., 1993). Overall, the extent of photoinhibition is a direct balance between damaged PSII and its repair rate (Murata et al., 2007). Despite the fast turnover of D1 proteins (Sundby et al., 1993; Neidhardt et al., 1998), high amounts of ROS can enhance D1 degradation (Murata et al., 2007) leading to a decrease in photosynthetic quantum yield (Krause, 1988).

Identifying common design principles by mathematical modelling of short-term stress responses

The variability of the various mechanisms between different organisms not only illustrates the differences in the molecular characteristics of components involved, but also reveals a commonality of underlying principles. For example, despite all structural and regulatory differences of PsbS in plants and LHCSR3 in green algae, both function as pH sensors and activate a
was developed (Magni et al., 2016). Temperature variations by the accumulation of unfolded proteins suggest that the number of misfolded proteins is considerably reduced when compared to a drastic temperature change such as those commonly applied in experiments.

One of the strengths of mathematical models is that they can provide an abstracted description of a system allowing for the simulation of the dynamics without focusing on the exact molecular details but rather on the fundamental design principles. In the past decade a handful of new kinetic models have been published with the aim of increasing our understanding of underlying principles governing short-term acclimation mechanisms (Ebenhöh et al., 2011; Zaks et al., 2012, 2013; Matuszyńska and Ebenhöh, 2015). Because all these models aim to explain the dynamics of the acclimation process, a suitable choice for the mathematical description is the use of ordinary differential equations (ODEs). ODEs have a long history of application to biological and physical processes, and have been used to describe a number of general laws of nature (Simmons, 1972). Clear advantages include their universality, the well-established theoretical background, and the highly efficient and widely accessible numerical and computational implementations available.

The ability to monitor regulatory acclimation mechanisms in a minimally invasive way by means of chlorophyll fluorescence measurements, allows for the existing models to simulate the dynamics of the fluorescence signal (Maxwell and Johnson, 2000; Stirbet et al., 2014). Using these models as a reference and for guidance, new models that are specifically tailored to support the experimental approaches within the AccliPhot project were constructed, which provide a consistent theoretical framework in which new findings can be interpreted and new insights obtained.

The mathematical model of state transitions in *C. reinhardtii* (Ebenhöh et al., 2014) realistically represents the dynamics induced by transfers from dark to light, as well as upon changes from aerobic to anaerobic conditions in the dark. This provides a reliable platform to study short-term acclimation in green algae. To complement the model with the fast component of NPQ, a highly reduced model of NPQ for plants was developed (Matuszyńska et al., 2016). With a set of only six differential equations, not only were all the main features of the fluorescence dynamics under low, moderate, and high light intensity captured, but the model can also be employed to quantify the contribution of qE components to short-term light-memory (Murchie et al., 2009; Jahns and Holzwarth, 2012; Ruban et al., 2012). Although the model was constructed for *A. thaliana*, it was successfully adapted to the non-model organism *Epipremnum aureum*, demonstrating that a basic mechanism of short-term light memory is preserved across both species. Both models were used to create a modular, unifying framework describing common principles of key photoprotective mechanisms across species in general (Matuszyńska, 2016). The scheme of the model development is illustrated in Fig. 1A.

Light signalling pathways are interlinked with other external stimuli such as variations in temperature. To investigate the heat shock response (HSR) in *C. reinhardtii*, which is observed upon exposure to large temperature changes (Schröda et al., 2015), a kinetic model based on the mechanisms that sense temperature variations by the accumulation of unfolded proteins was developed (Magni et al., 2016). The HSR activates genes coding for heat shock proteins (HSP), which act as chaperones repairing the heat-induced damage. The system of ODEs describing the signalling network was reconstructed and calibrated from multiple experimental time-resolved datasets available in the literature (e.g. Schmollinger et al., 2013). We showed that the system can adapt to higher temperatures by shifting to a new steady state. The investigation of the response of *C. reinhardtii* to a gradual change in temperature suggests that the number of misfolded proteins is considerably reduced when compared to a drastic temperature change such as those commonly applied in experiments.

Metabolism of photosynthetic organisms

Model predictions on the effect of light stress on metabolism

As mentioned, short-term acclimation processes mainly serve to protect the photosynthetic apparatus from damage by ROS resulting from excess light. However, the overall performance is critically dependent on functional metabolism. The energy-dissipating mechanisms discussed above normally ensure that energy and redox equivalents produced do not exceed the energy that can be consumed by metabolism. However, how can metabolic fluxes be adjusted if this regulation is no longer functional, such as when it is halted experimentally via for example, a sudden drop of CO₂ concentration or in knock-out mutants that lack important mechanisms such as qE? This question can be addressed by genome scale metabolic models (GSMS) representing the entire metabolic capabilities of an organism. Such models belong to the class of structural or stoichiometric models which, in contrast to kinetic models, are defined in terms of the reaction stoichiometry and thermodynamics, and are designed to describe the topological characteristics of the system rather than its kinetic behaviour (Heinrich and Schuster, 1996). They are built based on all the enzymes encoded in its genome (Fell et al., 2010). Suitable analytic techniques then allow the identification of potential metabolic behaviours under given environmental and genetic conditions (Thiele and Palsson, 2010). Analysis of structural models generally depends on the steady-state assumption, which states that the rate of consumption and production of internal metabolites remains balanced within the timeframe under consideration (Heinrich and Schuster, 1996). This assumption leads to an equation, from which statements about the distribution of metabolic fluxes can be made. However, since this equation is underdetermined, a prediction of the fluxes is not possible without additional assumptions.

Many approaches, such as flux balance analysis (FBA) (Varma and Palsson, 1993, 1994), overcome this problem by calculating a flux distribution that optimises a certain objective function under given constraints, which include limitations of individual flux values due to thermodynamic constraints, demand for biomass production, observed growth rates etc. The two most common objectives are either the maximisation of growth rate (Varma and Palsson, 1994) or minimisation of total flux (Holzhütter, 2006; Poolman et al., 2009).

Genome-scale models of *A. thaliana*, *C. reinhardtii* and *P. tricornutum* were constructed from their respective BioCyc...
databases (Caspi et al., 2015), which contain the biochemical reactions of organisms based on their genome sequences, and previously published models (Chang et al., 2011; Cheung et al., 2013; Hunt et al., 2014). They were then manually curated to fill the gaps and to ensure conservation of mass and energy (Gevorgyan et al., 2008; Poolman et al., 2009).

Fig. 1. Schemes of two modelling approaches (A) The reduction process applied to developed kinetic models. The complexity of a model organism, here C. reinhardtii, was reduced to include only processes taking place in the chloroplast, specifically the thylakoid membrane. Key biochemical reactions of photosynthetic electron transport were translated into mathematical terms, using ODEs. A set of reactions describing a specific process, from ATP formation through to various NPQ mechanisms like state transitions, were clustered together as modules that can be put together to reconstruct the model organism in silico. Figure from (Matuszyska, 2016). Schematic of Chlamydomonas cell from http://www.cronodon.com/images/Chlamydomonas_2.jpg, see cronodon.com. (B) The Genome Scale Model reconstructed to perform FBA in P. tricornutum. The network of reactions exhibits changes in flux in response to increased lipid demand. This model was used to identify reactions with co-related changes in flux and in lipid demand under phototrophic conditions i.e. with the source of energy and inorganic carbon being light and CO₂, respectively. External metabolites are distinguished from internal metabolites with the prefix ‘x’.
resulting in networks containing approximately 500 \((P.\ tricornutum)\) and 2500 \((C.\ reinhardtii \text{ and } A.\ thaliana)\) reactions. Gap-filling \((Satish-Kumar et al., 2007; Christian et al., 2009)\) is a necessary process, as gene annotation is far from perfect. In each of the resulting networks, around 50 reactions had to be added during the gap filling process. All three models were used to identify possible metabolic cycles acting as energy dissipation modes under supra-optimal light conditions. In all models the results suggested that photorespiratory reactions may play a constructive role, rather than being an unavoidable inefficiency. The results for \(P.\ tricornutum\) showed that glycolate can either be excreted or recycled within the system depending on environmental conditions and that there is a potential link between photorespiration and lipid synthesis in this organism \((Singh et al., 2015)\).

Mixotrophic growth

The evolutionary secondary endosymbiotic event between a photoautotrophic eukaryotic cell and a heterotrophic eukaryote \((Gibbs, 1981)\) is believed to be the origin of modern diatoms such as \(P.\ tricornutum\). This event has resulted in some unique features in the biochemistry of these diatoms when compared to other photosynthetic eukaryotes, particularly in terms of the subcellular localisation of enzymes and the presence of some enzymes more commonly found in prokaryotes. \(P.\ tricornutum\) possesses lipid biosynthesis pathways comparable to those present in higher plants, both of which contain eukaryotic and prokaryotic pathways \((Hu et al., 2008)\). However, how \(P.\ tricornutum\) channels fix carbon towards the production of lipid molecules is still poorly understood. Generally, under optimal conditions, phototrophs use most of the energy derived from carbon fixation for growth and for the biosynthesis of carbohydrates \((Melis, 2013)\). By contrast, under unfavourable growth conditions \(P.\ tricornutum\) ceases growth and initiates the accumulation of storage molecules such as lipids \((Cheng and He, 2014)\). To find conditions that simultaneously increase algal biomass and lipid production in \(P.\ tricornutum\), novel strategies are needed.

There are successful examples of metabolic engineering, such as the implementation of genome editing technology that disrupted the UDP-glucose pyrophosphorylase gene, leading to a 45-fold increase in triacylglycerol accumulation in \(P.\ tricornutum\) \((Daboussi et al., 2014)\). However obvious constraints exist for using genetically modified organisms in an industrial context.

In \(C.\ reinhardtii\) it is well established that optimal growth can be established by mixotrophic conditions, in which an additional carbon source is applied in the presence of light \((Chen and Johns, 1996)\), which simultaneously increases lipid production \((Moon et al., 2013)\). Lipid production can be further increased if starch synthesis is inhibited \((Li et al., 2010)\). Mixotrophic cultivation of diatoms, including \(P.\ tricornutum\), has also shown great promise \((Cerón-García et al., 2013)\). However the full potential of this approach has not yet been reached.

During periods of light, microalgae can both respire and perform photosynthesis simultaneously, the basis of which is the poorly understood chloroplast-mitochondria interaction. In diatoms, it was recently shown that the NADPH generated in the plastid is exported to the mitochondria to generate additional ATP. The ATP produced can then be transported to the chloroplast providing the extra energy needed for carbon fixation \((Bailleul et al., 2015)\), demonstrating the close interaction between the two compartments. Taking an interdisciplinary approach, the genome-scale model of \(P.\ tricornutum\) developed was used to calculate metabolic fluxes and to aid experimental activities. The latter was facilitated by testing the potential of new culture conditions \(in silico\), which predicted a simultaneous increase of biomass and lipid production \((Singh et al., 2015)\). In the model, an increase in light intensity and the addition of sodium bicarbonate led to a significant increase in lipid production. Experiments were designed using these parameters, which resulted in an increase in lipid production and growth rate \((Villanova et al., 2017)\). The addition of glycerol enhanced biomass production by a factor of two as compared with growth on medium lacking glycerol; approximately 9 million cells/mL when grown in the absence of glycerol compared with 18 million cells/mL in the presence of glycerol. The combination of theory and experiments allowed for the elucidation of the main pathways involved in mixotrophic growth and the identification of gene targets for possible future metabolic engineering of \(P.\ tricornutum\) to optimise the efficiency of mixotrophic cultivation approaches. Other limiting factors such as medium composition, light, pH, aeration/mixing, temperature etc., have to be taken into account \((Merchant and Helmann, 2012)\) for successful implementation of mixotrophy for industrial exploitation. Efforts to optimise the medium composition by an AccliPhot industrial partner, Fermentalg - a company producing high value bioactive compounds - led to the development of a novel medium that optimises growth by the addition of micronutrients that are limited in natural seawater \((Villanova, 2016)\). The optimised growth conditions were tested in laboratory-scale \(2\) L photobioreactors (PBRs) that possess better system control, in terms of temperature, pH, light, and aeration/mixing, compared with open ponds \((Sheehan et al., 1998)\).

From bench to bank: scaling up microalgal cultivation for industry

In order to translate our novel understanding of short-term light acclimation and its effect on metabolism to industrial processes, optimised large-scale cultivation techniques are required. Considering the future potential of algal biotechnology, one fundamental research goal of the microalgal biotechnology field is to investigate scale-up approaches by understanding the performance of algal populations in bioreactors, increase lipid production by implementing mixotrophic growth conditions, and assess the extent to which the models developed for controlled laboratory conditions are applicable to outdoor, industry-scale cultivation. Some examples of cultivation scales can be found in Fig. 2A–D. A substantial amount of research efforts are placed on \(C.\ reinhardtii\) and \(P.\ tricornutum\) due to extensive knowledge
of the behaviour of *C. reinhardtii*, including photosynthetic mechanisms, and because of the ability of *P. tricornutum* to synthesise a number of commercially-relevant molecules, including lipids such as triacylglycerols (TAG) and polyunsaturated fatty acids (PUFA) (Kates and Volcani, 1966; Siron *et al.*, 1989; Rebolloso-Fuentes *et al.*, 2001; Fajardo *et al.*, 2007).

Bioreactors and engineering

To gain insight into the performance of algal populations in bioreactors, a biochemically-based structured model for the autotrophic growth of *C. reinhardtii* in PBRs was developed, using knowledge of the detailed underlying metabolic network previously determined (Cogne *et al.*, 2011). The model is reduced to a minimal set of seven reactions derived from metabolic investigations of light-limited growing cells in PBRs (Rügen *et al.*, 2012). Structuration of the model, including a fully detailed description of cellular energetics, led to the formulation of only three kinetic equations, namely photon uptake rate and light-dependent kinetics for pigment synthesis and maintenance, thus setting the degree-of-freedom of the system to zero. The model involves the introduction of only three parameters that are estimated by experimental data. The experimental approach included a wide range of experimental conditions: batch cultures at 100, 300, 500 and 700 µmol m⁻² s⁻¹ incident photon flux density, as well as various steady-states at 200 and 600 µmol m⁻² s⁻¹. The elaborated model was found to accurately represent the behaviour of *C. reinhardtii* cultures with good predictability and robustness, as illustrated in Fig. 3A and B. Kinetic model analysis showed that increasing pigment content has a negative effect on population-level growth dynamics. Furthermore, measurements of oxygen uptake rate in the light showed that respiratory activity increases relative to the photosynthetic oxygen production rate. The increasing maintenance flow, due to the existence of an increasing dark zone inside the PBR, suggests concomitant oxidative and reductive processes.

Novel approaches to scaling up microalgal cultures

Whilst PBRs are closed systems ideal for keeping monocultures (Grima and Fernández, 1999), which is particularly desired if the final product is a bioactive molecule for human consumption (Mata *et al.*, 2010), operational costs are high, preventing industrial-scale production of low- or medium-value compounds. Other options include open raceway ponds, simple open-air cultivation systems that have been in use since the 1950s (Chisti, 2007). They are highly susceptible to contamination, and unless the desired species is a halophile or thermophile (Parmar *et al.*, 2011), it is hard to maintain monocultures. Irrespective of the cultivation method, the
establishment of unwanted organisms is a serious obstacle for large-scale microalgae cultivation (Day et al., 2012; Wang et al., 2013). Despite intense research on microalgal culture upscaling, very little is known about the identity and characteristics of these invading organisms responsible for microalgal culture ‘crashes’, which lead to loss of biomass, and therefore, loss of revenue.

Bacteria, which have co-existed with diatoms for more than 200 million years, form a crucial part of a complex ecosystem and have been shown to enhance the growth of diatoms (Bruckner et al., 2011; Amin et al., 2015). Increased understanding of the interactions could allow for the exploration of ‘synthetic ecology’ as a novel scaling up technique (Kazamia et al., 2012).

To gain insight into the dynamics of the bacterial communities associated with diatoms, we translated the complexity of a natural system into a reproducible, systematic experimental approach, where the microbiome of batch-grown 5L non-axenic cultures of *P. tricornutum* were investigated using barcoded 16S-V6 next generation sequencing. The results identified four major players within the microbiome and a network of putative interactions between *P. tricornutum* and each of the bacterial factions was proposed, thus providing a framework to understand the dynamics of diatom-associated microbial communities. Species-specific co-culture experiments were carried out, and preliminary results showed increased growth rates and maximal cell densities when *P. tricornutum* is co-cultured with representative members of the four identified families (Moejes, 2016; Moejes et al., 2016).

The proposed network of putative interactions was translated into a set of ordinary differential equations, which together constitute a computational dynamic model. The proposed mathematical model is able to capture the population dynamics and therefore represents a simple yet important proof of concept of the hypothesised community-level interactions. Further experimental measurements of biomass production rates and concentrations of metabolites exchanged within the community will allow the model to develop from qualitative to quantitative, providing a powerful and practical predictive tool for culture monitoring. The interdisciplinary analysis provides a framework to understand the dynamics of diatom-associated microbial communities and represents a solid starting point for systematic investigation of organism interactions mediated by metabolite exchange (Moejes et al., 2016). While in its current state, the model resembles a classical population dynamics model (Verhulst, 1838; Lotka, 1925; Volterra, 1926), a promising approach to combine FBA and kinetic models is to consider the steady state solution of FBA as input for a set of differential equations defining the evolution of metabolite concentrations. In such dynamic FBA (Mahadevan et al., 2002), constraints on the fluxes change at each time step, based on defined reaction kinetics and on the FBA solution at the previous time step. To advance our understanding of population dynamics of bacterial communities associated with photosynthetic organisms, an integrated modelling framework was developed, inspired by the dynamic FBA modelling approach utilised by (Harcombe et al., 2014). This framework coupled the complexity of structural models with the simplicity of ODE. This modelling framework can now be used to consolidate our understanding of the mechanisms regulating symbiosis or produce new hypotheses to be experimentally tested.

Fig. 3. Graphs illustrating how models accurately represented the behaviour of *C. reinhardtii* cultures (A) Graph showing the biomass productivity and pigment mass fraction as a function of the dilution rate for steady-state cultures with an incident photon flux density of 600 µmol m$^{-2}$ s$^{-1}$. Full lines are model predictions, data points are shown with error bars. (B) Graph showing the biomass concentration and pigment mass fraction as a function of time for a batch culture with an incident photon flux density of 300 µmol m$^{-2}$ s$^{-1}$. Full lines are model predictions, data points are shown with error bars.

Perspectives and outlook

Collectively, the projects undertaken by the members of the AccliPhot consortium underline how by increasing our understanding of the different processes linked to photosynthesis, such as light absorption, dissipation, electron flow and carbon assimilation for metabolism, we can successfully unravel the mysteries of photosynthetic acclimation. The complementary research on four model species, namely the green alga *Chlamydomonas reinhardtii*, the diatom *Phaeodactylum tricornutum*, the moss *Physcomytrella patens* and the higher
plant *Arabidopsis thaliana*, opens completely novel perspectives on the evolution and diversification of different adaptation mechanisms in phototrophs. Providing novel support to theoretical studies, this information can feed into encompassing models of photoprotection, shedding light on unsolved evolutionary and functional questions of photosynthetic acclimation.

A unique feature of AccliPhot was the successful integration of theoretical approaches with experimental ones. Dynamic models were used to explain dynamic responses of photosynthesis, to confirm that our understanding of the underlying quenching mechanisms is basically correct and to highlight common principles in evolutionarily distant species. Structural models were employed to fill knowledge gaps, explain physiological properties and to support synthetic biology approaches. Combining these approaches allowed construction of a computational framework, in which bacterial community dynamics associated with large-scale cultures can be investigated, thus paving the way towards the establishment of controlled synthetic communities. All these efforts demonstrate the value of interdisciplinary collaborations, by which biological problems are elucidated from various complementary vantage points.

Furthermore, the project improved our knowledge of algal growth in PBRs and highlighted the need for advancement in scaling up approaches, which are essential to optimising industrial-scale cultivation of microalgae. Continued work to understand population dynamics in PBRs will aid PBR design, for example, to ensure maximal light absorption, a good gas transfer rate, efficient nutrient distribution and avoidance of dark zones. In conjunction with the novel mixotrophic growth conditions developed, this will pave the way for optimised industry-scale algal cultivation in PBRs. We also show that applying laboratory and ecological data to create synthetic ecologies, in theory, has the potential to optimise scaling up techniques. This is particularly true for open raceway pond cultivation, which is a cheap large-scale technique but very susceptible to contamination. Optimising such scaling up techniques would allow the production of low- or medium-value compounds to become an economically viable option. Further research is required to explore the full potential of applied microbial ecosystem management for a sustainable bio-economy.

One of the fundamental goals of AccliPhot was to illustrate the importance of an interdisciplinary approach to scientific research. We believe that this review is a testament to the successful marriage of theoretical and experimental approaches. Although this multidisciplinary approach is not a novel idea, we have never encountered a comparable large-scale project, in which the numbers of theoretical and experimental scientists were as balanced as was in AccliPhot. The working principle that every research question should be addressed by both experimental and theoretical methods is reflected in the development of successful mathematical models, which assisted in experimental design and where experimental data has facilitated the advancement of models to become predictive tools.

Acknowledgements

This research was funded by the Marie Curie Initial Training Network project, AccliPhot (grant agreement number PITN-GA-2012-316427). The consortium was composed of 26 researchers (13 PhD students, 2 post-doctoral researchers, and 11 principal investigators) based in 11 institutions in Germany, Italy, Switzerland, France, the United Kingdom and Ireland.

References

