Uncertainty Quantification in Finite Element Models: Application to Soft Tissue Biomechanics

Paul Hauseux¹, Jack S. Hale¹, Raphaël Bulle¹, Franz Chouly², Alexei Lozinski² and Stéphane P.A. Bordas¹

July 23, 2018

¹University of Luxembourg, ²Bourgogne France Comté University

13th World Congress in Computational Mechanics (WCCM XIII) and 2nd Pan American Congress on Computational Mechanics (PANACM II)
July 22-27, 2018 Marriott Marquis
context: Soft-tissue biomechanics simulations with uncertainty

‣ Uncertainty in parameters (material properties, loading, geometry, etc.) in biomechanics problems can influence the outcome of simulation results.

‣ Assessing the effects of uncertainty in material parameters in soft tissue models.
‣ Stochastic FE analysis. Random variables/fields.

‣ Objective: propagate and visualise this uncertainty with non or partially-intrusive methods (Forward UQ).

‣ Parameter identification (Inverse Problems in a Bayesian Setting).
General framework

- Stochastic non-linear system: \(F(u, \omega) = 0 \)
- Probability space: \((\Omega, \mathcal{F}, P)\)
- Random parameters: \(\omega = (\omega_1, \omega_2, \ldots, \omega_M)\)

- Objective: provide statistical data for the solution of the problem.
- Integration (to determine the expected value of a quantity of interest):

\[
E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega))dP(\omega)
\]
Direct integration

Monte-Carlo method [Caflisch 1998]:

\[
E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega))dP(\omega) \approx \sum_{z=1}^{Z} p_z \Psi(u(\omega_z))
\]

Algorithm:

while \(z < Z \):

- choose randomly \(\omega_z \).
- evaluate \(\Psi(u(\omega_z)) \).
- add the contribution to the sum.
Convergence

- Converge «in law»: 1% for 10000 realisations, slow but independent of the dimension!

\[||\mathbb{E}^{MC}[\psi(\omega)] - \mathbb{E}[\psi(\omega)]||_{L^2(\Omega_p)} \sim \mathcal{N}(0, 1) \sqrt{\frac{\mathbb{V}[\psi(\omega)]}{Z}} \]

- Necessity to improve the convergence.

Work done:

- Low discrepancy sequences (Sobol, Hamilton, …): quasi MCM [Caflisch 1998].

- Multi Level Monte-Carlo techniques [Giles 2015], Polynomial Chaos Expansion [Matthies 2008] and non-intrusive SGFEM methods that only require access to a deterministic residual [Giraldi et al. 2014].

- MC methods by using sensitivity information (SD-MC) [Cao et. al 2004, Liu et al. 2013].
MC methods by using sensitivity information

Estimator [Cao et. al 2004, Liu et al. 2013]:

\[
\mathbb{E}_{1}^{SD-MC}[\psi(\omega)] := \frac{1}{Z} \sum_{z=1}^{Z} [\psi(\omega_z) - D[\psi(\bar{\omega})](\omega_z - \bar{\omega})]
\]

This variance reduction method increases the accuracy of sampling methods. Here we only consider the case of the first-order sensitivity derivative enhanced Monte-Carlo method. By using sensitivity information computational workload can be reduced by one order of magnitude over commonly used schemes.

Main difficulty:

\[
D[\psi(\bar{\omega})]
\]
Numerical implementation

Implementation (DOLFIN/FEniCS) [Logg et al. 2012], advantages:

- UFL (Unified Form Language).

- Most existing FEM codes are not able to compute the tangent linear model and the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of models with very little effort [Alnæs 2012, Farrell et al. 2013].

- We also use dolfin-adjoint to automatically derive the adjoint equations (first and second order) and their FE discretisation from UFL description. This gives us access to routines for calculating the gradient and Hessian-vector action of the QoI with respect to the parameter(s).

- Complex models with only few lines of Python code.
- Parallel computing (Ipyparallel and mpi4py).

Python package for uncertainty quantification:

- Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects (global sensitivity analysis, polynomial chaos expansion, etc.)
DOLFIN/FEniCS implementation: an example

- **Forward problem**, generalized Burgers equation with stochastic viscosity:

\[
F(\nu, u; \tilde{u}) := \int_{\Omega_s} \nu \nabla u \cdot \nabla \tilde{u} - \frac{1}{2} \nabla u^2 \cdot \tilde{u} + \frac{1}{2} \nabla u \cdot \tilde{u} \, dx = 0 \quad \forall \tilde{u} \in H^1_0(\Omega_s)
\]

```python
nu_var = variable(Constant(omega))
F = nu_var*u_.dx(0)*u_t.dx(0)*dx + 0.5*u_.dx(0)*u_t*dx
- 0.5*(u_**2).dx(0)*u_t*dx
```

- The standard Newton method:

\[
J(\nu, u^k; \delta u; \tilde{u}) = -F(\nu, u^k; \tilde{u}) \quad \forall \tilde{u} \in H^1_0(\Omega_s)
\]

\[
u^{k+1} = u^k + \delta u
\]

```python
J = derivative(F, u_, u)
solve(F == 0, u_, bcs, J=J)
```
The tangent linear system:

\[
\begin{bmatrix}
\frac{\partial F(u, \omega)}{\partial u} \\
\frac{\partial F(u, \omega)}{\partial \omega}
\end{bmatrix}_{U \times U} \begin{bmatrix}
du \\
d\omega
\end{bmatrix}_{U \times M} = \\
- \begin{bmatrix}
\frac{\partial F(u, \omega)}{\partial \omega}
\end{bmatrix}_{U \times M}
\]

U: size of the deterministic problem
M: number of random parameters

Fu = derivative(F, u, du)
Fd = - diff(F, omega)
dudomega = Function(V)
A, b = assemble_system(Fu, Fd, bcs=bcs)
solve(A, dudomega.vector(), b, "lu")

linear system to solve to evaluate \(\frac{du}{dm} \)!

The complete implementation is only around 130 lines and the Docker image with the full software environment is included in: https://dx.doi.org/10.6084/m9.figshare.3561306 [Hauseux, P. and Hale, J.S. and Bordas, S. 2016]
Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).
Random variables/fields to model parameters [Adler 2007].
Strain energy function for the Holzapfel and Ogden model:

\[W_{iso} = \frac{a}{2b} \exp \left[b(I_1 - 3) \right] + \sum_{i=f,s} \frac{a_i}{2b_i} \exp \left[b_i (I_{4i} - 1)^2 \right] + \frac{a_{fs}}{2b_{fs}} \left(\exp \left[b_{fs} I_{8fs}^2 \right] - 1 \right) \]

for example 3RV:

![Probability density function (PDF) plot showing distributions for parameters a, a_f, and a_{fs} with pressure in Pascals (Pa) on the x-axis and PDF on the y-axis.](image)
Stochastic FE analysis of brain deformation
Numerical results (8 RV, Holzapfel model)

Displacement magnitude (m)

Brain deformation with random parameters
1 MC realisation.

Confidence interval 95%
MC simulations.

The complete FEniCS implementation, the Docker image with the full software environment, the benchmarks problems and all associated data are available: http://bitbucket.org/unilucompmech/stochastic-hyperelasticity, http://doi.org/10.6084/m9.figshare.4900298 [Hauseux et al. 2018]
Numerical results: convergence

Fig. Center of the sphere: expected value of the displacement in the x direction as a function of Z with a confidence level at 95%.
Global sensitivity analysis (HO model)

- Sobol sensitivity indices [Sobol 2015, Saltelli 2002]

Quantity of interest: displacement magnitude of the target.
Random Fields

- Different methods: **Karhunen–Loève expansion** [Adler 2007], **Fast Fourier transform** [Nowak 2004], Gaussian random fields with Matérn covariance functions from the **solution of a stochastic PDE** [Lindgren et al. 2011].

Two realisations of RF, with a log-normal distribution, for the parameter C_1 (in MPa).
Numerical results (Mooney-Rivlin solid)
ML Monte-Carlo technique: ML-PCE

- Monte Carlo method with use of Polynomial Chaos Expansion to improve the convergence [Matthies 2008, Hauseux 2016].

![Histogram (MC and ML-PCE methods).](image-url)
Parameter identification (Inverse Problems in a Bayesian Setting)

- Inverse and forward problems are strongly connected. In a bayesian setting [Matthies et al. 2017], developing methods that reduce the number of evaluations of the forward model to an absolute minimum to achieve convergence is crucial for tractable computations.

- Objective: identify a \textbf{PDF} in a Bayesian setting (and not a deterministic constant). We take into account the heterogeneity of the material.

- Linear (LBU) and quadratic (QBU) Bayesian updates (similar to Kalman filter with PCE techniques).

- Didactic example: (1D beam)

\[E(\omega) \rightarrow f \]

\[L = 1 \]

Data: 20 samples, one QoI per sample.
Numerical results: Parameter identification (Inverse Problems in a Bayesian Setting)

Numerical results for the 1D didactic example. We want to identify the PDF of the Young's modulus.
Conclusion

Stochastic modelling:

- Random variables/fields to model parameters with a degree of uncertainty: application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:

- By using sensitivity information (tangent linear approach/adjoint approach) and multi-level Monte Carlo methods we demonstrate that computational workload can be reduced by at least one order of magnitude over commonly used schemes.
 - Global and local sensitivity analysis.

Numerical implementation:

- Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).
- Ipyparallel and mpi4py to massively parallelise individual forward model runs across a cluster.

Parameter identification (Inverse Problems in a Bayesian Setting).