Associative and Quasitrivial Operations on Finite Sets
Characterizations and Enumeration

Jean-Luc Marichal

University of Luxembourg
Luxembourg

in collaboraton with Miguel Couceiro and Jimmy Devillet
Part I: Single-peaked orderings
Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in decreasing preference:

\[a_1 : 0 \text{ sandwich} \]
\[a_2 : 1 \text{ sandwich} \]
\[a_3 : 2 \text{ sandwiches} \]
\[a_4 : 3 \text{ sandwiches} \]
\[a_5 : 4 \text{ sandwiches} \]
\[a_6 : \text{ more than 4 sandwiches} \]

We write \(a_i \prec a_j \) if \(a_i \) is preferred to \(a_j \)
Single-peaked orderings

\[a_1 : \quad 0 \text{ sandwich} \]
\[a_2 : \quad 1 \text{ sandwich} \]
\[a_3 : \quad 2 \text{ sandwiches} \]
\[a_4 : \quad 3 \text{ sandwiches} \]
\[a_5 : \quad 4 \text{ sandwiches} \]
\[a_6 : \quad \text{more than 4 sandwiches} \]

- after a good lunch: \(a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6 \)
- if you are starving: \(a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1 \)
- a possible intermediate situation: \(a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6 \)
- a quite unlikely preference: \(a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4 \)
Single-peaked orderings

Let us represent graphically the latter two preferences with respect to the reference ordering $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$

$\begin{align*}
\text{a}_4 &\prec \text{a}_3 \prec \text{a}_5 \prec \text{a}_2 \prec \text{a}_1 \prec \text{a}_6 \\
\text{a}_6 &\prec \text{a}_5 \prec \text{a}_2 \prec \text{a}_1 \prec \text{a}_3 \prec \text{a}_4
\end{align*}$
Single-peaked orderings

Single-peakedness

\[a_i < a_j < a_k \implies a_j < a_i \text{ or } a_j < a_k \]

Forbidden patterns
Single-peaked orderings

Definition (Black, 1948)

Let \leq and \preceq be total orderings on $X_n = \{a_1, \ldots, a_n\}$. Then \preceq is said to be **single-peaked for** \leq if for any $a_i, a_j, a_k \in X_n$ such that $a_i < a_j < a_k$ we have $a_j \prec a_i$ or $a_j \prec a_k$.

Let us assume that $X_n = \{a_1, \ldots, a_n\}$ is endowed with the ordering $a_1 < \cdots < a_n$

For $n = 4$

$$
\begin{align*}
& a_1 \prec a_2 \prec a_3 \prec a_4 & a_4 \prec a_3 \prec a_2 \prec a_1 \\
& a_2 \prec a_1 \prec a_3 \prec a_4 & a_3 \prec a_2 \prec a_1 \prec a_4 \\
& a_2 \prec a_3 \prec a_1 \prec a_4 & a_3 \prec a_2 \prec a_4 \prec a_1 \\
& a_2 \prec a_3 \prec a_4 \prec a_1 & a_3 \prec a_4 \prec a_2 \prec a_1
\end{align*}
$$

There are 2^{n-1} total orderings \preceq on X_n that are single-peaked for \leq
Single-peaked orderings

Recall that a *weak ordering* (or *total preordering*) on X_n is a binary relation \preceq on X_n that is total and transitive.

Defining a weak ordering on X_n amounts to defining an ordered partition of X_n

$$C_1 \prec \cdots \prec C_k$$

where C_1, \ldots, C_k are the equivalence classes defined by \sim

For $n = 3$, we have 13 weak orderings

\[
\begin{align*}
 a_1 &\prec a_2 \prec a_3 & a_1 &\sim a_2 \prec a_3 & a_1 &\sim a_2 \sim a_3 \\
 a_1 &\prec a_3 \prec a_2 & a_1 &\prec a_2 \sim a_3 \\
 a_2 &\prec a_1 \prec a_3 & a_2 &\prec a_1 \sim a_3 \\
 a_2 &\prec a_3 \prec a_1 & a_3 &\prec a_1 \sim a_2 \\
 a_3 &\prec a_1 \prec a_2 & a_1 &\sim a_3 \prec a_2 \\
 a_3 &\prec a_2 \prec a_1 & a_2 &\sim a_3 \prec a_1
\end{align*}
\]
Single-peaked orderings

Definition

Let \leq be a total ordering on X_n and let \prec be a weak ordering on X_n. We say that \prec is **weakly single-peaked for** \leq if for any $a_i, a_j, a_k \in X_n$ such that $a_i \prec a_j \prec a_k$ we have $a_j \prec a_i$ or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$.

Let us assume that X_n is endowed with the ordering $a_1 < \cdots < a_n$.

For $n = 3$

$$
\begin{align*}
 a_1 &\prec a_2 \prec a_3 & a_1 \sim a_2 \prec a_3 & a_1 \sim a_2 \sim a_3 \\
 a_1 &\prec a_3 \prec a_2 & a_1 \prec a_2 \sim a_3 \\
 a_2 &\prec a_1 \prec a_3 & a_2 \prec a_1 \sim a_3 \\
 a_2 &\prec a_3 \prec a_1 & a_3 \prec a_1 \sim a_2 \\
 a_3 &\prec a_1 \prec a_2 & a_1 \sim a_3 \prec a_2 \\
 a_3 &\prec a_2 \prec a_1 & a_2 \sim a_3 \prec a_1
\end{align*}
$$
Single-peaked orderings

Examples

\[a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6 \]
\[a_3 \sim a_4 \prec a_2 \sim a_1 \prec a_5 \prec a_6 \]

Forbidden patterns
Part II: Associative and quasitrivial operations
Let $F : X_n^2 \to X_n$ be an operation on $X_n = \{1, \ldots, n\}$

Definition

- The points (u, v) and (x, y) of X_n^2 are said to be F-connected if
 \[F(u, v) = F(x, y) \]

- The point (x, y) of X_n^2 is said to be F-isolated if it is not F-connected to another point.
Connectedness and Contour plots

Examples
Definition

For any \(x \in X_n \), the \textit{F-degree of} \(x \), denoted \(\text{deg}_F(x) \), is the number of points \((u, v) \neq (x, x)\) such that \(F(u, v) = F(x, x) \).

Remark. The point \((x, x)\) is \(F \)-isolated iff \(\text{deg}_F(x) = 0 \).
Connectedness and Contour plots

Examples
Quasitriviality

Definition

$F : X_n^2 \rightarrow X_n$ is said to be

- *quasitrivial* (or *conservative*) if

 $$F(x, y) \in \{x, y\} \quad (x, y \in X_n)$$

- *idempotent* if

 $$F(x, x) = x \quad (x \in X_n)$$

Fact. If F is quasitrivial, then it is idempotent

Fact. If F is idempotent and if (x, y) is F-isolated, then $x = y$

$$F(x, y) = F(F(x, y), F(x, y))$$
Quasitriviality

Let $\Delta_{X_n} = \{(x, x) \mid x \in X_n\}$

Fact

$F : X_n^2 \to X_n$ is quasitrivial iff

- it is idempotent
- every point $(x, y) \notin \Delta_{X_n}$ is F-connected to either (x, x) or (y, y)

Corollary. If F is quasitrivial, then it has at most one F-isolated point.
Neutral and annihilator elements

Definition

- $e \in X_n$ is said to be a **neutral element** of $F : X_n^2 \to X_n$ if

 $$F(x, e) = F(e, x) = x, \quad x \in X_n$$

- $a \in X_n$ is said to be an **annihilator element** of $F : X_n^2 \to X_n$ if

 $$F(x, a) = F(a, x) = a, \quad x \in X_n$$
Neutral and annihilator elements

Proposition

Assume that $F : X_n^2 \rightarrow X_n$ is quasitrivial.

- $e \in X_n$ is a neutral element of F iff $\deg_F(e) = 0$
- $a \in X_n$ is an annihilator element of F iff $\deg_F(a) = 2n - 2$.
Associative, quasitrivial, and commutative operations

Theorem

Let $F : X_n^2 \rightarrow X_n$. The following assertions are equivalent.

(i) F is associative, quasitrivial, and commutative
(ii) $F = \max_{\leq}$ for some total ordering \leq on X_n

The total ordering \leq is uniquely determined as follows:

$$x \leq y \iff \deg_F(x) \leq \deg_F(y)$$

Fact. There are exactly $n!$ such operations.
Theorem

Let $F : X_n^2 \to X_n$. The following assertions are equivalent.

(i) F is associative, quasitrivial, and commutative

(ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n

(iii) F is quasitrivial and $\{\deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \ldots, 2n - 2\}$
Associative, quasitrivial, and commutative operations

Definition.

\(F : X_n^2 \rightarrow X_n \) is said to be \(\leq \)-preserving for some total ordering \(\leq \) on \(X_n \) if for any \(x, y, x', y' \in X_n \) such that \(x \leq x' \) and \(y \leq y' \), we have \(F(x, y) \leq F(x', y') \).

Theorem

Let \(F : X_n^2 \rightarrow X_n \). The following assertions are equivalent.

(i) \(F \) is associative, quasitrivial, and commutative

(ii) \(F = \max_\leq \) for some total ordering \(\leq \) on \(X_n \)

(iii) \(F \) is quasitrivial and \(\{\deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \ldots, 2n-2\} \)

(iv) \(F \) is quasitrivial, commutative, and \(\leq \)-preserving for some total ordering \(\leq \) on \(X_n \)
Definition.

A **uninorm on** X_n is an operation $F : X_n^2 \rightarrow X_n$ that

- has a neutral element $e \in X_n$

and is

- associative
- commutative
- \leq-preserving for some total ordering \leq on X_n
Theorem

Let $F : X_n^2 \rightarrow X_n$. The following assertions are equivalent.

(i) F is associative, quasitrivial, and commutative

(ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n

(iii) F is quasitrivial and $\{\text{deg}_F(x) | x \in X_n\} = \{0, 2, 4, \ldots, 2n - 2\}$

(iv) F is quasitrivial, commutative, and \leq-preserving for some total ordering \leq on X_n

(v) F is an idempotent uninorm on X_n for some total ordering \leq on X_n
Associative, quasitrivial, and commutative operations

Assume that $X_n = \{1, \ldots, n\}$ is endowed with the usual total ordering \leq_n defined by $1 <_n \cdots <_n n$.

Theorem

Let $F : X_n^2 \to X_n$. The following assertions are equivalent.

(i) F is quasitrivial, commutative, and \leq_n-preserving (\Rightarrow associative)

(ii) $F = \max_{\preceq}$ for some total ordering \preceq on X_n that is single-peaked for \leq_n.
Associative, quasitrivial, and commutative operations

Remark.

- There are $n!$ operations $F : X_n^2 \to X_n$ that are associative, quasitrivial, and commutative.
- There are 2^{n-1} of them that are \leq_n-preserving
Associative and quasitrivial operations

Examples of noncommutative operations
Definition.

The *projection operations* \(\pi_1 : X_n^2 \to X_n \) and \(\pi_2 : X_n^2 \to X_n \) are respectively defined by

\[
\pi_1(x, y) = x, \quad x, y \in X_n
\]

\[
\pi_2(x, y) = y, \quad x, y \in X_n
\]
Assume that $X_n = \{1, \ldots, n\}$ is endowed with a weak ordering \preceq

Ordinal sum of projections

$$\text{osp}_{\preceq} : X_n^2 \to X_n$$

Permuting the elements related to a box does not change the graph of F
Theorem (Länger 1980)

Let $F : X_n^2 \rightarrow X_n$. The following assertions are equivalent.

(i) F is associative and quasitrivial

(ii) $F = \text{osp}_{\lesssim}$ for some weak ordering \lesssim on X_n

The weak ordering \lesssim is uniquely determined as follows:

$$x \lesssim y \iff \deg_F(x) \leq \deg_F(y)$$
Examples

\[1 < 2 < 3 < 4 \]

\[2 \sim 1 \sim 3 \sim 4 \]

\[1 < 2 < 3 < 4 \]

\[1 \sim 4 \sim 2 \sim 3 \]
Assessing and quasitrivial operations

How to check whether a quasitrivial operation $F : X_n^2 \rightarrow X_n$ is associative?

1. Order the elements of X_n according to the weak ordering \preceq defined by

 $x \preceq y \iff \deg_F(x) \leq \deg_F(y)$

2. Check whether the resulting operation is one of the corresponding ordinal sums
Associative and quasitrivial operations

Which ones are \leq-preserving?

1 $<$ 2 $<$ 3 $<$ 4

2 \asymp 1 \sim 3 \asymp 4

1 \asymp 4 \asymp 2 \sim 3
Assume that $X_n = \{1, \ldots, n\}$ is endowed with the usual total ordering \leq_n defined by $1 <_n \cdots <_n n$.

Theorem

Let $F : X_n^2 \to X_n$. The following assertions are equivalent.

(i) F is associative, quasitrivial, and \leq_n-preserving

(ii) $F = \text{osp}_{\preceq}$ for some weak ordering \preceq on X_n that is weakly single-peaked for \leq_n.

Associative and quasitrivial operations
Associative and quasitrivial operations
1. We have introduced and identified a number of integer sequences in http://oeis.org
 - Number of associative and quasitrivial operations: A292932
 - Number of associative, quasitrivial, and \leq_n-preserving operations: A293005
 - Number of weak orderings on X_n that are weakly single-peaked for \leq_n: A048739
 - ...

2. Most of our characterization results still hold on arbitrary sets X (not necessarily finite)
Some references

N. L. Ackerman.
A characterization of quasitrivial \(n \)-semigroups.
To appear in Algebra Universalis.

S. Berg and T. Perlinger.
Single-peaked compatible preference profiles: some combinatorial results.

D. Black.
On the rationale of group decision-making.

M. Couceiro, J. Devillet, and J.-L. Marichal.
Quasitrivial semigroups: characterizations and enumerations.

H. Länger.
The free algebra in the variety generated by quasi-trivial semigroups.

N. J. A. Sloane (editor).
The On-Line Encyclopedia of Integer Sequences.
http://oeis.org/