On bisymmetric and quasitrivial operations
56th ISFE

Jimmy Devillet

University of Luxembourg
Let X be a nonempty set and let $F : X^2 \to X$

Definition

- The points $(x, y), (u, v) \in X^2$ are *F-connected* if
 \[F(x, y) = F(u, v) \]

- The point $(x, y) \in X^2$ is *F-isolated* if it is not F-connected to another point in X^2
For any integer $n \geq 1$, let $X_n = \{1, \ldots, n\}$ endowed with \leq

Example. $F(x, y) = \max\{x, y\}$ on (X_4, \leq)
Bisymmetry and quasitriviality

Definition

$F : X^2 \rightarrow X$ is said to be

- **bisymmetric** if

 \[F(F(x, y), F(u, v)) = F(F(x, u), F(y, v)) \quad x, y, u, v \in X \]

- **quasitrivial** if

 \[F(x, y) \in \{x, y\} \quad x, y \in X \]

Lemma (Kepka, 1981)

If F is bisymmetric and quasitrivial then it is associative
Weak orderings

Recall that a binary relation R on X is said to be

- **total** if $\forall x, y: xRy$ or yRx
- **transitive** if $\forall x, y, z: xRy$ and yRz implies xRz

A *weak ordering on* X *is a binary relation* \preceq *on* X *that is total and transitive.*

- symmetric part: \sim
- asymmetric part: \prec

Recall that \sim is an equivalence relation on X and that \prec induces a linear ordering on the quotient set X/\sim.
Motivation

Theorem (Länger, 1980)

F is associative and quasitrivial iff there exists a weak ordering \preceq on X such that

$$F|_{A \times B} = \begin{cases}
\max_{\preceq} |A \times B|, & \text{if } A \neq B, \\
\pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B,
\end{cases}$$

for all $A, B \in X/\sim$.

If $X = X_n = \{1, \ldots, n\}$, then

$$x \preceq y \iff |F^{-1}(\{x\})| \leq |F^{-1}(\{y\})|$$
Motivation

\[F_{|A \times B} = \begin{cases} \max_{\sim} |A \times B|, & \text{if } A \neq B, \\ \pi_1|A \times B \text{ or } \pi_2|A \times B|, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \]

\[x \preceq y \iff |F^{-1}({\{x\}})| \leq |F^{-1}({\{y\}})| \]

\[1 < 2 < 3 \quad 2 \prec 1 \sim 3 \]
Motivation

\[F(F(2, 3), F(1, 2)) = 3 \neq 1 = F(F(2, 1), F(3, 2)) \]

\[\implies F \text{ is not bisymmetric} \]
Quasilinearity

Let \(\preccurlyeq \) be a weak ordering on \(X \)

Definition

\(\preccurlyeq \) is *quasilinear* if there exist no pairwise distinct \(a, b, c \in X \) such that \(a \prec b \sim c \)

Example. On \(X = \{1, 2, 3, 4\} \), consider the \(\preccurlyeq \)

\[
2 \sim 3 \prec 1 \prec 4
\]
Quasilinearity

\[F|_{A \times B} = \begin{cases}
\max_{\sim} |_{A \times B}, & \text{if } A \neq B, \\
\pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B,
\end{cases} \quad \forall A, B \in X/\sim
\]

\[\sim \] is not quasilinear and \(F \) is not bisymmetric
Quasilinearity

\[x \preceq y \iff |F^{-1}(\{x\})| \leq |F^{-1}(\{y\})| \]

\preceq is quasilinear and \(F \) is bisymmetric
A characterization

\[F|_{A \times B} = \begin{cases} \max \preceq |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \quad (\ast) \]

Theorem

For any \(F: X^2 \to X \), the following are equivalent.

(i) \(F \) is bisymmetric and quasitrivial

(ii) \(F \) is of the form \((\ast)\) for some quasilinear \(\preceq \)
A characterization

We denote the *set of minimal elements of X for \preceq* by $\text{min}_{\preceq} X$
Bisymmetric and quasitrivial operations
The nondecreasing case

Let \leq be a linear ordering on X

Definition. $F : X^2 \to X$ is *nondecreasing for \leq* if

$$F(x, y) \leq F(x', y') \quad \text{whenever} \quad x \leq x' \text{ and } y \leq y'$$
The nondecreasing case

\[F|_{A \times B} = \begin{cases} \max_{\prec} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \]
Weakly single-peaked weak orderings

Definition (Couceiro et al., 2018)
\(\preceq \) is said to be *weakly single-peaked for \(\leq \)* if for any \(a, b, c \in X \),
\[
a < b < c \implies b \prec a \text{ or } b \prec c \text{ or } a \sim b \sim c
\]

Example. The weak ordering \(\preceq \) on
\[
X_4 = \{1 < 2 < 3 < 4\}
\]
defined by
\[
2 \prec 1 \sim 3 \prec 4
\]
is weakly single-peaked for \(\leq \)
Weakly single-peaked weak orderings

$x \preceq y \iff |F^{-1} (\{x\})| \leq |F^{-1} (\{y\})|$
Associative quasitrivial and nondecreasing operations

\[F |_{A \times B} = \begin{cases}
\max_{\lesssim} |A \times B|, & \text{if } A \neq B, \\
\pi_1 |_{A \times B} \text{ or } \pi_2 |_{A \times B}, & \text{if } A = B,
\end{cases} \quad \forall A, B \in X / \sim \quad (*) \]

Theorem (Couceiro et al., 2018)

For any \(F : X^2 \to X \), the following are equivalent.

(i) \(F \) is associative, quasitrivial, and nondecreasing

(ii) \(F \) is of the form (*) for some \(\lesssim \) that is weakly single-peaked for \(\leq \)
Bisymmetric quasitrivial and nondecreasing operations

For any $F : X^2 \to X$, the following are equivalent.

(i) F is bisymmetric, quasitrivial, and nondecreasing

(ii) F is of the form (\ast) for some \preceq that is quasilinear and weakly single-peaked for \leq
Final remarks

In arXiv: 1712.07856

1. Characterizations of the class of bisymmetric and quasitrivial operations as well as the subclass of those operations that are nondecreasing

2. New integer sequences (http://www.oeis.org)
 - Number of bisymmetric and quasitrivial operations: A296943
 - Number of bisymmetric, quasitrivial, and nondecreasing operations: A296953
 - ...
Selected references

N. L. Ackerman.
A characterization of quasitrivial n-semigroups.
To appear in Algebra Universalis.

M. Couceiro, J. Devillet, and J.-L. Marichal.
Quasitrivial semigroups: characterizations and enumerations.

J. Devillet.
Bisymmetric and quasitrivial operations: characterizations and enumerations.

Z. Fitzsimmons.
Single-peaked consistency for weak orders is easy.

T. Kepka.
Quasitrivial groupoids and balanced identities.

H. Länger.
The free algebra in the variety generated by quasi-trivial semigroups.