Formation of nanometer-sized Cu-Sn-Se particles in Cu$_2$ZnSnSe$_4$ thin-films and their effect on solar cell efficiency

Torsten Schwarz $^{a, *}$, Oana Cojocaru-Mirédin b, Marina Mousel c, Alex Redinger d, Dierk Raabe a, Pyuck-Pa Choi $^{c, **}$

a Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
b RWTH Aachen University, I, Physikalisches Institut IA, 52056, Aachen, Germany
c University of Luxembourg, Laboratory for Photovoltaics, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
d Helmholtz-Zentrum Berlin, Department Complex Compound Semiconductor Materials for Photovoltaics, 14109, Berlin, Germany
e Korea Advanced Institute of Science and Technology, Department of Materials Science and Engineering, 34414, Daejeon, Republic of Korea

1. Introduction

The compound semiconductors Cu$_2$ZnSn(S,Se)$_4$ (CZTS(e)) have recently attracted a great deal of attention as absorber materials for thin-film solar cells [1–4]. As a result of intensive research worldwide, CZTS(e) based solar cells have already achieved 12.6% efficiency [2].

The growth of CZTS(e) films is often hampered by the formation of secondary phases due to the narrow existence regions of CZTS(e) compounds as confirmed by theoretical [5,6] and experimental studies [7,8]. Secondary phases that were observed are predominantly ZnS(e) [9–12], Cu$_5$S(e) [13,14], Cu$_2$SnS(e)$_3$ [15,16], and SnS(e)$_2$ [9,14]. In general, they are considered to be detrimental to the cell’s performance. Cu$_2$SnS(e)$_3$, Cu$_2$S(e) and SnS(e) have smaller band gaps than CZTS(e) and should be avoided by any means as their presence will decrease the open circuit voltage [3]. In agreement with this presumption, CZTS(e) based solar cells with the highest efficiencies are found to be Cu-poor ([Cu]/([Zn]+[Sn]) <1) and Zn-rich ([Zn]/[Sn]>1) [3,17]. Under such growth conditions ZnS(e) can be easily formed. However, ZnS(e) has a larger band gap than CZTS(e) and its detrimental effect on cell efficiency is moderate [3].

Although a Cu-poor and Zn-rich CZTS(e) composition is preferred, an intermediate Cu-rich ([Cu]/([Zn]+[Sn])>1) growth step can be included. For Cu(In,Ga)Se$_2$ it was shown that a Cu-rich ([Cu]/([Ga]+[In])>1) composition for a limited time during the growth process is beneficial for the cell performance due to an increase in grain size and a reduction in recombination activity [18,19]. In a previous work we could demonstrate that the Cu-rich growth step for CZTSe can be easily implemented by using a Cu-rich precursor [20]. The Cu excess leads to the formation of Cu$_2$Se at the surface of the Cu-rich precursor, which can be removed by KCN etching. Subsequently, the KCN-treated Cu-rich precursor was annealed in a SnSe + Se atmosphere and led to working cell devices. However, when the Cu$_2$Se phase was not removed by KCN etching, the annealed precursor yielded zero efficiency. It was

**Corresponding author.
** Corresponding author.
E-mail addresses: schwartz@mpie.de (T. Schwarz), p.choi@kaist.ac.kr (P.-P. Choi).

http://dx.doi.org/10.1016/j.actamat.2017.04.056

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
speculated that this observation is due to the formation of a detrimental Cu-Sn-Se compound during annealing.

Despite these interesting observations, a detailed formation mechanism of the Cu-Sn-Se compound could not be given. In general, there is a lack of knowledge about the formation of Cu-Sn-S(e) compounds during CZTS(e) growth. Direct evidence of the formation of Cu$_2$SnS$_3$ was given by Cheng et al. [15]. Using electron dispersive X-ray spectroscopy (EDX) and confocal Raman imaging formation of Cu$_2$SnS$_3$ on the surface upon sulfurization of a Zn/Cu/Sn metal stack was detected. This observation was attributed to an incomplete formation of CZTS. Other groups [9,21] used a similar growth procedure and found indications of Cu-Sn-S formation at the CZTS/Mo interface by EDX and X-ray photoelectron spectroscopy. However, it has not yet been clarified whether Cu-Sn-S formation is due to an incomplete sulfurization of the metal stacks or due to decomposition of the CZTS compound at the interface with the Mo back contact [22,23].

Mousel et al. [20] and Wang et al. [24] prepared precursors by a low temperature (320 °C and 110 °C, respectively) co-evaporation process and applied a post-deposition annealing process in a SnSe + Se atmosphere and in a S atmosphere, respectively. Using secondary ion mass spectrometry (SIMS), Mousel et al. [20] detected a Sn-enrichment at the surface of the annealed precursor, which suggested the formation of a Cu-Sn-Se compound, whereas Wang et al. [24] detected Cu-Sn-Se compounds at the CZTS/Mo interface by EDX.

However, in most studies direct detection and/or quantification of possibly nano-sized Cu-Sn-Se compounds was too challenging or even impossible due to insufficient spatial resolution of the applied techniques and/or due to the similar structure of e.g. Cu$_2$SnSe(e) with CZTS(e) and ZnS(e). To overcome these challenges, we perform complementary atom probe tomography (APT) and scanning transmission electron microscopy (STEM)-EDX measurements in this work. We provided insights into the formation of Cu-Sn-Se particles and the influence of these particles on the overall cell performance.

2. Experimental

2.1. Thin film preparation and device fabrication

The CZTSe films were grown by a sequential process. Two precursors were fabricated in a molecular beam epitaxy system by co-evaporation of Cu, Zn, Sn, and Se onto a Mo-coated soda-lime glass (SLG) substrate at a temperature of 320 °C. Both precursors were grown under Zn-rich ([Zn]/[Sn]>1) conditions. One precursor was Cu-rich ([Cu]/([Zn]+[Sn])>1) and the other one was Cu-poor ([Cu]/([Zn]+[Sn])<1). The absorber films were fabricated by annealing the precursor at 500 °C for 30 min in a SnSe + Se atmosphere. For each of the two precursors one sample was subjected to a 10 wt% KCN etching treatment for 1 min prior to annealing and the other one not. A summary of all samples is given in Table 1.

The samples were etched in a 5 wt% KCN solution for 30 s prior to solar cell finishing. A CdS buffer layer was deposited on the absorber by chemical bath deposition. For current-voltage measurements the samples were finished with magnetron sputtered i-ZnO and Al-doped ZnO layers, and a Ni-Al grid deposited by e-beam evaporation. For more details see Ref. [20].

2.2. Characterization

The overall composition of the Cu-rich and Cu-poor precursor films was measured by EDX at an acceleration voltage of 20 kV in a scanning electron microscope. The preparation of TEM and APT samples was carried out using a dual-beam FIB (FEI Helios Nanolab 600i) according to the lift-out technique described in Ref. [25]. To minimize beam damage due to Ga implantation a low energy (2–5 keV) Ga beam was used. STEM-EDX analyses were performed using a JEOL JEM-2200FS TEM, equipped with a JEOL EX-24063JGT X-ray detector, at an acceleration voltage of 200 kV. Laser-assisted APT analyses were performed using a local electrode atom probe (LEAP™ 3000X HR, Cameca Instruments). Laser pulses of 532 nm wavelength, 12 ps pulse length, 100 kHz pulse frequency, and an energy of 50 pJ were applied at a temperature of 50 K. Additionally, cathodoluminescence (CL) measurements were carried out at liquid nitrogen temperatures using a FEI FIB Helios Nanolab 600, which is equipped with a parabolic mirror, a monochromator (MonoCl4 from Gatan), and a liquid nitrogen cooled photomultiplier tube (R5509-73 from Hamamatsu).

The abovementioned measurements were directly carried out on the CZTSe film for the precursor samples, i.e. before the deposition of CdS, ZnO, and the Ni-Al grid. For the absorber films the measurements were performed after depositing a CdS buffer layer but before the deposition of ZnO and the Ni-Al grid.

3. Results

3.1. Precursor films

In a previous work [20] the present authors detected a Cu-rich surface on the Cu-rich precursor by SIMS depth profiling and found indications for the formation of a Cu-Se phase. However, the distribution of this phase on the sub-micrometer scale was not studied in detail.

STEM-EDX maps shown in Fig. 1a)–d) reveal wedge-shaped regions at the film surface as Cu$_2$Se$_{x}$ grains as it is also evident from the EDX intensity profile shown in Fig. 1e). The compositions are: 57.6±0.4 at.% Cu and 42.4±1.2 at.% Se for grain 1 in Table 2 and 53.7±0.1 at.% Cu, and 46.3±0.1 at.% Se for the grain 2 in Table 2, respectively. Zn and Sn were not detected for neither of them. Large-scale cross-sectional STEM images (see Fig. S1 in supplementary material) exhibit an inhomogeneous distribution of Cu$_2$Se$_{x}$ along the surface, i.e. there is no continuous Cu$_2$Se$_{x}$ layer. Similar observations were made for CuInS$_2$ thin-films by Niki et al. [26]. The Zn-rich regions in Fig. 1c) are a complex ZnSe network which has been discussed in an earlier study [11].

Moreover, we also detect small Cu-rich regions (see Fig. S1 in supplementary material) of rather round shapes more than 500 nm below the surface. Due to their small size and overlap with the surrounding matrix within the ~100–150 nm thick TEM lamella, we could not determine the composition by EDX. However, we detected one Cu$_2$Se$_{x}$ precipitate in the central cross-sectional absorber region by means of APT [27]. The composition of this precipitate is 52.6±1.2 at.% Cu, 2.6±0.4 at.% Zn, 1.8±0.3 at.% Sn, and 43.6±1.2 at.% Se (6 in Table 2). Thus, it is doped with Zn and Sn to some extent. The compositions of the detected Cu$_2$Se$_{x}$ particles vary as shown in Table 2. It is revealed that some grains are doped with Zn and Sn and some are not. Besides Cu$_2$Se$_{x}$ and ZnSe, we

<table>
<thead>
<tr>
<th>Sample</th>
<th>KCN Etching</th>
<th>T [°C]</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>–</td>
<td>320</td>
<td>Cu-rich P</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>320</td>
<td>Cu-poor P</td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>500</td>
<td>from Cu-rich P</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>500</td>
<td>from Cu-rich P</td>
</tr>
<tr>
<td>E</td>
<td>–</td>
<td>500</td>
<td>from Cu-poor P</td>
</tr>
<tr>
<td>F</td>
<td>x</td>
<td>500</td>
<td>from Cu-poor P</td>
</tr>
</tbody>
</table>
observed another secondary phase. In an APT measurement acquired from a region ~350 nm above the Mo back contact, as shown in Fig. 2 we detected a ~10 nm thick region, which contains a relatively high concentration of Sn with 7.8 at.% and only 0.3 at.% Zn (Table 2). The corresponding proximity histogram (proxigram: profile against proximity to an interface of arbitrary geometry [28]) across the CZTSe/Cu-Sn-Se interface marked by the 30 at.% Cu iso-concentration surface reveals a depletion of Cu and a pile-up of Zn on the CZTSe side. The discrepancy between the ~6 at.% Zn in the Cu-Sn-Se region shown in the proxigram and the calculated Zn concentration of 0.3 at.% is due to a strong overlap of ^{63}Cu and ^{65}Cu peaks with ^{64}Zn and ^{66}Zn peaks (for more details see the supplementary material). This overlap leads to an overestimation of the Zn concentration in the proxigram. However, it can be corrected by a peak deconvolution algorithm (included in the commercial software IVAS 3.6.6, Cameca Instruments) for the calculated compositions given in Table 2. Although a low voltage (5 kV) was applied during the final FIB preparation step, a Ga enrichment of up to 7.5 at.% directly at the CZTSe/Cu-Sn-Se interface was detected. The penetration depth of Ga seems to be higher in Cu-(Sn)-Se than in CZTSe.

The proxigram also reveals a Na concentration of ~2.5 at.% in the Cu-Sn-Se grain, as it is also apparent from the Na distribution map shown in Fig. 2d). The detection of Na in the precursor film indicates that Na atoms already start to diffuse at 320 °C from the SLG substrate through the Mo layer into the CZTSe film. Furthermore, Na is enriched at the apex of the APT specimen in a very thin layer.
(<5 nm in thickness), where the Na concentration is approximately ten times higher than in the Cu-Sn-Se region (see supplementary material for details).

For the Cu-poor precursor we also detected a complex ZnSe network throughout the film due to Zn-rich growth conditions (see Fig. S2 in supplementary material). However, Cu$_{2-x}$Se and Cu-Sn-Se compounds cannot be detected due to Cu-poor growth conditions. Furthermore, the Cu-poor precursor exhibits small grains with a size of only a few 100 nm, whereas the Cu-rich precursor has grains larger than 1 μm (cf. Fig. S1 in supplementary material). Fig. 3a) shows a panchromatic CL image from the surface of the Cu-rich precursor. There is almost no light emission detectable although a high injection with a beam current of 22 nA was used. Only a few grains (bright contrast) emit light. In contrast, for the Cu-poor precursor we detected light from all grains (see Fig. 3b) at a beam current as low as 1.4 nA.

3.2. Absorber films

The annealed Cu-rich precursor (final absorber) without KCN etching prior to annealing yields no working device. Mousel et al. [20] attributed this observation to the Cu-rich nature of the precursor. It was shown that due to the incorporation of Sn the overall composition (measured by EDX) shifts from Cu-rich to Cu-poor. It was expected that the Cu$_{2-x}$Se grains form a Cu-Sn-Se phase on the surface during annealing in a SnSe$^{+}$Se atmosphere. However, direct evidence was not provided [20]. Indeed, representative STEM-EDX measurements from the absorber cross-section shown in Fig. 4a)–d) confirm that there is no longer Cu$_{2-x}$Se present throughout the absorber. Instead, we detect only ZnSe. Nevertheless, STEM-EDX measurements do not reveal the formation of any Cu-Sn-Se phase on the micro-scale. This observation is also true for the surface region where its presence was expected due to the Cu$_{2-x}$Se grains in the Cu-rich precursor, which were up to several 100 nm in size. However, by using APT we could detect nano-sized particles of a Cu-Sn-Se phase 200 nm below the absorber surface. Cu-Sn-Se particles were not detected deeper inside the absorber or at the Mo back contact. One APT dataset is shown in Fig. 5. One can find a clear Cu enrichment and Zn depletion at the top of the tip (region 9). Furthermore, a pile-up of Zn and a slight Cu depletion can be found on the CZTSe side in the proxigram across the CZTSe/Cu-Sn-Se interface (blue), which is marked by the 30 at.% Cu iso-concentration surface in Fig. 5c). The same observation was made for Cu and Zn at a CZTSe/Cu-Sn-Se interface in the precursor film (cf. Fig. 2). As for the precursor there is a strong contribution of Cu peaks to Zn peaks, which leads to a high Zn concentration in the Cu-Sn-Se region in the proxigram (see supplementary material). The calculated composition of the Cu-Sn-Se region is 47.7 ± 0.2 at.% Cu, 0.9 ± 0.04 at.% Zn, 10.5 ± 0.1 at.% Sn, and 41.0 ± 0.2 at.% Se (9 in Table 2). Thus, the Cu-Sn-Se phase is Zn doped. The compositions of all Cu-Sn-Se regions found by APT from the identical absorber are summarized in Table 2.

The annealed Cu-rich precursor with prior KCN etching exhibits only ZnSe as secondary phase due to the removal of Cu$_{2-x}$Se at the precursor surface [20]. Hence, the overall composition measured by EDX after annealing remains the same, i.e. there is no incorporation of Sn and no formation of Cu-Sn-Se phases [20]. The same results are obtained for the annealed Cu-poor precursors. Due to the absence of Cu$_{2-x}$Se there is no change in composition after annealing irrespective of whether the precursor was etched in KCN solution or not [20]. ZnSe is the only detected secondary phase in those absorber films. Latter three absorber films lead to working solar cells (see Table 3 and discussion part).

Fig. 3c) shows a representative comparison of the CL spectra obtained from the annealed Cu-rich precursor with (solid line) and without (dashed line) KCN etching step. Both CL spectra reveal a
similar spectrum shape and yield, which was confirmed at other randomly chosen positions of both samples. In general, the CL yield of the absorber films is two and three orders of magnitudes higher than for the Cu-poor and Cu-rich precursor, respectively. The much lower CL yield of the precursor films compared to the final absorber could be due to a higher density of detrimental defects acting as non-radiative recombination centers (see also discussion). Absorber films prepared from the Cu-poor precursor show a similar CL yield as the absorber films made from the Cu-rich precursor, which is discussed elsewhere [29].

4. Discussion

4.1. Formation of secondary phases

In this part we focus on the development of a growth model, which we suggest for the formation of secondary phases in the Cu-rich precursor and the annealed Cu-rich precursor without prior KCN etching. The other samples only contain ZnSe as secondary phase and its formation mechanism is similar to the ZnSe formation in the Cu-rich precursor.

Besides CZTSe, several secondary phases are formed in the Cu-rich precursor film due to the Cu-rich and Zn-rich growth. After an initial growth of small (~few 100 nm) CZTSe grains excess Cu and Se atoms, which cannot be incorporated into the CZTSe grains, diffuse on the surface until Cu$_{2-x}$Se particles are nucleated, which grow and partly cover the film surface. Since the Cu diffusivity is large enough, also excess Cu atoms in CZTSe grains can diffuse towards the film surface and form Cu$_{2-x}$Se grains [30]. This assumption is supported by the finding that the composition of single CZTSe grains of the Cu-rich precursor is Cu-poor [31]. Hence, the formation energy of V$_{Cu}$ vacancies is decreased compared to stoichiometric CZTSe leading to a high population of these defects [6,17,32] and the diffusion of Cu can take place via V$_{Cu}$ vacancies. In parallel, excess Cu and Se may cover the CZTSe surface by a few monolayer thin film of Cu-Se, similar to the work of Niki et al. [26]. During further growth Cu, Zn, Sn, and Se atoms condensate on the Cu$_{2-x}$Se grains and the thin Cu-Se film surface and are absorbed. After absorption they diffuse towards the Cu-Se/CZTSe interface and are incorporated into the growing CZTSe grains. In contrast to Cu, the Zn diffusivity is low [30] and, therefore, the excess Zn atoms form ZnSe which is randomly distributed across the precursor film. These findings are schematically summarized in Fig. 6a) and b)). For the Cu-poor precursor such a Cu-Se film does not cover CZTSe grains, which aids the grain growth. A possible reason for the unaided grain growth might be smaller sticking coefficients of the single elements on a CZTSe surface compared to Cu-Se which in turn leads to a higher desorption rate. Thus, the growth of CZTSe is impeded.

Some Cu$_{2-x}$Se grains of the Cu-rich precursor are doped to some extent with Zn and Sn, while the Cu-Sn-Se phases are doped with Zn. The solubility of Zn in Cu$_{2-x}$Se and Cu-Sn-Se seems to be very small. Thus, excess Zn atoms cannot be incorporated to form CZTSe and lead to a pile-up of Zn on the CZTSe side at the interface between CZTSe and Cu$_{2-x}$Se or Cu-Sn-Se, respectively. This assertion is supported by the fact that detected ZnSe is surrounded by CZTSe or it is located at the interface of adjacent Cu$_{2-x}$Se grains (cf. Fig. 1). However, ZnSe itself cannot be found in those Cu$_{2-x}$Se grains (see Fig. S1 in supplementary material).

The formation of Cu-Sn-Se phases can already occur during the precursor growth process via the incorporation of Sn into Cu-Se.
phases. This finding is actually expected for the annealed precursor. On the one hand, taking only the Cu, Sn, and Se concentration for region 7 in Table 2 into account, a composition of \(-\text{Cu}_{6.3}\text{SnSe}_{5.2}\) is measured. This composition is similar to the known Cu5SnS4 phase \cite{33}, which has not yet been detected in CZTS(e) thin-films. On the other hand, the formation of Cu2SnSe3 is kinetically limited due to an insufficient incorporation of Sn and, therefore, the detected Cu6.3SnSe5.2 compound may be metastable and in a transition state to it. However, we cannot exclude the formation of Cu2SnSe3 in the precursor film.

Annealing of the precursor film in a SnSe + Se atmosphere at 500 °C shifts the overall composition (measured by EDX) from the previously Cu-rich side to the Cu-poor one in the phase diagram due to the incorporation of Sn into the absorber film. Sn is

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\eta) [%]</th>
<th>(V_{OC}) [mV]</th>
<th>(J_{SC}) [mA/cm²]</th>
<th>FF [%]</th>
<th>(R_s) [Ω·cm²]</th>
<th>(G_{SH}) [mS/cm²]</th>
<th>A</th>
<th>(J_0) [mA/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>6.0</td>
<td>348</td>
<td>30.9</td>
<td>56</td>
<td>0.48</td>
<td>5.3</td>
<td>2.20</td>
<td>7.6 \times 10^{-2}</td>
</tr>
<tr>
<td>E</td>
<td>3.4</td>
<td>284</td>
<td>24.7</td>
<td>42</td>
<td>0.50</td>
<td>18.4</td>
<td>2.62</td>
<td>3.9 \times 10^{-1}</td>
</tr>
<tr>
<td>F</td>
<td>4.8</td>
<td>338</td>
<td>26.7</td>
<td>53</td>
<td>0.48</td>
<td>9.2</td>
<td>2.03</td>
<td>5.4 \times 10^{-2}</td>
</tr>
</tbody>
</table>

Fig. 6. a) Growth model of CZTSe grains under Cu-rich conditions in the presence of Cu2-xSe grains and a thin Cu-Se layer. b) Schematic drawing of the Cu-rich precursor. The blue lines represent Cu-enriched CZTSe GBs. c) Schematic drawing of Cu-Sn-Se distribution after annealing the Cu-rich precursor in a SnSe + Se atmosphere without prior KCN etching. The orange and green lines represent Zn-enriched and Na/K-decorated CZTSe GBs, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
incorporated to form CZTSe via the consumption of Cu$_{2-x}$Se at the surface and of ZnSe, which is in the close vicinity of Cu$_{2-x}$Se. A possible reaction path is:

$$\text{Cu}_2\text{Se}(s) + \text{ZnSe}(s) + \text{SnSe}_2(g) \rightarrow \text{Cu}_2\text{ZnSnSe}_4(s)$$

(1)

In order to simplify this reaction, Cu$_2$Se is used instead of Cu$_{2-x}$Se.

The smaller Cu$_{2-x}$Se and Cu-Sn-Se grains, which are predominantly detected in the absorber center of the Cu-rich precursor, will be consumed during annealing. Both compounds are either directly incorporated into CZTSe grains or they form CZTSe by concurrent consumption of neighboring ZnSe. The required Sn for this formation may stem from the already present CZTSe grains. The corresponding reaction paths are:

$$a \cdot \text{Cu}_2\text{Se}(s) + b \cdot \text{ZnSe}(s) + c \cdot \text{Cu}_2\text{ZnSnSe}_4(s) \rightarrow \text{Cu}_2\text{ZnSnSe}_4(s). \quad (2a)$$

and

$$a \cdot \text{Cu} + \text{Sn} - \text{Se}(s) + b \cdot \text{ZnSe}(s) \rightarrow \text{Cu}_2\text{ZnSnSe}_4(s). \quad (2b)$$

The letters a, b, and c denote the corresponding mole fractions. CZTSe probably does not decompose due to the incorporation of Cu$_{2-x}$Se and Cu-Sn-Se grains or consumption of Sn because its volume fraction is significantly larger than that of Cu$_{2-x}$Se and Cu-Sn-Se.

Besides CZTSe, nanometer-sized Cu$_5$SnSe$_3$ and other Cu-Sn-Se particles will be formed due to the incorporation of Sn from the SnSe atmosphere into a small fraction of the Cu$_{2-x}$Se grains on the absorber surface. Due to the fact that most of the Cu$_{2-x}$Se grains are consumed to form CZTSe and only a small fraction to form nanometer-sized Cu-Sn-Se compounds, we do not observe lattices in STEM-EDX measurements. This finding is schematically shown in Fig. 6c. Taking only the Cu, Sn, and Se concentration into account the composition of region 9 and 10 (see Table 2) can be rewritten as Cu$_{4.5}$SnSe$_{3.9}$ and Cu$_{5.0}$SnSe$_{4.8}$. These compositions are also close to Cu$_5$SnSe$_4$. In contrast, the measured composition of region 11 can be probably assigned to the detrimental secondary phase Cu$_5$SnSe$_3$. However, all three Cu-Sn-Se compounds have a higher Zn concentration than the Cu$_{2-x}$Se compound of the precursor.

4.2. Effect on cell efficiency

The direct use of the precursor films as an absorber film yields no working solar cells [20], where the reasons are manifold. Possible reasons are recombination losses due to a high defect density and recombination at ZnSe/CZTSe interfaces, which limits the open-circuit voltage V_{oc}. Furthermore, we detected Cu-enriched CZTSe grain boundaries (GB), which are probably not electrically benign [31]. Moreover, due to the low growth temperature inclusions of stannite structured CZTSe may be present in the kesterite structured matrix. We cannot distinguish these two phases from each other by X-ray diffraction because Cu$^2+$ and Zn$^2+$ are isoelectronic. Due to the smaller band gap of stannite compared to kesterite the cell efficiency can be further reduced. In addition, the Cu$_{2-x}$Se phase, which is detected in the Cu-rich precursor at the surface up to the film middle and at Cu-enriched CZTSe GBs [31], is highly conductive [26]. It can lead to shunt paths and, therefore, to shunting of the final device. Moreover, the detected Cu-Sn-Se phases in the Cu-rich precursor film can have a smaller band gap than CZTSe. Hence, they may act as traps for electrons and holes and thus as recombination centers, reducing the V_{oc} [34].

In order to obtain a working solar cell for the samples studied in this work, it is necessary to anneal the precursor [20]. As presented in Table 3 absorbers prepared from the Cu-poor precursor lead to working devices. The higher efficiency of the KCN treated sample F compared to the untreated sample E is due to the KCN etching, e.g. by cleaning the surface. In contrast, final absorbers prepared from the Cu-rich precursor only lead to working devices if a KCN etching step was applied prior to annealing. Here, only the KCN treated sample D yields a working solar cell with 6% efficiency.

The question arises why sample C fails. There is no Cu$_{2-x}$Se present in the annealed absorber film, which can lead to shunt paths like in the Cu-rich precursor. Furthermore, in contrast to the CZTSe GB composition in the precursor the CZTSe GBs in the final absorber show either a slight Cu depletion or they are decorated by Na and K, which may render them electrically inactive [31]. Although we detect a complex ZnSe network in sample C similar to the Cu-rich precursor, which can lead to recombination losses, it cannot solely explain the failure because we detect ZnSe in working devices as well [11]. Another possible cause might be a high density of detrimental deep defects or dislocations acting as non-radiative recombination centers. For example, a possible incorporation of Sn during annealing into the Cu-poor CZTSe grains may promote the formation of Sn related deep defects such as SnCu and SnZn antisites [17]. However, we can also exclude this as the main reason. Comparison between CL spectra of absorber films made from the same Cu-rich precursor with and without KCN etching prior to annealing reveals that they have almost the same spectrum shape and CL yield close to the band gap. The latter one indicates that the defect concentration in both absorbers are similar, independent of which defect is dominant or whether it is a deep defect or not. In contrast to the absorbers, there is almost no CL yield of the Cu-rich precursor film, i.e. during annealing annihilation of detrimental defects takes place.

Hence, there must be another shunt path and/or efficient recombination path in sample C. The only difference, which we can detect in our measurements, between sample C and the other absorber samples is the presence of Cu-Sn-Se compounds as secondary phase in the absorber layer. Since sample C shows no diode behavior (see current-voltages curves in supplementary material), one could assume that a shunt path created by highly conductive Cu-Sn-Se phases located at CZTSe grain boundaries might be the reason for the failure of sample C. However, Cu-Sn-Se phases were neither detected in the bulk throughout the entire absorber depth nor close to CZTSe grain boundaries. Furthermore, the CZTSe grain boundaries in sample C exhibit no detrimental Cu enrichment as in the Cu-rich precursor [31].

Hence, we propose that recombination related to Cu-Sn-Se phases via deep defects mainly causes the failure of sample C. One of the Cu-Sn-Se compounds is Cu$_5$SnSe$_3$ with a narrow band gap of $E_g \approx 0.4–0.8$ eV [35–37], which is smaller than that of CZTSe ($E_g = 1.0$ eV) [3]. The band gap of the Cu-Sn-Se compound having a composition close to Cu$_5$SnSe$_3$ is not known. However, its band gap may be also smaller than that of CZTSe. Moreover, from the present study we do not gain insights into the doping of the Cu-Sn-Se phases. It could well be that the doping is too high which would also promote recombination. Band offsets between the CZTSe matrix and the Cu-Sn-Se compounds might also be unfavorable. The APT tips containing these phases were prepared less than 200 nm below the surface, i.e. they are present in the space charge region, where recombination can be very effective [38]. In general, a significantly lower CL yield would be expected independent of whether the recombination is radiative or non-radiative. However, in CL electron–hole pairs are not only generated close to Cu-Sn-Se particles. The generation volume at 10 keV acceleration voltage can be a few hundred nanometer in size [39], i.e. also in the surrounding CZTSe grains electron-hole pairs are generated, which explains the similar CL yield of sample C and D (cf. Fig. 3c)).
Whether recombination related to Cu-Sn-Se compounds with $E_g < 0.8$ eV is radiative or not, we cannot determine since our CL setup has a cut-off of the detector around $0.75-0.80$ eV.

Furthermore, Cu-Sn-Se compounds, which may have a larger band gap compared to CZTSe, can also lead to recombination at the Cu-Sn-Se/CZTSe interface or act as barriers for both holes and electrons depending on the phase, in which they are generated.

Therefore, the nanometer-sized Cu-Sn-Se particles can lead to a high reverse saturation current and to a reduction of the open-circuit voltage. In conclusion, the detected Cu-Sn-Se particles might be a main origin for a bad p-n junction and could explain the zero cell efficiency of the final device.

5. Conclusions

We conducted APT and STEM-EDX measurements to study the formation of Cu-Sn-Se compounds and their effect on cell performance. We detected Cu$_2$Se grains mainly at the surface of the co-evaporated Cu-rich precursor due to Cu-rich growth conditions. Some of them are doped with Zn and Sn. The Sn incorporation can be as high as Cu-Sn-Se compounds are already formed in the precursor. The incorporation of Sn from the SnSe $+$ Se atmosphere during annealing without prior KCN etching of the Cu-rich precursor leads mainly to the formation of CZTSe via the consumption of Cu$_2$Se and ZnSe. However, we could also observe that nanometer-sized Cu-Sn-Se particles such as Cu$_2$SnSe$_3$ are formed close to the CdS/CZTSe interface. Cu-Sn-Se compounds having a smaller band gap compared to CZTSe, e.g. Cu$_2$SnSe$_3$, can act as a very efficient recombination center. Hence, Cu-Sn-Se phases might be a main origin for bad p-n junction and could explain the zero cell efficiency of the final device.

Acknowledgements

The authors thank Susanne Siebentritt from the University of Luxembourg as well as Baptiste Gaut from Max-Planck-Institut für Eisenforschung GmbH for fruitful discussions. Furthermore, the authors are grateful to Uwe Tezins and Andreas Sturm for their support to the APT and FIB facilities at Max-Planck-Institut für Eisenforschung GmbH. This work was funded by the German Research Foundation (DFG) (Contract CH 943/2-1 and GA 2450/1-1), and by the Luxembourgh Fonds National de la Recherche. Alex Redinger acknowledges financial support from the Fonds national de la recherche, project number 7842175.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.actamat.2017.04.056.

References

Acknowledgements

The authors thank Susanne Siebentritt from the University of Luxembourg as well as Baptiste Gaut from Max-Planck-Institut für Eisenforschung GmbH for fruitful discussions. Furthermore, the authors are grateful to Uwe Tezins and Andreas Sturm for their support to the APT and FIB facilities at Max-Planck-Institut für Eisenforschung GmbH. This work was funded by the German Research Foundation (DFG) (Contract CH 943/2-1 and GA 2450/1-1), and by the Luxembourgh Fonds National de la Recherche. Alex Redinger acknowledges financial support from the Fonds national de la recherche, project number 7842175.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.actamat.2017.04.056.

References

Acknowledgements

The authors thank Susanne Siebentritt from the University of Luxembourg as well as Baptiste Gaut from Max-Planck-Institut für Eisenforschung GmbH for fruitful discussions. Furthermore, the authors are grateful to Uwe Tezins and Andreas Sturm for their support to the APT and FIB facilities at Max-Planck-Institut für Eisenforschung GmbH. This work was funded by the German Research Foundation (DFG) (Contract CH 943/2-1 and GA 2450/1-1), and by the Luxembourgh Fonds National de la Recherche. Alex Redinger acknowledges financial support from the Fonds national de la recherche, project number 7842175.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.actamat.2017.04.056.

References

