Recent results on conservative and symmetric n-ary semigroups

Gergely Kiss

Joint work with Jimmy Devillet and Jean-Luc Marichal

University of Luxembourg

55th International Symposium of Functional Equations and Inequalities
Chengdu, China, June 11-18, 2017
Let X be an arbitrary set. An operation $F : X^n \to X$ is said to be $(n\text{-})$associative if

$$F(x_1, \ldots, x_{i-1}, F(x_i, \ldots, x_{i+n-1}), x_{i+n}, \ldots, x_{2n-1}) = F(x_1, \ldots, x_i, F(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $i \in \{1, \ldots, n-1\}$.
n-ary semigroups

Definition

Let X be an arbitrary set. An operation $F: X^n \to X$ is said to be $(n\text{-})$associative if

$$F(x_1, \ldots, x_{i-1}, F(x_i, \ldots, x_{i+n-1}), x_{i+n}, \ldots, x_{2n-1}) = F(x_1, \ldots, x_i, F(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $i \in \{1, \ldots, n-1\}$.

Natural generalization: For $n = 2$ we get

$$F(F(x, y), z) = F(x, F(y, z))$$

holds for every $x, y, z \in X$.
Let X be an arbitrary set. An operation $F: X^n \to X$ is said to be (n)-associative if

$$F(x_1, \ldots, x_{i-1}, F(x_i, \ldots, x_{i+n-1}), x_{i+n}, \ldots, x_{2n-1})$$

$$= F(x_1, \ldots, x_i, F(x_{i+1}, \ldots, x_{i+n}), x_{i+n+1}, \ldots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $i \in \{1, \ldots, n-1\}$.

Natural generalization: For $n = 2$ we get

$$F(F(x, y), z) = F(x, F(y, z))$$

holds for every $x, y, z \in X$.
Other important definitions

Definition

An operation $F: X^n \rightarrow X$ is said to be

- reflexive (or idempotent) if $F(x, \ldots, x) = x$ for all $x \in X$;
Other important definitions

Definition

An operation $F: X^n \to X$ is said to be

- **reflexive** (or idempotent) if $F(x, \ldots, x) = x$ for all $x \in X$;
- **conservative** (or quasitrivial, selective) if $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in X$;
Other important definitions

Definition

An operation $F: X^n \to X$ is said to be

- **reflexive** (or idempotent) if $F(x, \ldots, x) = x$ for all $x \in X$;
- **conservative** (or quasitrivial, selective) if $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in X$;
- **symmetric** if $F(x_1, \ldots, x_n)$ is invariant under any permutation of x_1, \ldots, x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be **nondecreasing** (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $\overline{x, \ldots, x}_{n} = n \cdot x$.

G. Kiss
Conservative, symmetric n-ary semigroups
ISFE 55 3 / 17
Other important definitions

Definition

An operation \(F: X^n \to X \) is said to be

- **reflexive** (or idempotent) if \(F(x, \ldots, x) = x \) for all \(x \in X \);
- **conservative** (or quasitrivial, selective) if \(F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\} \) for all \(x_1, \ldots, x_n \in X \);
- **symmetric** if \(F(x_1, \ldots, x_n) \) is invariant under any permutation of \(x_1, \ldots, x_n \).

Assuming that \((X, \leq)\) is a chain, an operation \(F: X^n \to X \) is said to be

- **nondecreasing** (w.r.t. \(\leq \)) if \(F(x_1, \ldots, x_n) \leq F(x_1', \ldots, x_n') \) whenever \(x_i \leq x_i' \) for all \(i \in \{1, \ldots, n\} \).
Other important definitions

Definition

An operation $F : X^n \to X$ is said to be

- **reflexive** (or idempotent) if $F(x, \ldots, x) = x$ for all $x \in X$;
- **conservative** (or quasitrivial, selective) if $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in X$;
- **symmetric** if $F(x_1, \ldots, x_n)$ is invariant under any permutation of x_1, \ldots, x_n.

Assuming that (X, \leq) is a chain, an operation $F : X^n \to X$ is said to be

- **nondecreasing** (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $\underbrace{x, \ldots, x}_n = n \cdot x$.
Other important definitions

Definition

An operation $F: X^n \to X$ is said to be

- **reflexive** (or idempotent) if $F(n \cdot x) = x$ for all $x \in X$;
- **conservative** (or quasitrivial, selective) if $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in X$;
- **symmetric** if $F(x_1, \ldots, x_n)$ is invariant under any permutation of x_1, \ldots, x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

- **nondecreasing** (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $x, \ldots, x = n \cdot x$.

G. Kiss
Conservative, symmetric n-ary semigroups
ISFE 55 4 / 17
Other important definitions

Definition

An operation $F: X^n \to X$ is said to be

- **reflexive** (or idempotent) if $F(n\cdot x) = x$ for all $x \in X$;
- **conservative** (or quasitrivial, selective) if $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in X$;
- **symmetric** if $F(x_1, \ldots, x_n)$ is invariant under any permutation of x_1, \ldots, x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

- **nondecreasing** (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $x, \ldots, x = n \cdot x$.

In my talk I focus on conservative, symmetric, nondecreasing n-ary semigroups (X, F), where X is a chain.
Other important definitions

Definition

An operation $F : X^n \rightarrow X$ is said to be

- reflexive (or idempotent) if $F(n \cdot x) = x$ for all $x \in X$;
- conservative (or quasitrivial, selective) if $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}$ for all $x_1, \ldots, x_n \in X$;
- symmetric if $F(x_1, \ldots, x_n)$ is invariant under any permutation of x_1, \ldots, x_n;

Assuming that (X, \leq) is a chain, an operation $F : X^n \rightarrow X$ is said to be

- nondecreasing (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $x, \ldots, x = n \cdot x$.

In my talk I focus on conservative, symmetric, nondecreasing n-ary semigroups (X, F), where X is a chain.
Neutral element

Definition

Let $F: X^n \to X$ be an operation.

- An element $e \in X$ is said to be a **neutral element** of F if

$$F((i - 1) \cdot e, x, (n - i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

Example

$F(x_1, x_2, x_3) \equiv x_1 + x_2 + x_3 \pmod{2}$ on $X = \mathbb{Z}_2$.

G. Kiss

Conservative, symmetric n-ary semigroups

ISFE 55 6 / 17
Neutral element

Definition
Let $F : X^n \to X$ be an operation.

- An element $e \in X$ is said to be a **neutral element** of F if

 $$F((i - 1) \cdot e, x, (n - i) \cdot e) = x$$

 for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points \underline{x} and \underline{y} of X^n are said to be **connected** for F if

 $$F(\underline{x}) = F(\underline{y}).$$
Neutral element

Definition

Let $F: X^n \to X$ be an operation.

- An element $e \in X$ is said to be a **neutral element** of F if
 \[F((i - 1) \cdot e, x, (n - i) \cdot e) = x \]
 for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points x and y of X^n are said to be **connected for F** if
 $F(x) = F(y)$.

- The point x of X^n is said to be **isolated for F** if it is not connected to another point in X^n.

A neutral element is unique if $n = 2$ and not necessarily unique if $n \geq 3$.

Example

$F(x_1, x_2, x_3) \equiv x_1 + x_2 + x_3 \pmod{2}$ on $X = \mathbb{Z}_2$.
Neutral element

Definition

Let $F : X^n \rightarrow X$ be an operation.

- An element $e \in X$ is said to be a neutral element of F if
 \[F((i - 1) \cdot e, x, (n - i) \cdot e) = x \]
 for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points x and y of X^n are said to be connected for F if
 $F(x) = F(y)$.

- The point x of X^n is said to be isolated for F if it is not connected to another point in X^n.

A neutral element is unique if $n = 2$.

G. Kiss

Conservative, symmetric n-ary semigroups

ISFE 55 6 / 17
Neutral element

Definition

Let $F : X^n \to X$ be an operation.

- An element $e \in X$ is said to be a neutral element of F if
 \[F((i - 1) \cdot e, x, (n - i) \cdot e) = x \]
 for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points x and y of X^n are said to be connected for F if $F(x) = F(y)$.

- The point x of X^n is said to be isolated for F if it is not connected to another point in X^n.

A neutral element is unique if $n = 2$ and not necessarily unique if $n \geq 3$.

Example

$F(x_1, x_2, x_3) \equiv x_1 + x_2 + x_3 \pmod{2}$ on $X = \mathbb{Z}_2$.

G. Kiss
Conservative, symmetric n-ary semigroups
ISFE 55 6 / 17
Neutral element

Definition

Let $F: X^n \rightarrow X$ be an operation.

- An element $e \in X$ is said to be a **neutral element** of F if

 $$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

 for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points x and y of X^n are said to be **connected** for F if

 $$F(x) = F(y).$$

- The point x of X^n is said to be **isolated** for F if it is not connected to another point in X^n.

A neutral element is unique if $n = 2$ and not necessarily unique if $n \geq 3$.

Example

$$F(x_1, x_2, x_3) \equiv x_1 + x_2 + x_3 \pmod{2} \text{ on } X = \mathbb{Z}_2.$$
Connectivity and neutral element

Example (More generally)

\[F(x_1, \ldots, x_n) \equiv x_1 + \cdots + x_n \pmod{(n - 1)} \text{ on } X = \mathbb{Z}_{n-1} \ (n \geq 3). \]
Connectivity and neutral element

Example (More generally)

\[F(x_1, \ldots, x_n) \equiv x_1 + \cdots + x_n \pmod{(n - 1)} \] on \(X = \mathbb{Z}_{n-1} \) \((n \geq 3)\).

Proposition

Let \(X \) be a chain. If \(F : X^n \to X \) is a nondecreasing operation, then \(F \) has at most one neutral element.
Connectivity and neutral element

Example (More generally)

\[F(x_1, \ldots, x_n) \equiv x_1 + \cdots + x_n \pmod{(n - 1)} \text{ on } X = \mathbb{Z}_{n-1} \ (n \geq 3). \]

Proposition

Let \(X \) be a chain. If \(F : X^n \to X \) is a nondecreasing operation, then \(F \) has at most one neutral element.

Proposition

Let \(F : X^n \to X \) be a reflexive operation. If \(\underline{x} = (x_1, \ldots, x_n) \in X^n \) is isolated for \(F \), then necessarily \(x_1 = \cdots = x_n \).
Connectivity and neutral element

Example (More generally)
\[F(x_1, \ldots, x_n) \equiv x_1 + \cdots + x_n \pmod{(n-1)} \] on \(X = \mathbb{Z}_{n-1} \) \((n \geq 3) \).

Proposition
Let \(X \) be a chain. If \(F : X^n \to X \) is a nondecreasing operation, then \(F \) has at most one neutral element.

Proposition
Let \(F : X^n \to X \) be a reflexive operation. If \(\underline{x} = (x_1, \ldots, x_n) \in X^n \) is isolated for \(F \), then necessarily \(x_1 = \cdots = x_n \).

Corollary
Any conservative operation \(F : X^n \to X \) has at most one isolated point.
Proposition

Let $F: X^n \to X$ be a conservative operation and let $e \in X$. If $(n \cdot e)$ is isolated for F, then e is a neutral element.

The converse holds if and only if $n = 2$.

Counter example

Let $X = \{a, b, e\}$ and let $F: X^3 \to X$ be defined as

$$F(x, y, z) = \begin{cases} a, & \text{if there are more } a's \text{ than } b's \text{ among } x, y, z, \\ b, & \text{if there are more } b's \text{ than } a's \text{ among } x, y, z, \\ e, & \text{otherwise} \end{cases}$$

The operation F is conservative and has e as the neutral element. However, we have $F(e, e, e) = F(a, b, e)$ and hence the point (e, e, e) is not isolated for F.

G. Kiss
Conservative, symmetric n-ary semigroups
ISFE 55 8 / 17
Proposition

Let $F : X^n \to X$ be a conservative operation and let $e \in X$. If $(n \cdot e)$ is isolated for F, then e is a neutral element.

The converse holds if and only if $n = 2$.
Proposition

Let $F: X^n \rightarrow X$ be a conservative operation and let $e \in X$. If $(n \cdot e)$ is isolated for F, then e is a neutral element.

The converse holds if and only if $n = 2$.

Counter example

Let $X = \{a, b, e\}$ and let $F: X^3 \rightarrow X$ be defined as

$$F(x, y, z) = \begin{cases} a, & \text{if there are more } a \text{'s than } b \text{'s among } x, y, z, \\ b, & \text{if there are more } b \text{'s than } a \text{'s among } x, y, z, \\ e, & \text{otherwise.} \end{cases}$$

The operation F is conservative and has e as the neutral element. However, we have $F(e, e, e) = F(a, b, e)$ and hence the point (e, e, e) is not isolated for F.

G. Kiss

Conservative, symmetric n-ary semigroups

ISFE 55 8 / 17
Why are neutral elements so important?

Definition

Let \(F: X^n \to X \) and \(H: X^2 \to X \) be associative operations. \(F \) is said to be derived from (or reducible to) \(H \) if \(F(x_1, \ldots, x_n) = x_1 \circ \cdots \circ x_n \) for all \(x_1, \ldots, x_n \in X \), where \(x \circ y = H(x, y) \).
Why are neutral elements so important?

Definition

Let \(F : X^n \to X \) and \(H : X^2 \to X \) be associative operations. \(F \) is said to be **derived from** (or **reducible to**) \(H \) if \(F(x_1, \ldots, x_n) = x_1 \circ \cdots \circ x_n \) for all \(x_1, \ldots, x_n \in X \), where \(x \circ y = H(x, y) \).

Theorem (Dudek-Mukhin)

Let \(X \) be a nonempty set. A function \(F : X^n \to X \) can be derived from an associative function \(H : X^2 \to X \) if and only if \(F \) has a neutral element or there can be adjoin a neutral element to \(X \) for \(F \).
Why are neutral elements so important?

Definition

Let $F: X^n \to X$ and $H: X^2 \to X$ be associative operations. F is said to be derived from (or reducible to) H if $F(x_1, \ldots, x_n) = x_1 \circ \cdots \circ x_n$ for all $x_1, \ldots, x_n \in X$, where $x \circ y = H(x, y)$.

Theorem (Dudek-Mukhin)

Let X be a nonempty set. A function $F: X^n \to X$ can be derived from an associative function $H: X^2 \to X$ if and only if F has a neutral element or there can be adjoin a neutral element to X for F.

Corollary

If $F: X^n \to X$ is associative and has a neutral element $e \in X$, then F is derived from the associative operation $H: X^2 \to X$ defined by $H(x, y) = F(x, (n - 2) \cdot e, y)$.

G. Kiss
Conservative, symmetric n-ary semigroups
ISFE 55 9 / 17
The case when $F : X^n \rightarrow X$ is an associative, monotone, reflexive function that has a neutral element was well understood. In this presentation we extend the investigation:

Proposition

Let X be a chain and $F : X^n \rightarrow X$ be an associative, reflexive, nondecreasing function that has a neutral element. Then F is conservative.
The case when $F : X^n \to X$ is an associative, monotone, reflexive function that has a neutral element was well understood.
The case when $F : X^n \rightarrow X$ is an associative, monotone, reflexive function that has a neutral element was well understood. In this presentation we extend the investigation:

Proposition

Let X be a chain and $F : X^n \rightarrow X$ be an associative, reflexive, nondecreasing function that has a neutral element. Then F is conservative.
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \to X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X$ ($n \geq 3$) be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative (i.e.: (X, F) is a n-ary semigroup).

(ii) $F((n-1) \cdot x, y) = F(x, (n-1) \cdot y)$ for all $x, y \in X$.

(iii) There exists a conservative and nondecreasing operation $G: X^2 \to X$ such that $F(x_1, \ldots, x_n) = G(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i)$, $x_1, \ldots, x_n \in X$.

Moreover, the operation G is unique, symmetric, and associative in assertion (iii).
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \rightarrow X$ ($n \geq 3$) be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G : X^2 \to X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F : X^n \to X$ ($n \geq 3$) be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative (i.e.: (X, F) is a n-ary semigroup).
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G : X^2 \to X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F : X^n \to X$ ($n \geq 3$) be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative (i.e.: (X, F) is a n-ary semigroup).

(ii) $F((n - 1) \cdot x, y) = F(x, (n - 1) \cdot y)$ for all $x, y \in X$.
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \to X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X$ ($n \geq 3$) be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative (i.e.: (X, F) is a n-ary semigroup).

(ii) $F((n - 1) \cdot x, y) = F(x, (n - 1) \cdot y)$ for all $x, y \in X$.

(iii) There exists a conservative and nondecreasing operation $G: X^2 \to X$ such that

$$F(x_1, \ldots, x_n) = G(\land_{i=1}^n x_i, \lor_{i=1}^n x_i), \quad x_1, \ldots, x_n \in X. \quad (1)$$
Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \to X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X$ ($n \geq 3$) be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative (i.e.: (X, F) is a n-ary semigroup).

(ii) $F((n - 1) \cdot x, y) = F(x, (n - 1) \cdot y)$ for all $x, y \in X$.

(iii) There exists a conservative and nondecreasing operation $G: X^2 \to X$ such that

$$F(x_1, \ldots, x_n) = G(\land_{i=1}^n x_i, \lor_{i=1}^n x_i), \quad x_1, \ldots, x_n \in X. \quad (1)$$

Moreover, the operation G is unique, symmetric, and associative in assertion (iii).
Consequences

Corollary

Let X be a chain. If $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, symmetric and nondecreasing, then F is associative and derived from G.

G. Kiss

Conservative, symmetric n-ary semigroups

ISFE 55
Consequences

Corollary

Let X be a chain. If $F : X^n \to X$ is of the form (1), where $G : X^2 \to X$ is conservative, symmetric and nondecreasing, then F is associative and derived from G.

Corollary

Let X be a chain. If $F : X^n \to X$ is a conservative, symmetric, nondecreasing and associative, then F has a neutral element or we can adjoin one.
Consequences

Corollary

Let X be a chain. If $F : X^n \to X$ is of the form (1), where $G : X^2 \to X$ is conservative, symmetric and nondecreasing, then F is associative and derived from G.

Corollary

Let X be a chain. If $F : X^n \to X$ is a conservative, symmetric, nondecreasing and associative, then F has a neutral element or we can adjoin one.
Proposition

Let X be a chain and let $e \in X$. Assume that $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, nondecreasing and symmetric. Then the following assertions are equivalent.

(i) e is a neutral element of F.
(ii) e is a neutral element of G.
(iii) The point (e, e) is isolated for G.
(iv) The point $(n \cdot e)$ is isolated for F.
Back to the neutral element

Proposition

Let X be a chain and let $e \in X$. Assume that $F : X^n \to X$ is of the form (1), where $G : X^2 \to X$ is conservative, nondecreasing and symmetric. Then the following assertions are equivalent.

(i) e is a neutral element of F.
(ii) e is a neutral element of G.
(iii) The point (e, e) is isolated for G.
(iv) The point $(n \cdot e)$ is isolated for F.

Corollary

Let X and F as above. Then F has a neutral element iff there exists an isolated point for F.
The single-peaked ordering

Proposition (Ackerman)

Let X be a set and $H : X^2 \to X$ be an associative, conservative, symmetric function, then there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq).

Corollary

An operation $F : X^n \to X$ is conservative, symmetric, associative, and derived from a conservative and associative operation $H : X^2 \to X$ iff there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq), i.e.,

$$F(x_1, \ldots, x_n) = x_1 \lor \cdots \lor x_n, \quad x_1, \ldots, x_n \in X.$$
The single-peaked ordering

Proposition (Ackerman)

Let X be a set and $H : X^2 \to X$ be an associative, conservative, symmetric function, then there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq).

Corollary

An operation $F : X^n \to X$ is conservative, symmetric, associative, and derived from a conservative and associative operation $H : X^2 \to X$ iff there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq), i.e.,

$$F(x_1, \ldots, x_n) = x_1 \lor \cdots \lor x_n, \quad x_1, \ldots, x_n \in X.$$

(2)
The single-peaked ordering

Proposition (Ackerman)

Let X be a set and $H : X^2 \to X$ be an associative, conservative, symmetric function, then there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq).

Corollary

An operation $F : X^n \to X$ is conservative, symmetric, associative, and derived from a conservative and associative operation $H : X^2 \to X$ iff there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq), i.e.,

$$F(x_1, \ldots, x_n) = x_1 \lor_{\leq} \cdots \lor_{\leq} x_n, \quad x_1, \ldots, x_n \in X.$$ \hfill (2)

Definition

In this case if (X, \leq) is a chain, then we say that new ordering \leq is single-peaked w.r.t. \leq.
Example

Consider the real operation $F: [0, 1]^2 \rightarrow [0, 1]$ defined as

$$F(x, y) = \begin{cases} x \lor y, & \text{if } x + y \geq 1, \\ x \land y, & \text{otherwise} \end{cases}$$ \hspace{1cm} (3)
Example

Consider the real operation $F: [0, 1]^2 \rightarrow [0, 1]$ defined as

$$F(x, y) = \begin{cases}
 x \lor y, & \text{if } x + y \geq 1, \\
 x \land y, & \text{otherwise}.
\end{cases}$$ \hspace{1cm} (3)

Denoting the single-peaked linear ordering on $[0, 1]$ by \leq, then

$$x \leq y \iff (y \leq x < 1 - y \text{ or } 1 - y \leq x \leq y), \quad x, y \in [0, 1].$$
Example

Consider the real operation $F: [0, 1]^2 \rightarrow [0, 1]$ defined as

$$F(x, y) = \begin{cases} x \lor y, & \text{if } x + y \geq 1, \\ x \land y, & \text{otherwise}. \end{cases} \quad (3)$$

Denoting the single-peaked linear ordering on $[0, 1]$ by \leq, then

$$x \leq y \iff (y \leq x < 1 - y \text{ or } 1 - y \leq x \leq y), \quad x, y \in [0, 1].$$

So for every $x \in [0, 1]$, there is no $y \in [0, 1]$ such that $x < y < 1 - x$ or $1 - x < y < x$.
Example

Consider the real operation $F: [0, 1]^2 \rightarrow [0, 1]$ defined as

$$F(x, y) = \begin{cases} x \lor y, & \text{if } x + y \geq 1, \\ x \land y, & \text{otherwise}. \end{cases}$$

(3)

Denoting the single-peaked linear ordering on $[0, 1]$ by \leq, then

$$x \leq y \Leftrightarrow (y \leq x < 1 - y \text{ or } 1 - y \leq x \leq y), \quad x, y \in [0, 1].$$

So for every $x \in [0, 1]$, there is no $y \in [0, 1]$ such that $x < y < 1 - x$ or $1 - x < y < x$. From this observation one can show that the chain $([0, 1], \leq)$ cannot be embedded into the reals (\mathbb{R}, \leq).
Thank you for your kind attention.
N. L. Ackerman.
A characterization of quasitrivial n-semigroups.
To appear in *Algebra Universalis*.

D. Black.
On the rationale of group decision-making.

M. Couceiro, J. Devillet, and J.-L. Marichal.
Characterizations of idempotent discrete uninorms.
Submitted for publication. arXiv:1701.07253

W. A. Dudek and V. V. Mukhin.
On n-ary semigroups with adjoint neutral element.

G. Kiss and G. Somlai.
A characterization of n-associative, monotone, idempotent functions on an interval that have neutral elements.

J. Martín, G. Mayor, and J. Torrens.
On locally internal monotonic operations.