Uncertainty Quantification - Sensitivity Analysis / Biomechanics

Paul Hauseux, Jack S. Hale and Stéphane P.A. Bordas

February 2017

Stg. No. 279578 RealTCut

Groupe de travail (Besançon 2017)
Context: Soft-tissue biomechanics simulations with uncertainty

- Uncertainty in parameters (material properties, loading, geometry, etc.) in biomechanics problems can influence the outcome of simulation results.

Objective: propagate and visualise this uncertainty with non or partially-intrusive methods.
General framework

- Stochastic non-linear system: \(F(u, \omega) = 0 \)
- Probability space: \((\Omega, F, P) \)
- Random parameters: \(\omega = (\omega_1, \omega_2, \ldots, \omega_M) \)

- Objective: provide statistical data for the solution of the problem.
- Integration (to determine the expected value of a quantity of interest):

\[
E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega))dP(\omega)
\]
Direct integration

Monte-Carlo method [Caflisch 1998]:

\[
E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega))dP(\omega) \simeq \sum_{z=1}^{Z} p_z \Psi(u(\omega_z))
\]

Algorithm:

while \(z < Z \):

\begin{itemize}
 \item choose randomly \(\omega_z \).
 \item evaluate \(\Psi(u(\omega_z)) \).
 \item add the contribution to the sum.
\end{itemize}
Convergence

- Converge «in law»: 1% for 10000 realisations, slow but independent of the dimension!

\[\left\| E^{MC} \left[\psi (\omega) \right] - E \left[\psi (\omega) \right] \right\|_{L^2(\Omega_p)} \sim N(0, 1) \sqrt{\frac{\mathbb{V} [\psi (\omega)]}{Z}} \]

- Necessity to improve the convergence.

Work done:

- Low discrepancy sequences (Sobol, Hamilton, …): quasi MCM [Caflisch 1998].

- Multi Level Monte-Carlo techniques [Giles 2015, Matthies 2008].

- MC methods by using sensitivity information (SD-MC) [Cao et al 2004, Liu et al. 2013].
MC methods by using sensitivity information

Estimator [Cao et al. 2004, Liu et al. 2013]:

\[
E_{1}^{SD-MC}[\psi(\omega)] := \frac{1}{Z} \sum_{z=1}^{Z} [\psi(\omega_z) - D[\psi(\bar{\omega})](\omega_z - \bar{\omega})]
\]

This variance reduction method increases the accuracy of sampling methods. Here we only consider the case of the first-order sensitivity derivative enhanced Monte-Carlo method. By using sensitivity information computational workload can be reduced by one order of magnitude over commonly used schemes.

Main difficulty:

\[D[\psi(\bar{\omega})] \]
Numerical implementation

Implementation (DOLFIN/FEniCS) [Logg et al. 2012], advantages:

- UFL (Unified Form Language).
- Most existing FEM codes are not able to compute the tangent linear model and the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of models with very little effort [Alnæs 2012, Farrell et al. 2013].
- Complex models with only few lines of Python code.

Parallel computing:

- Ipyparallel and mpi4py software tools to massively parallelise individual forward model runs across a cluster and to reduce the workload.

Python package for uncertainty quantification:

- Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects.
DOLFIN/FEniCS implementation: an example

- **Forward problem**, generalized Burgers equation with stochastic viscosity:

\[
F(\nu, u; \tilde{u}) := \int_{\Omega_s} \nu \nabla u \cdot \nabla \tilde{u} - \frac{1}{2} \nabla u^2 \cdot \tilde{u} + \frac{1}{2} \nabla u \cdot \tilde{u} \, dx = 0 \quad \forall \tilde{u} \in H^1_0(\Omega_s)
\]

```python
nu_var = variable(Constant(omega))
F = nu_var*u_.dx(0)*u_t.dx(0)*dx + 0.5*u_.dx(0)*u_t*dx - 0.5*(u_**2).dx(0)*u_t*dx
```

- The standard Newton method:

\[
J(\nu, u^k; \delta u; \tilde{u}) = -F(\nu, u^k; \tilde{u}) \quad \forall \tilde{u} \in H^1_0(\Omega_s)
\]

\[
u^{k+1} = u^k + \delta u
\]

```python
J = derivative(F, u_, u)
solve(F == 0, u_, bcs, J=J)
```
The tangent linear system:

\[
\begin{align*}
\frac{\partial F(u, \omega)}{\partial u} \frac{du}{d\omega} &= -\frac{\partial F(u, \omega)}{\partial \omega} \\
U \times U & \quad U \times M
\end{align*}
\]

U: size of the deterministic problem
M: number of random parameters

\[
\text{Fu} = \text{derivative}(F, u, du)
\]
\[
\text{Fd} = -\text{diff}(F, \omega)
\]
\[
\text{dudomega} = \text{Function}(V)
\]
\[
A, b = \text{assemble_system}(\text{Fu}, \text{Fd}, \text{bcs}=\text{bcs})
\]
\[
\text{solve}(A, \text{dudomega}.\text{vector}(), b, "lu")
\]

linear system to solve to evaluate \(du/dm\)!

The complete implementation is only around 130 lines and the Docker image with the full software environment is included in: https://dx.doi.org/10.6084/m9.figshare.3561306 [Hauseux, P. and Hale, J.S. and Bordas, S. 2016]
Stochastic FE analysis of brain deformation

- Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).
- Random variables/fields to model parameters [Adler 2007].
- Strain energy function for the Holzapfel and Ogden model:

\[W_{iso} = \frac{a}{2b} \exp[b(I_1 - 3)] + \sum_{i=f,s} \frac{a_i}{2b_i} \exp[b_i(I_{4i} - 1)^2] + \frac{a_{fs}}{2b_{fs}} \left(\exp[b_{fs}(I_{8fs})^2] - 1 \right) \]

- for example 3RV:

![Graph showing PDF of stress values for different parameters]
Stochastic FE analysis of brain deformation
Numerical results (8 RV, Holzapfel model)

Brain deformation with random parameters
1 MC realisation.

Confidence interval 95%
MC simulations.
Numerical results: convergence

Fig. Center of the sphere: expected value of the displacement in the x direction as a function of Z.
Global sensitivity analysis

- Sobol sensitivity indices [Sobol 2015, Saltelli 2002]

Quantity of interest: displacement magnitude of the target.
Random Fields

- Different methods: Karhunen–Loève expansion [Adler 2007], Fast Fourier transform [Nowak 2004].

Two realisations of RF, with a log-normal distribution, for the parameter C_1 (in MPa).
Numerical results (Mooney-Rivlin solid)
ML Monte-Carlo technique: ML-PCE

- Monte Carlo method with use of Polynomial Chaos Expansion to improve the convergence [Matthies 2008, Hauseux 2016].
Future work for UQ

Stochastic modelling:

Multi Level Monte Carlo (MLMC) methods :

- By using Multi Level techniques [Giles 2015] the computational workload can be reduced by performing most simulations with low accuracy at a correspondingly low cost and few simulations at high accuracy and high cost.

- Combine MLMC with sensitivity derivatives (derives the discrete adjoint and tangent linear models).

- Implement various applications to illustrate the advantages of the method.

- Adjoint extension function space setting.

Malliavin calculus [Warren 2012].
Conclusion

Stochastic modelling:

- Random variables/fields to model parameters with a degree of uncertainty: application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:

- By using sensitivity information and multi-level methods with polynomial chaos expansion we demonstrate that computational workload can be reduced by one order of magnitude over commonly used schemes.

- Global and local sensitivity analysis.

Numerical implementation:

- Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).

- Ipyparallel and mpi4py to massively parallelise individual forward model runs across a cluster.