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Abstract—This paper introduces an iterative optimization
framework to tackle the multi-group multicast Max-Min transmit
beamforming problem. In each iteration, the optimization prob-
lem is decomposed into four sub-problems, all of which can be
solved using computationally efficient algorithms. The advantage
of proposed method lies in its ability to handle different types of
signal constraints like total power and unimodularity; a feature
not exhibited by other techniques. The proposed technique
outperforms the well-known semidefinite relaxation method in
terms of quality of solutions.

I. INTRODUCTION

Max-Min transmit beamforming is a classical design prob-
lem in wireless communications [1]–[3], with the goal of
maximizing the minimal performance of a network to achieve
fairness. In wireless communications, Signal to Noise and
Interference Ratio (SINR) of users is widely used as the
performance measure and the Max-Min transmit beamforming
takes the form

max.
{wi}

min
i

SINRi (1)

where wi is the beamforming vector for ith user and SINRi
is the corresponding SINR. This problem was solved for
the first time considering the unicast scenario and a total
transmit power constraint in [1]. In unicast scenario, inde-
pendent signals are transmitted to each user. This problem
was then solved for multicast set-up in [4] where a common
signal is transmitted to all users. The multi-group multicast
beamforming design problem as a generalization of the unicast
and multicast beamforming problems was studied in [5]. Since
then, multi-group multicast beamforming was extended to con-
sider different type of constraints [6], [7]. The Rate-Splitting
(RS) concept was introduced to multi-group multicasting and
its performance gain was studied in [8].

The optimization problem leading to the design of beam-
formers is, in general, a NP-hard problem. Most of the
algorithms developed to tackle this problem are either based
on semidefinite relaxation (SDR) technique, which are compu-
tationally expensive, or catering towards specific type of signal
constraints, e.g. a total power constraint. Relevant constraints
like the unimodularity, which can have applications in phase-
only beamforming [9] and hybrid analog/digital beamform-
ing [10], are not considered by these algorithms. The perceived
shortcomings of existing algorithms in terms of complexity
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and applicability, motivate the exercise carried out in this
paper.

In this work, we consider the multi-group multicasting
since it can be seen as a generalization of beamforming
problems and propose a computationally efficient framework
to tackle the corresponding optimization problem. The pro-
posed method is based on iterative paradigm involving the
use of regularization based optimization approach. While the
proposed framework can efficiently handle several constraints
including total power and unimodularity constraints, it also
improves on the complexity of related iterative Grab and Pull
approach [11].

The paper is organized as follows: in Section II, the system
model and problem formulation are presented. In Section III,
the optimization problem is reformulated in order to make
it tractable. Then, the proposed framework is introduced in
Section IV to tackle the optimization problem. Comparison
with the SDR technique and numerical results presented in
Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a transmitter equipped with N antennas that
communicates with M single-antenna users distributed in G
groups. The users in each group are interested in receiving
a common signal. For the special cases of G = 1 and G =
M , this scenario coincides with the multicast beamforming
and traditional unicast beamforming problems, respectively.
We denote the subset of user indices in the kth group by Gk
for any k ∈ [G]. Let hi ∈ CN denotes the channel between
the transmit antennas and the ith user, and wk denotes the
beamforming vector for kth group of users. Then the SINR of
the ith user can be written as

SINRi =
wH
k Riwk(∑

j∈[G]\kw
H
j Riwj

)
+ σ2

i

, ∀i ∈ [M ], (2)

where Ri = E{hihHi } is the covariance matrix of the
ith channel and σ2

i denotes the variance if the zero-mean
additive white Gaussian noise (AWGN). Then the problem
of maximizing the minimum SINRi in the network can be



formulated as [5],

max .
{wk}Gk=1

min
k∈[G]

 min
i∈Gk

 wH
k Riwk(∑

j∈[G]\kw
H
j Riwj

)
+ σ2

i




s. t.
G∑
k=1

‖wk‖2 ≤ P , (3)

where P is the total transmit power constraint. We define a
stacked beamforming vector w ∈ CK ( with K = NG) as
w = vec([wi,w2, · · · ,wG]). It can be shown that the power
constraint in (3) will be satisfied with equality, so we have
‖w‖2 = P . Following [11], the SINR expression can be
written as

SINRi =
wHAiw

wHBiw
, ∀i ∈ [M ], (4)

where Ai and Bi are positive semidefinite (PSD) matrices,
defined as

Ai , Diag(ei)⊗Ri, ∀i ∈ [M ], (5)

Bi , (IN −Diag(ei))⊗Ri +
σ2
i

P
IK , ∀i ∈ [M ]. (6)

The Max-Min beamforming design problem can then be recast
as the following optimization problem:

P : max .
w∈CK

min
i∈[M ]

{
wHAiw

wHBiw

}
s. t. w ∈ Ω , (7)

where Ω is the feasible set of the problem governed by the
constraint on w. Particularly, the total power constraint and
unimodular signal design, Ω is defined respectively as [11],
[12],

Ω = {w : ‖w‖2 = P}, (8a)
Ω = {ejϕ : ϕ ∈ [0, 2π)}K . (8b)

The optimization problem P is known to be NP-hard in
general [4], [5] and several approaches (albeit mostly sub-
optimal) have been proposed in the literature to solve special
forms of P; e.g. for total power constraint (8a) in [5], for
multicast scenario (G = 1) in [4], for G = M in [1]–[3], [13].
However, these algorithms either require high computational
cost towards finding a feasible solution [4], [5] or can not be
extended to solve the general form of P [1]–[3], [13]. The
proposed approach herein is computationally efficient and can
handle different types of signal constraints. In the next section,
we reformulate this problem to facilitate the optimization
framework.

III. PROBLEM REFORMULATION

We make use of the auxiliary variables {γi}, defined as

γi =
wHAiw

wHBiw
. (9)

The optimization problem P can then be rewritten as,

P1 : max .
w,{γi}

min
i∈[M ]

{γi}

s. t. γi =
wHAiw

wHBiw
, ∀i ∈ [M ]

w ∈ Ω ,

Denote the minimum of {γi} by γ, i.e. γ = min{γi}. Since
γi ≥ 0, by introducing new slack variables {ti}, we have that

γi = γ + ti, γ ≥ 0, ti ≥ 0, ∀i ∈ [M ]. (10)

Therefore, we can propose the following equivalent optimiza-
tion problem to P1:

P2 : max .
w,γ,{ti}

γ

s. t. γ + ti =
wHAiw

wHBiw
, ∀i ∈ [M ]

w ∈ Ω , ti ≥ 0.

It is straightforward to verify that at the optimum of P2, at
least one of {ti} should be zero. Since Ai and Bi are PSD,
we can equivalently write the constraints in P2 as

‖A
1
2
i w‖ =

√
γ + ti ‖B

1
2
i w‖, ∀i ∈ [M ]. (11)

Using quadratic penalty term, we can write a regularized
version of P2 as

P3 : max.
w,γ,{ti}

γ − η
M∑
i=1

(‖A
1
2
i w‖ −

√
γ + ti ‖B

1
2
i w‖)

2

s. t. w ∈ Ω , γ ≥ 0, ti ≥ 0, ∀i ∈ [M ], (12)

where η is the weight of penalty term and P2 and P3 coincide
as η → ∞. P3 is still difficult to tackle since the objective
will be quartic in w. Therefore, by introducing unitary matrix
Qi, we use another formulation:

P4 : max.
w,γ,{ti},{Qi}

γ − η
M∑
i=1

‖A
1
2
i w −

√
γ + ti QiB

1
2
i w‖

2

s. t. w ∈ Ω , γ ≥ 0, ti ≥ 0 ,

Qi ∈ U , ∀i ∈ [M ]. (13)

Herein, U is a set of unitary matrices that isometrically
transform B

1
2
i w to the direction of A

1
2
i w; in other words,

QiB
1
2
i w =

‖B
1
2
i w‖

‖A
1
2
i w‖

A
1
2
i w. (14)

It is straightforward to verify that by choosing optimal Qi that
satisfies (14), formulations P4 and P3 will be equivalent and
hence will be used interchangeably. Formulation P4 leads to
quadratic objective function w.r.t. w which is easier to tackle.

IV. OPTIMIZATION FRAMEWORK

In this section, we introduce the proposed optimization
framework to tackle P4 (and P3). The framework is based
on separate optimization of the objective of P4 and P3 over
its variables w, {Qi}, {ti}, and γ at each iteration.



A. Optimization w. r. t. w
For fixed {Qi}, {ti}, and γ, we can show that optimizing

the objective of P4 w.r.t. w is equivalent to minimizing the
following term,

M∑
i=1

‖A
1
2
i w −

√
γ + ti QiB

1
2
i w‖

2 = wHRw (15)

where

R =
∑M

i=1

{
Ai+(γ+ti)Bi−

√
γ+ti

(
A

1
2
i QiB

1
2
i +B

1
2
i QH

i A
1
2
i

)}
(16)

To minimize wHRw, we can equivalently maximize
wH(−R)w. For total power constraint, this optimization
problem can be solved efficiently using power-method [11].
The unimodular signal design can be handled by using power-
method like iterations introduced in [12]. For more details on
handling optimization w.r.t w please refer to [11].

B. Optimization w. r. t. γ
Assuming {Qi}, {ti} and w are given, we can show that

optimization of P3 w. r. t. γ can be written as

max .
γ≥0

f(γ) (17)

where

f(γ) = γ − η
K∑
i=1

(
αi −

√
γ + ti βi

)2
(18)

and αi = ‖A
1
2
i w‖2 and βi = ‖B

1
2
i w‖2. It is straightforward

to find the second derivative of f(λ) as

f ′′(γ) = −η
2

K∑
i=1

αiβi

(γ + ti)
3
2

. (19)

Note that f(γ) is a concave function as f ′′(γ) ≤ 0. Therefore,
−f(λ) is a convex function and thus the scalar convex
optimization problem

min .
γ≥0

− f(γ) (20)

can be solved (efficiently) using gradient descent method,

C. Optimal {Qi}
Now, suppose w , {ti} and λ are fixed. As discussed earlier,

the maximizer Qi is an unitary matrix that maps B
1
2
i w in

the same direction as A
1
2
i w. Matrix Qi can be found using

Householder matrix [14] as follows. Let us define ui = B
1
2
i w

and denote the direction of A
1
2
i w by a unit norm vector vi as

vi = A
1
2
i w / ‖A

1
2
i w‖. (21)

Therefore matrix Qi should rotate ui to the direction of vi,
that is Qiui = ‖ui‖vi. Now, let us define vector zi as

zi =
ui − ‖ui‖vi

‖ (ui − ‖ui‖vi) ‖
. (22)

Then Qi can be found as

Qi = I − 2ziz
H
i . (23)

It is straightforward to verify that Qiui = ‖ui‖vi.

D. Optimization w. r. t. {ti}
For fixed w, {Qi} and γ, values of {ti} can be simply

found using the constraint in P2:

ti =
wHAiw

wHBiw
− γ . (24)

Since there is a non-negativity constraint on ti as well, ti ≥ 0,
the optimal values are given by

t?i =

{
ti if ti ≥ 0

0 if ti < 0
(25)

V. NUMERICAL RESULTS

In this section, in order to evaluate the performance of
the proposed algorithm, we compare it with the widely used
semidefinite relaxation (SDR) approach [15]. We consider a
downlink transmitter with N = 4 antennas, as well as M = 12
single-antenna users which are divided into G = 2 multicast
groups of 6 users each. The entries of the channel vectors
hi are drawn from an i.i.d. complex Gaussian distribution
with zero-mean and unit-variance. The Gaussian noise com-
ponents received at each user antenna are assumed to have
unit variance, i.e. σ2

i = 1 for all i ∈ [K]. We consider
a normalized total-power constraint, i.e. with P = 1, and
terminate the optimization iterations whenever the objective
increase becomes bounded by ε = 10−6.

A. Comparison with SDR Method

Considering the total power constraint on the signal
(‖w‖2 = 1), P1 can be equivalently reformulated as

R1 : max .
W

min
i∈[M ]

{
Tr (AiW )

Tr (BiW )

}
s. t. Tr (W ) = 1 ,W � 0 , rank(W ) = 1, (26)

where W = wwH . Relaxing the rank-one constraint and
noting that the objective function is quasi-concave, we can
write the corresponding feasibility problem as follows:

R2 : find W

s. t.
Tr (AiW )

Tr (BiW )
≥ µ , ∀ i ∈ [M ],

Tr (W ) = 1 ,W � 0 . (27)

Note that a maximal value of µ may be found using the
bisection method. Particularly, R2 followed by the bisection
procedure is equivalent to a relaxed version of R1 in which
the rank-one constraint is dropped. Moreover, for any given µ,
R2 is a (convex) semidefinite program and can be solved using
interior-point solvers [15]. We stop the bisection in the solver
whenever the increments in µ become bounded by 10−6.

Let W ? denote the solution to R2 after the bisection
procedure is complete. As R2 followed by bisection is a
relaxed version of R1 (and P1), the optimal value of its
objective yields an upper bound on the optimal objectives of



TABLE I
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD AND SDR IN MULTI-GROUP MULTICASTING FOR 300 RANDOM REALIZATION OF THE

CHANNEL (N = 8, K = 12).

K η Average
γ?/υSDR

Average
γ?/υ?SDR

Average
CPU time
(sec)

Average SDR
time / Average
CPU time

12

1 1.16 0.78 0.28 7.5

10 1.25 0.88 1.67 1.21

0.5/10/1000 1.21 0.84 0.56 3.6
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Fig. 1. Transition of the optimization parameters {γ + ti} and (wHAiw)/(wHBiw) (distinguished by colors for different i) vs. the iteration number for
different weights (η) of the regularization term in P3 and P4: (a) η = 2, and (b) η = 10.

R1 (and P1), although it may not be tight. This upper bound
is given as

υ?SDR = min
i∈[M ]

{
Tr (AiW

?)

Tr (BiW
?)

}
. (28)

which may be used to examine further the goodness of
approximate solutions provided by various methods.

Due to the rank relaxation in R2, W ? will not (in general)
be unit rank. In this case, the Gaussian randomization (GR)
method [15], [17] is typically used to generate L candidates
(from which, the one leading to the largest objective, will be
chosen) for approximating the optimum w? of P1: Let W ? =
V ΣV H be the eigen-decomposition of W ?. The lth candidate
(l ∈ [L]) can be generated as wl = V Σ1/2vl, where vl ∈
CK ∼ CN (0, I) [5]. Note that each wl may be scaled in
order to satisfy the constraint ‖wl‖2 = 1. We denote the best
candidate by w?

GR. The corresponding objective value is thus
given by

υSDR = min
i∈[M ]

{
w? H
GR Aiw

?
GR

w? H
GR Biw?

GR

}
. (29)

Table I summarizes the results of Max-Min beamform-
ing design for 300 random realizations of the multi-group
multicasting channel. Average performance of the proposed

algorithm for different values of η is compared with SDR
followed by 1000 GRs. It can be seen that η = 10 leads
to higher objective of P1 but increases the run-time of the
algorithm. On the other hand, increasing η in few steps, i.e. the
case with η = 0.5/10/1000, provides a good balance between
the solution quality and run-time, while outperforming SDR
in both criteria.

Fig. 1 shows the transition of the optimization parameters
γ + ti and (wHAiw)/(wHBiw) vs. the iteration number
for (a) η = 2, and (b) η = 10. Note that these param-
eters are equal as η → ∞ and it can be observed that
by increasing η from 2 to 10, difference between γ + ti
and (wHAiw)/(wHBiw) reduces. It should also be noted
that min{(wHAiw)/(wHBiw))} is monotonically increas-
ing over the iterations.

VI. CONCLUSION

A new iterative optimization framework based on penalized
reformulation is proposed to tackle the Max-Min beamforming
design problem. The proposed approach is computationally
very efficient and outperforms the SDR method. It can also
handle total power and unimodularity signal constraints.
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[9] Ö. T. Demir and T. E. Tuncer, “Optimum phase-only discrete broadcast
beamforming with antenna and user selection in interference limited
cognitive radio networks,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp.
2724–2728.

[10] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Hybrid
precoding for millimeter wave cellular systems with partial channel
knowledge,” in Information Theory and Applications Workshop (ITA),
2013. IEEE, 2013, pp. 1–5.

[11] M. Soltanalian, A. Gharanjik, B. Shankar, and B. Ottersten, “Grab-
n-Pull: An optimization framework for fairness-achieving networks,”
accepted to IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP, 2016.

[12] M. Soltanalian and P. Stoica, “Designing unimodular codes via quadratic
optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 5,
pp. 1221–1234, March 2014.

[13] G. Dartmann, X. Gong, W. Afzal, and G. Ascheid, “On the Duality of the
Max-Min Beamforming Problem With Per-Antenna and Per-Antenna-
Array Power Constraints,” IEEE Transactions on Vehicular Technology,
vol. 62, no. 2, pp. 606–619, Feb. 2013.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge;
New York: Cambridge University Press, Dec. 2012.

[15] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 20–34, 2010.

[16] CVX Research Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0,” http://cvxr.com/cvx, Aug. 2012.

[17] S. Zhang and Y. Huang, “Complex quadratic optimization and semidef-
inite programming,” SIAM Journal on Optimization, vol. 16, no. 3, pp.
871–890, 2006.


