Stochastic FE analysis of brain deformation with different hyper-elastic models

Paul Hauseux, Jack S. Hale and Stéphane P.A. Bordas

Thursday, September 22, 2016

Stg. No. 279578 RealTCut

CMBBE September 20-22 2016, Tel Aviv, Israel
Context: Soft-tissue biomechanics simulations with uncertainty

- Uncertainty in parameters (material properties, loading, geometry, etc.) in biomechanics problems can influence the outcome of simulation results.

- Objective: propagate and visualise this uncertainty with non- or partially-intrusive methods.
General framework

- Stochastic non-linear system:
 \[F(u, \omega) = 0 \]

- Probability space:
 \((\Omega, \mathcal{F}, P)\)

- Random parameters:
 \(\omega = (\omega_1, \omega_2, \ldots, \omega_M)\)

- Objective: provide statistical data for the solution of the problem.

- Integration (to determine the expected value of a quantity of interest):

\[
E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega))dP(\omega)
\]
Direct integration

Monte-Carlo method [Caflisch 1998]:

\[
E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega))dP(\omega) \simeq \sum_{z=1}^{Z} p_z \Psi(u(\omega_z))
\]

Algorithm:

while \(z < Z \):

\(\triangleright \) choose randomly \(\omega_z \).

\(\triangleright \) evaluate \(\Psi(u(\omega_z)) \).

\(\triangleright \) add the contribution to the sum.
Convergence

- Converge «in law»: 1% for 10000 realisations, slow but independent of the dimension!

\[\| \mathbb{E}^{MC} [\psi(\omega)] - \mathbb{E} [\psi(\omega)] \|_{L^2(\Omega_p)} \sim N(0, 1) \sqrt{\frac{\mathbb{V}[\psi(\omega)]}{Z}} \]

- Necessity to improve the convergence.

Work done:

- Low discrepancy sequences (Sobol, Hamilton, ...): quasi MCM [Caflisch 1998].

- Multi Level Monte-Carlo techniques [Giles 2015, Matthies 2008].

- MC methods by using sensitivity information (SD-MC) [Cao et al 2004, Liu et al 2013].
MC methods by using sensitivity information

Estimator [Cao et. al 2004, Liu et al. 2013]:

$$\mathbb{E}_{1}^{SD-MC} [\psi(\omega)] := \frac{1}{Z} \sum_{z=1}^{Z} [\psi(\omega_{z}) - D[\psi(\overline{\omega})](\omega_{z} - \overline{\omega})]$$

This variance reduction method increases the accuracy of sampling methods. Here we only consider the case of the first-order sensitivity derivative enhanced Monte-Carlo method. By using sensitivity information computational workload can be reduced by one order of magnitude over commonly used schemes.

Main difficulty:

$$D[\psi(\overline{\omega})]$$
Numerical implementation

Implementation (DOLFIN/FEniCS) [Logg et al. 2012], advantages:

- UFL (Unified Form Language).

- Most existing FEM codes are not able to compute the tangent linear model and the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of models with very little effort [Alnæs 2012, Farrell et al. 2013].

- Complex models with only few lines of Python code.

Parallel computing:

- Ipyparallel and mpi4py software tools to massively parallelise individual forward model runs across a cluster and to reduce the workload.

Python package for uncertainty quantification:

- Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects.
DOLFIN/FEniCS implementation: an example

- **Forward problem**, generalized Burgers equation with stochastic viscosity:

\[
F(\nu, u; \tilde{u}) := \int_{\Omega_s} \nu \nabla u \cdot \nabla \tilde{u} - \frac{1}{2} \nabla u^2 \cdot \tilde{u} + \frac{1}{2} \nabla u \cdot \tilde{u} \, dx = 0 \quad \forall \tilde{u} \in H^1_0(\Omega_s)
\]

\[
u_{\text{var}} = \text{variable}(\text{Constant}(\omega))
\]

\[
F = \nu_{\text{var}} \cdot u_. \cdot dx(0) \cdot u_t \cdot dx(0) \cdot dx + 0.5 \cdot u_. \cdot dx(0) \cdot u_t \cdot dx\]

- \quad - 0.5 \cdot (u_**2) \cdot dx(0) \cdot u_t \cdot dx

- The standard Newton method:

\[
J(\nu, u^k; \delta u; \tilde{u}) = -F(\nu, u^k; \tilde{u}) \quad \forall \tilde{u} \in H^1_0(\Omega_s)
\]

\[
u^{k+1} = u^k + \delta u
\]

\[
\text{J} = \text{derivative}(F, u_, u)
\]

\[
\text{solve}(F == 0, u_, \text{bcs}, \text{J=J})
\]
DOLFIN/FEniCs implementation: an example

The tangent linear system:

\[
\begin{align*}
\begin{bmatrix}
\frac{\partial F(u, \omega)}{\partial u} & \frac{\partial F(u, \omega)}{\partial \omega}
\end{bmatrix}
\begin{bmatrix}
\frac{du}{du} \\
\frac{du}{d\omega}
\end{bmatrix}
& =
\begin{bmatrix}
\frac{\partial F(u, \omega)}{\partial u} & \frac{\partial F(u, \omega)}{\partial \omega}
\end{bmatrix}
\begin{bmatrix}
\frac{du}{du} \\
\frac{du}{d\omega}
\end{bmatrix}
\end{align*}
\]

U: size of the deterministic problem
M: number of random parameters

Fu = derivative(F, u, du)
Fd = — diff(F, omega)
dudomega = Function(V)
A, b = assemble_system(Fu, Fd, bcs=bcs)
solve(A, dudomega.vector(), b, "lu")

linear system to solve to evaluate du/dm!
Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).

Random variables/fields to model parameters [Adler 2007].

Strain energy function for the Holzapfel and Ogden model:

\[W_{iso} = \frac{a}{2b} \exp \left[b(I_1 - 3) \right] + \sum_{i=f,s} \frac{a_i}{2b_i} \exp \left[b_i(I_{4i} - 1)^2 \right] + \frac{a_{fs}}{2b_{fs}} \left(\exp \left[b_{fs}I_{8fs}^2 \right] - 1 \right) \]

for example 3RV:
Stochastic FE analysis of brain deformation
Numerical results (8 RV, Holzapfel model)

Brain deformation with random parameters
1 MC realisation.

Confidence interval 95%
MC simulations.
Numerical results: convergence

Fig. Center of the sphere: expected value of the displacement in the x direction as a function of Z.

$E[U_x]$ (m)

Z

MC
SD-MC
Numerical results (8 RV, Holzapfel model)
ML Monte-Carlo technique: ML-PCE

Histogram (MC and MC-PCE methods)
Global sensitivity analysis

Quantity of interest: displacement of the sphere in the x direction.
Conclusion

Stochastic modelling:

- Random variables/fields to model parameters with a degree of uncertainty: application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:

- By using sensitivity information and multi-level methods with polynomial chaos expansion we demonstrate that computational workload can be reduced by one order of magnitude over commonly used schemes.
- Global and local sensitivity analysis.

Numerical implementation:

- Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).
- Ipyparallel and mpi4py to massively parallelise individual forward model runs accros a cluster.