On strategically equivalent contests

Jang SCHILTZ (University of Luxembourg)

joint work with

Jean-Daniel GUIGOU (University of Luxembourg),
& Bruno LOVAT (University of Lorraine)

June 2, 2016
Outline

1. Basic Framework - Deterministic rent

2. General Framework - Risky rent

Strategically equivalent contests

Situations in which the proportional contest dominates
Outline

1. Basic Framework - Deterministic rent

2. General Framework - Risky rent
 - Strategically equivalent contests
 - Situations in which the proportional contest dominates
Outline

1. Basic Framework - Deterministic rent

2. General Framework - Risky rent
 - Strategically equivalent contests
 - Situations in which the proportional contest dominates
General description of the contest

Two players compete for a prize. Each player chooses an effort level x_i given the expected effort level x_j of his rival. The vector of efforts (x_i, x_j) determines what each player will finally get.
General description of the contest

Two players compete for a prize V.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine)

Strategically equivalent contests

June 2, 2016 4 / 22
General description of the contest

Two players compete for a prize V.

Each player chooses an effort level x_i given the expected effort level x_j of his rival.
General description of the contest

Two players compete for a prize V.

Each player chooses an effort level x_i given the expected effort level x_j of his rival.

The vector of efforts (x_i, x_j) determines what each player will finally get.
The assumptions

Assumption 1. The contest success function \(p_i \), describing the effort of player \(i \) relative to the total effort is given by
\[
\frac{x_i}{x_i + x_j}.
\]

There are two possible interpretations for \(p_i \).
- In a Proportional contest, it is interpreted as a share of the prize.
- In a Lottery contest, as a win probability.

Assumption 2. Players are expected utility maximizers.
The assumptions

Assumption 1. The contest success function p_i, describing the effort of player i relative to the total effort is given by

$$p_i = \frac{x_i}{x_i + x_j}.$$
The assumptions

Assumption 1. The contest success function p_i, describing the effort of player i relative to the total effort is given by

$$p_i = \frac{x_i}{x_i + x_j}.$$

There are two possible interpretation for p_i.
The assumptions

Assumption 1. The contest success function p_i, describing the effort of player i relative to the total effort is given by

$$p_i = \frac{x_i}{x_i + x_j}.$$

There are two possible interpretation for p_i.

In a Proportional contest, it is interpreted as a share of the prize, in a Lottery contest as a win probability.
The assumptions

Assumption 1. The contest success function p_i, describing the effort of player i relative to the total effort is given by

$$p_i = \frac{x_i}{x_i + x_j}.$$

There are two possible interpretation for p_i.

In a **Proportional contest**, it is interpreted as a share of the prize, in a **Lottery contest** as a win probability.

Assumption 2. Players are expected utility maximizer.
Strategically equivalent contests

Definition (Chowdhury and Sheremeta (2014))
Contests are effort equivalent if they result in the same Nash equilibrium level of effort.
Strategically equivalent contests

Definition (Chowdhury and Sheremeta (2014))

Contests are effort equivalent if they result in the same Nash equilibrium level of effort.
The case of a deterministic rent

The case of a deterministic rent
The case of a deterministic rent

- Lottery contest (L)

\[\pi_L^i = (V - x_i, -x_i; p_i, 1 - p_i) \]

Expected utility

\[EU_{\pi_L}^i(x) = x_i x_i + x_j V - x_i \]

Proportional contest (P)

\[\pi_P^i = (p_i V - x_i; 1) \]

Expected utility

\[EU_{\pi_P}^i(x) = U(x_i x_i + x_j V - x_i) \]
The case of a deterministic rent

- **Lottery contest (L)**

Payoff

\[\pi^L_i = (V - x_i, -x_i; p_i, 1 - p_i). \]
The case of a deterministic rent

- **Lottery contest (L)**

Payoff

\[\pi_i^L = (V - x_i, -x_i; p_i, 1 - p_i). \]

Expected utility

\[EU\pi_i^L(x) = \frac{x_i}{x_i + x_j} U_i(V - x_i) + \frac{x_j}{x_i + x_j} U_i(-x_i). \]
The case of a deterministic rent

- **Lottery contest (L)**

 Payoff
 \[
 \pi^L_i = (V - x_i, -x_i; p_i, 1 - p_i).
 \]

 Expected utility
 \[
 EU_{\pi^L_i}(x) = \frac{x_i}{x_i + x_j} U_i(V - x_i) + \frac{x_j}{x_i + x_j} U_i(-x_i).
 \]

- **Proportional contest (P)**
The case of a deterministic rent

- **Lottery contest (L)**

Payoff

\[\pi_i^L = (V - x_i, -x_i; p_i, 1 - p_i). \]

Expected utility

\[EU_{\pi_i^L}(x) = \frac{x_i}{x_i + x_j} U_i(V - x_i) + \frac{x_j}{x_i + x_j} U_i(-x_i). \]

- **Proportional contest (P)**

Payoff

\[\pi_i^P = (p_iV - x_i; 1). \]
The case of a deterministic rent

- **Lottery contest (L)**

Payoff

$$\pi^L_i = (V - x_i, -x_i; p_i, 1 - p_i).$$

Expected utility

$$EU_{\pi^L_i}(x) = \frac{x_i}{x_i + x_j} U_i(V - x_i) + \frac{x_j}{x_i + x_j} U_i(-x_i).$$

- **Proportional contest (P)**

Payoff

$$\pi^P_i = (p_i V - x_i; 1).$$

Expected utility

$$EU_{\pi^P_i}(x) = U(\frac{x_i}{x_i + x_j} V - x_i).$$
The case of risk-neutral players

If players are risk-neutral expected utility maximizers ($U(z) = z$), then their expected utility $EU_{\pi_L}(x) = x_i + x_j - x_i \equiv UE_{\pi_L}(x) \equiv U_{\pi_P}(x)$.

Theorem: The two contests have Nash equilibrium $x^* = V/4$ and are thus strategically equivalent.
The case of risk-neutral players

If players are **risk-neutral** expected utility maximizer \((U(z) = z)\)

\[
EU_{\pi_i}^L(x) = \frac{x_i}{x_i + x_j} V - x_i \equiv UE_{\pi_i}^L(x) \equiv U_{\pi_i}^P(x).
\]

\[
D_{x_i}(\frac{x_i}{x_i + x_j} V - x_i) = V \frac{x_j}{(x_i + x_j)^2} - 1.
\]

Theorem

The two contests have Nash equilibrium \(x^ = V/4\) and are thus strategically equivalent.*
Assumption 3. The players have constant absolute risk-averse (CARA) preferences represented by the negative exponential utility function
\[u(\pi_i) = -\exp(-r\pi_i) , \]
where \(r > 0 \) represents the coefficient of absolute risk aversion. We can then show that
\[x^*_P = \sqrt{V}, \]
\[x^*_L = \frac{e^{Vr} - 1}{2r(1 + e^{Vr})} = \frac{1}{2} r \tanh(\frac{Vr}{2}). \]
The case of risk averse players

Assumption 3. The players have constant absolute risk-averse (CARA) preferences represented by the negative exponential utility function

\[u(\pi_i) = -\exp(-r\pi_i), \]

where \(r > 0 \) represents the coefficient of absolute risk aversion.
The case of risk averse players

Assumption 3. The players have constant absolute risk-averse (CARA) preferences represented by the negative exponential utility function

\[u(\pi_i) = -\exp(-r\pi_i), \]

where \(r > 0 \) represents the coefficient of absolute risk aversion.

We can then show that

- \(x_P^* = \frac{V}{4} \).
The case of risk averse players

Assumption 3. The players have constant absolute risk-averse (CARA) preferences represented by the negative exponential utility function

\[u(\pi_i) = -\exp(-r\pi_i), \]

where \(r > 0 \) represents the coefficient of absolute risk aversion.

We can then show that

- \(x_P^* = \frac{V}{4} \).
- \(x_L^* = \frac{e^{Vr} - 1}{2r(e^{Vr} + 1)} = \frac{1}{2r} \tanh\left(\frac{Vr}{2}\right). \)
The case of risk-neutral players

Hence,
The case of risk-neutral players

Hence,

\[2r(x_P^* - x_L^*) = 2r \left(\frac{V}{4} - \frac{1}{2r} \tanh\left(\frac{V_r}{2} \right) \right) \]

\[= \frac{V_r}{2} - \tanh\left(\frac{V_r}{2} \right) > 0, \]

since \(x \geq \tanh(x), \forall x \geq 0 \)
The case of risk-neutral players

Hence,

\[2r(x_P^* - x_L^*) = 2r \left(\frac{V}{4} - \frac{1}{2r} \tanh \left(\frac{Vr}{2} \right) \right) \]

\[= \frac{Vr}{2} - \tanh \left(\frac{Vr}{2} \right) > 0, \]

since \(x \geq \tanh(x), \ \forall x \geq 0 \)
Outline

1. Basic Framework - Deterministic rent

2. General Framework - Risky rent
 - Strategically equivalent contests
 - Situations in which the proportional contest dominates
In this section we suppose that the rent V is a random variable with density f.

It's Laplace transform $f^\ast(t)$ is defined by $f^\ast(t) = \mathbb{E}\left[\exp\left(tV\right)\right]$.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine)

Strategically equivalent contests

June 2, 2016 12 / 22
In this section we suppose that the rent V is a random variable with density f.

It’s Laplace transform f^* is defined by

$$f^*(t) = E[\exp(tV)].$$
The proportional contest

Expected utility:

$$\text{Eu}(\pi_i) = E(-e^{-r\pi_i}) = \int_{-\infty}^{+\infty}(-e^{-r(p_iu-x_i)})f(u)du = -e^{rx_i}\int_{-\infty}^{+\infty}e^{-rp_iu}f(u)du = -e^{rx_i}f^*(x_i + x_j).$$

This gives us an equilibrium effort

$$x^p = \frac{1}{4}(f^*(r^2))'.$$
The proportional contest

Expected utility:

\[Eu(\pi_i) = E \left(-e^{-r\pi_i} \right) = \int_{-\infty}^{+\infty} \left(-e^{-r(p_iu-x_i)} \right) f(u) du \]

\[= -e^{rx_i} \int_{-\infty}^{+\infty} e^{-rp_iu} f(u) du \]

\[= -e^{rx_i} f^* \left(\frac{-rx_i}{x_i + x_j} \right). \]
The proportional contest

Expected utility:

\[Eu(\pi_i) = E(-e^{-r\pi_i}) = \int_{-\infty}^{+\infty} (-e^{-r(p_i u - x_i)}) f(u) du \]

\[= -e^{rx_i} \int_{-\infty}^{+\infty} e^{-rp_i u} f(u) du \]

\[= -e^{rx_i} f^* \left(\frac{-rx_i}{x_i + x_j} \right). \]

This gives us an equilibrium effort

\[x_P^* = \frac{1}{4} \left(\frac{f^* \left(\frac{-r}{2} \right)'}{f^* \left(\frac{-r}{2} \right)} \right). \]
The lottery contest

\[E_u = x_1 x_2 \left(\int_{-\infty}^{\infty} e^{-u x_1} f(u) \, du \right) + x_2 x_1 + x_2 \left(e^{r x_1} \right) = -x_1 e^{r x_1} x_1 + x_2 f^{*} (-r) - x_2 e^{r x_1} x_1 + x_2. \]

This gives us an equilibrium effort

\[x^* L = 1 - f^{*} (-r) \frac{2}{r (1 + f^{*} (-r))}. \]

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine)
The lottery contest

Expected utility:

\[Eu(\pi_1) = \frac{x_1}{x_1 + x_2} \left(\int_{-\infty}^{+\infty} (- \exp(-ru) f(u) du) \right) + \frac{x_2}{x_1 + x_2} \left(-e^{rx_1} \right) \]

\[= -\frac{x_1 \exp(rx_1)}{x_1 + x_2} \left(\int_{-\infty}^{+\infty} \exp(-ru) f(u) du \right) - \frac{x_2}{x_1 + x_2} \left(e^{rx_1} \right) \]

\[= -\frac{x_1 \exp(rx_1)}{x_1 + x_2} f^*(-r) - \frac{x_2 \exp(rx_1)}{x_1 + x_2} . \]
The lottery contest

Expected utility:

$$Eu(\pi_1) = \frac{x_1}{x_1 + x_2} \left(\int_{-\infty}^{+\infty} (-\exp(-ru)f(u)du) + \frac{x_2}{x_1 + x_2} (-e^{rx_1}) \right)$$

$$= -\frac{x_1 \exp(rx_1)}{x_1 + x_2} \left(\int_{-\infty}^{+\infty} \exp(-ru)f(u)du \right) - \frac{x_2}{x_1 + x_2} (e^{rx_1})$$

$$= -\frac{x_1 \exp(rx_1)}{x_1 + x_2} f^*(-r) - \frac{x_2 \exp(rx_1)}{x_1 + x_2}.$$

This gives us an equilibrium effort

$$x_L^* = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))}.$$
Strategically equivalent contests thus exist if

\[
\frac{1}{4} \frac{(f^*)'(-\frac{r}{2})}{f^*(-\frac{r}{2})} = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))},
\]

where \(f^* \) is the Laplace transform of the density of the rent.
Strategically equivalent contests thus exist if

\[
\frac{1}{4} \frac{(f^*)'(-\frac{r}{2})}{f^*(-\frac{r}{2})} = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))},
\]

where \(f^* \) is the Laplace transform of the density of the rent.

This is a nonlinear, non local differential equation.
First set of solutions: The exponential law

Let V be exponentially distributed with parameter $\lambda > 0$. Then,

$$f(x) = \lambda e^{-\lambda x},$$

for t such that $0 < t < \lambda$ and

$$f'(t) = \lambda \left(t - \frac{1}{\lambda}
ight)^2.$$

Hence,

$$x^*P = \frac{1}{4} \left(f^*(-r^2) f^*(-r^2) \right),$$

and

$$x^*L = 1 - f^*(-r) \frac{1}{1 + f^*(-r)} = \frac{1}{2} r + \frac{4}{\lambda}.$$
First set of solutions: The exponential law

Let V be exponentially distributed with parameter $\lambda > 0$.

\[f(x) = \lambda e^{-\lambda x}, \quad f^*(t) = \lambda \frac{\lambda}{\lambda - t} \text{ for } t < \lambda \]

\[f^*(t)' = \lambda \left(t - \frac{\lambda}{\lambda - t} \right)^2. \]

Hence,

\[x^*P = \frac{1}{4} \left(f^*(-r)^2 \right)' f^*(-r)^2 = \frac{1}{2} r + 4 \lambda. \]

\[x^*L = 1 - f^*(-r)^2 r \left(1 + f^*(-r) \right) = \frac{1}{2} r + 4 \lambda. \]

\[\Rightarrow x^*P = x^*L = \frac{1}{2} r + 4 \lambda. \]
First set of solutions: The exponential law

Let V be exponentially distributed with parameter $\lambda > 0$.

Then, $f(x) = \lambda e^{-\lambda x}$, $f^*(t) = \frac{\lambda}{\lambda - t}$ for $t < \lambda$ and $(f^*(t))' = \frac{\lambda}{(t-\lambda)^2}$.
First set of solutions: The exponential law

Let V be exponentially distributed with parameter $\lambda > 0$.

Then, $f(x) = \lambda e^{-\lambda x}$, $f^*(t) = \frac{\lambda}{\lambda - t}$ for $t < \lambda$ and $(f^*(t))' = \frac{\lambda}{(t - \lambda)^2}$.

Hence,

$$x^*_P = \frac{1}{4} \left(\frac{f^* \left(-\frac{r}{2} \right)'}{f^* \left(-\frac{r}{2} \right)} \right) = \frac{1}{4} \left(\frac{\lambda}{\left(-\frac{r}{2} - \lambda \right)^2} \right) = \frac{1}{2r + 4\lambda}$$
First set of solutions: The exponential law

Let \(V \) be exponentially distributed with parameter \(\lambda > 0 \).

Then, \(f(x) = \lambda e^{-\lambda x} \), \(f^*(t) = \frac{\lambda}{\lambda - t} \) for \(t < \lambda \) and \((f^*(t))' = \frac{\lambda}{(t-\lambda)^2}\).

Hence,

\[
x_P^* = \frac{1}{4} \left(\frac{f^* \left(-\frac{r}{2} \right)'}{f^* \left(-\frac{r}{2} \right)} \right) = \frac{1}{4} \left(\frac{\lambda}{\left(-\frac{r}{2} - \lambda \right)^2} \right) = \frac{1}{2r + 4\lambda}
\]

and

\[
x_L^* = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))} = \frac{1 - \frac{\lambda}{\lambda - r}}{2r(1 + \frac{\lambda}{\lambda - r})} = \frac{1}{2r + 4\lambda}
\]
First set of solutions: The exponential law

Let V be exponentially distributed with parameter $\lambda > 0$.

Then, $f(x) = \lambda e^{-\lambda x}$, $f^*(t) = \frac{\lambda}{\lambda - t}$ for $t < \lambda$ and $(f^*(t))' = \frac{\lambda}{(t - \lambda)^2}$.

Hence,

$$x_P^* = \frac{1}{4} \left(\frac{f^*\left(-\frac{r}{2}\right)}{f^*\left(-\frac{r}{2}\right)} \right) = \frac{1}{4} \left(\frac{\lambda}{\left(\frac{r}{2} - \frac{\lambda}{\lambda - r}\right)^2} \right) = \frac{1}{2r + 4\lambda}$$

and

$$x_L^* = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))} = \frac{1 - \frac{\lambda}{\lambda - r}}{2r(1 + \frac{\lambda}{\lambda - r})} = \frac{1}{2r + 4\lambda}$$

$$\Rightarrow \quad x_P^* = x_L^* = \frac{1}{2r + 4\lambda}.$$
Second set of solutions: A polynomial function

\[f^*(t) = at + bt + ct^2. \]

Then, \((f^*)'(t) = b + 2ct \) and we can compute the equilibrium efforts as

\[x^*P = \frac{1}{4}(b - cr) \quad \text{and} \quad x^*L = \frac{1}{4}a + b - cr^2 - r(1 + a - br + cr^2). \]
Second set of solutions : A polynomial function

Let \(f^*(t) = a + bt + ct^2 \).
Let $f^*(t) = a + bt + ct^2$.

Then, $(f^*(t))' = b + 2ct$
Second set of solutions: A polynomial function

Let $f^*(t) = a + bt + ct^2$.

Then, $(f^*(t))' = b + 2ct$

and we can compute the equilibrium efforts as

$$x_P^* = \frac{1}{4} \left(\frac{b - cr}{a - b^2 + c} \right)$$
Second set of solutions: A polynomial function

Let $f^*(t) = a + bt + ct^2$.

Then, $(f^*(t))' = b + 2ct$

and we can compute the equilibrium efforts as

$$x_P^* = \frac{1}{4} \left(\frac{b-cr}{a-br^2+c\frac{r^2}{4}} \right)$$

$$x_L^* = \frac{1-a+br-cr^2}{2r(1+a-br+cr^2)}.$$
Second set of solutions: A polynomial function

Both contests are strategically equivalent and f is a density function of a random variable iff $a = 1$, $c = 0$ and $0 < b < 2/r$.

$\therefore \quad x^* P = x^* S = b^2 (2 - b r)$.

Moreover, $f(t) = \text{dirac}(t) + b \text{dirac}(1, t)$, where $\text{dirac}(1, t)$ denotes the derivative of $\text{dirac}(t)$.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine)
Both contests are strategically equivalent and f is a density function of a random variable iff $a = 1$, $c = 0$ and $0 < b < 2/r$.

In that case, $x_P^* = x_S^* = \frac{b}{2(2-br)}$.
Second set of solutions: A polynomial function

Both contests are strategically equivalent and \(f \) is a density function of a random variable iff \(a = 1, c = 0 \) and \(0 < b < 2/r \).

In that case, \(x^*_P = x^*_S = \frac{b}{2(2-br)} \).

Moreover,

\[
f(t) = \text{dirac}(t) + b \text{dirac}(1, t),
\]

where \(\text{dirac}(1, t) \) denotes the derivative of \(\text{dirac}(t) \).
Open question 1

Are these all possible solution?
The normal distribution

If the rent is normally distributed with mean V and variance σ^2 then

$$f^*(r) = \exp(rV + \frac{1}{2}r^2\sigma^2)$$

and

$$(f^*(r))^\prime = (r\sigma^2 + V)e^{\frac{1}{2}r^2\sigma^2 + Vr}.$$

The contest equilibrium levels are then given by

$$x^*P = \frac{(f^*(r))^\prime}{4f^*(r)} = 1 - \frac{V}{8\sigma^2}r^2$$

and

$$x^*L = 1 - \frac{2r(1 + f^*(r))^2}{r(1 + e^{\frac{1}{2}r^2\sigma^2 + Vr})} = \frac{1}{2}r \tanh(2r(\frac{1}{4}V - \frac{1}{8}r^2\sigma^2)).$$

Hence,

$$x^*P - x^*L = 2r(1 - \frac{V}{8\sigma^2}r^2) - \tanh(2r(\frac{1}{4}V - \frac{1}{8}r^2\sigma^2)) > 0$$

since $x^* \geq \tanh(x^*) \forall x^* \geq 0$.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine)

Strategically equivalent contests

June 2, 2016
The normal distribution

If the rent is normally distributed with mean V and variance σ^2 then

$$f^*(r) = \exp(rV + \frac{1}{2}r^2\sigma^2)$$

and

$$(f^*(r))' = (r\sigma^2 + V) e^{\frac{1}{2}r^2\sigma^2 + Vr}.$$
The normal distribution

If the rent is normally distributed with mean V and variance σ^2 then

$$f^*(r) = \exp(rV + \frac{1}{2} r^2 \sigma^2) \quad \text{and} \quad (f^*(r))' = (r\sigma^2 + V) e^{\frac{1}{2} r^2 \sigma^2 + Vr}.$$

The contest equilibrium levels are then given by
The normal distribution

If the rent is normally distributed with mean V and variance σ^2 then $f^*(r) = \exp(rV + \frac{1}{2} r^2 \sigma^2)$ and $(f^*(r))' = (r\sigma^2 + V) e^{\frac{1}{2} r^2 \sigma^2 + Vr}$.

The contest equilibrium levels are then given by

$$x_P^* = \frac{(f^*)'(-\frac{r}{2})}{4f^*(-\frac{r}{2})} = \frac{1}{4} V - \frac{1}{8} r\sigma^2$$
The normal distribution

If the rent is normally distributed with mean V and variance σ^2 then

$$f^*(r) = \exp(rV + \frac{1}{2} r^2 \sigma^2)$$

and

$$(f^*(r))' = (r\sigma^2 + V) e^{\frac{1}{2} r^2 \sigma^2 + Vr}.$$

The contest equilibrium levels are then given by

$$x_P^* = \frac{(f^*)'(-\frac{r}{2})}{4f^*(-\frac{r}{2})} = \frac{1}{4} V - \frac{1}{8} r\sigma^2$$

and

$$x_L^* = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))} = \frac{1 - e^{\frac{1}{2} r^2 \sigma^2 - Vr}}{2r(1 + e^{\frac{1}{2} r^2 \sigma^2 - Vr})} = \frac{1}{2r} \tanh\left(\frac{r}{2}(V - \frac{1}{2} r\sigma^2)\right).$$
The normal distribution

If the rent is normally distributed with mean V and variance σ^2 then

$$f^*(r) = \exp(rV + \frac{1}{2}r^2\sigma^2)$$

and

$$(f^*(r))' = (r\sigma^2 + V) \exp\left(\frac{1}{2}r^2\sigma^2 + Vr\right).$$

The contest equilibrium levels are then given by

$$x^*_P = \frac{(f^*)'(-\frac{r}{2})}{4f^*(-\frac{r}{2})} = \frac{1}{4}V - \frac{1}{8}r\sigma^2$$

and

$$x^*_L = \frac{1 - f^*(-r)}{2r(1 + f^*(-r))} = \frac{1 - \exp\left(\frac{1}{2}r^2\sigma^2 - Vr\right)}{2r(1 + \exp\left(\frac{1}{2}r^2\sigma^2 - Vr\right))} = \frac{1}{2r} \tanh\left(\frac{r}{2}(V - \frac{1}{2}r\sigma^2)\right).$$

Hence,

$$x^*_P - x^*_L = 2r\left(\frac{1}{4}V - \frac{1}{8}r\sigma^2\right) - \tanh\left(2r\left(\frac{1}{4}V - \frac{1}{8}r\sigma^2\right)\right) > 0$$

since $x \geq \tanh(x) \ \forall x \geq 0.$
The uniform distribution

If the rent is uniformly distributed on an interval \([a, b]\) then

\[f^*(r) = e^{rb} - e^{ra} \]

and

\[(f^*)' = -\frac{1}{r^2} (a - b) (e^{ar} - e^{br} - ar + bre) \]
The uniform distribution

If the rent is uniformly distributed on an interval \([a, b]\) then
\[
f^\ast(r) = \frac{e^{rb} - e^{ra}}{r(b-a)} \quad \text{and} \quad (f^\ast)'(r) = -\frac{1}{r^2(a-b)} (e^{ar} - e^{br} - a e^{ar} + b e^{br}).
\]
The uniform distribution

If the rent is uniformly distributed on an interval \([a, b]\) then
\[f^*(r) = \frac{e^{rb} - e^{ra}}{r(b-a)}\]
and
\[(f^*)'(r) = -\frac{1}{r^2(a-b)}(e^{ar} - e^{br} - ar e^{ar} + bre^{br})\].

The contest equilibrium levels are then given by
The uniform distribution

If the rent is uniformly distributed on an interval \([a, b]\) then
\[
 f^*(r) = \frac{e^{rb} - e^{ra}}{r(b-a)} \quad \text{and} \quad (f^*)'(r) = -\frac{1}{r^2(a-b)} \left(e^{ar} - e^{br} - are^{ar} + bre^{br} \right).
\]

The contest equilibrium levels are then given by

\[
x_P^* = \frac{1}{4r} \frac{1}{e^{-\frac{1}{2}ar} - e^{-\frac{1}{2}br}} \left(2e^{-\frac{1}{2}ar} - 2e^{-\frac{1}{2}br} + are^{-\frac{1}{2}ar} - bre^{-\frac{1}{2}br} \right)
\]
The uniform distribution

If the rent is uniformly distributed on an interval \([a, b]\) then
\[f^*(r) = \frac{e^{rb} - e^{ra}}{r(b-a)} \quad \text{and} \quad (f^*)'(r) = -\frac{1}{r^2(a-b)} \left(e^{ar} - e^{br} - ar e^{ar} + br e^{br} \right). \]

The contest equilibrium levels are then given by

\[x^*_P = \frac{1}{4r} \frac{1}{e^{-\frac{1}{2}ar} - e^{-\frac{1}{2}br}} \left(2e^{-\frac{1}{2}ar} - 2e^{-\frac{1}{2}br} + ar e^{-\frac{1}{2}ar} - br e^{-\frac{1}{2}br} \right) \]

and

\[x^*_L = \frac{e^{-br} - e^{-ar} + br - ar}{2re^{-ar} - 2re^{-br} - 2ar^2 + 2br^2}. \]
The uniform distribution

If the rent is uniformly distributed on an interval \([a, b]\) then
\[
f^*(r) = \frac{e^{rb} - e^{ra}}{r(b-a)} \quad \text{and} \quad (f^*)'(r) = -\frac{1}{r^2(a-b)} \left(e^{ar} - e^{br} - are^{ar} + bre^{br} \right).
\]

The contest equilibrium levels are then given by

\[
x_P^* = \frac{1}{4r} \frac{1}{e^{\frac{1}{2}ar} - e^{\frac{1}{2}br}} \left(2e^{-\frac{1}{2}ar} - 2e^{-\frac{1}{2}br} + are^{-\frac{1}{2}ar} - bre^{-\frac{1}{2}br} \right)
\]

and

\[
x_L^* = \frac{e^{-br} - e^{-ar} + br - ar}{2re^{-ar} - 2re^{-br} - 2ar^2 + 2br^2}.
\]

Again, one can show that \(X_P^* > X_L^*\).
Open question 2

Does the proportional contest always dominate the lottery contest?