SOME NATURALLY DEFINED STAR PRODUCTS FOR KÄHLER MANIFOLDS

Martin Schlichenmaier

Mathematics Research Unit
University of Luxembourg

Bayrischzell Workshop 2016
April 29- May 3, 2016
Travaux mathématiques, Vol. 20 (2012), 187-204
One mathematical aspect of quantization is the passage from the commutative world to the non-commutative world. One way a deformation quantization (also called star product) can only be done on the level of formal power series over the algebra of functions. It was pinned down in a mathematically satisfactory manner by Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer.
give an overview of some naturally defined star products in the case that our “phase-space manifold” is a (compact) Kähler manifold

here we have additional complex structure and search for star products respecting it

yield star products of separation of variables type (Karabegov) resp. Wick or anti-Wick type (Bordemann and Waldmann)

both constructions are quite different, but there is a 1:1 correspondence (Neumaier)

still quite a lot of them
- single out certain naturally given ones.
- restrict to quantizable Kähler manifolds
- Berezin-Toeplitz star product, Berezin transform, Berezin star product
- a side result: star product of geometric quantization
- all of the above are equivalent star product, but not the same
- give Deligne-Fedosov class and Karabegov forms
- give the equivalence transformations
GEOMETRIC SET-UP

- \((M, \omega)\) a pseudo-Kähler manifold.
 \(M\) a complex manifold, and \(\omega\), a non-degenerate closed \((1, 1)\)-form

- if \(\omega\) is a positive form then \((M, \omega)\) is a honest Kähler manifold

- \(C^\infty(M)\) the algebra of complex-valued differentiable functions with associative product given by point-wise multiplication

- define the Poisson bracket

\[
\{ f, g \} := \omega(X_f, X_g) \quad \omega(X_f, \cdot) = df(\cdot)
\]

- \(C^\infty(M)\) becomes a Poisson algebra.
Star product

Star product for M is an associative product \star on $A := C^\infty(M)[[\nu]]$, such that:

1. $f \star g = f \cdot g \mod \nu$,
2. $(f \star g - g \star f)/\nu = -i\{f, g\} \mod \nu$.

Also,$$
f \star g = \sum_{k=0}^{\infty} \nu^k C_k(f, g), \quad C_k(f, g) \in C^\infty(M),
$$
differential (or local) if $C_k(\ , \)$ are bidifferential operators.

Usually: $1 \star f = f \star 1 = f$.
Equivalence of star products

\(\star\) and \(\star'\) (the same Poisson structure) are equivalent means there exists a formal series of linear operators

\[
B = \sum_{i=0}^{\infty} B_i \nu^i, \quad B_i : C^\infty(M) \to C^\infty(M),
\]

with \(B_0 = id\) and \(B(f) \star' B(g) = B(f \star g)\).

to every equivalence class of a differential star product one assigns its Deligne-Fedosov class

\[
cl(\star) \in \frac{1}{i} \left(\frac{1}{\nu} \omega + H^{2}_{dR}(M, \mathbb{C})[[\nu]] \right).
\]

gives a 1:1 correspondence

Separation of Variables Type

- **pseudo-Kähler** case: we look for star products adapted to the complex structure
- **separation of variables type** (Karabegov)
- **Wick and anti-Wick type** (Bordemann - Waldmann)
- **Karabegov convention**: of separation of variables type if in $C_k(.,.)$ for $k \geq 1$ the first argument differentiated in anti-holomorphic and the second argument in holomorphic directions.
 - we call this convention **separation of variables (anti-Wick) type** and call a star product of **separation of variables (Wick) type** if the role of the variables is switched
- we **need** both conventions
Karabegov construction (Sketch of a sketch)

- \((M, \omega_{-1})\) the pseudo-Kähler manifold
- A formal deformation of the form \((1/\nu)\omega_{-1}\) is a formal form
 \[
 \widehat{\omega} = \left(\frac{1}{\nu}\right)\omega_{-1} + \omega_0 + \nu \omega_1 + \ldots
 \]
 \(\omega_r, \ r \geq 0\), closed \((1,1)\)-forms on \(M\).
- Karabegov: to every such \(\widehat{\omega}\) there exists a star product ∗ of anti-Wick type
- And vice-versa
- Karabegov form of the star product ∗ is \(kf(∗) := \widehat{\omega}\),
- The star product ∗\(_K\) with classifying Karabegov form \((1/\nu)\omega_{-1}\) is Karabegov’s standard star product.
Formal Berezin transform

for local antiholomorphic functions a and holomorphic functions b on $U \subset M$ we have the relation

$$a \star b = I_{\star}(b \star a) = I_{\star}(b \cdot a),$$

can be written as

$$I_{\star} = \sum_{i=0}^{\infty} I_i \nu^i, \quad l_i : C^{\infty}(M) \to C^{\infty}(M), \quad l_0 = id, \quad l_1 = \Delta.$$

the formal Berezin transform I_{\star} determines the \star uniquely.
Start with \star separation of variables type (anti-Wick) (M, ω_{-1})

opposite of the dual

$$f \ast' g = l^{-1}(l(f) \ast l(g)).$$
on (M, ω_{-1}), is of Wick type

the formal Berezin transform l_\ast establishes an equivalence of the star products

(\mathcal{A}, \star) and (\mathcal{A}, \ast')
Classifying forms

⋆ star product of anti-Wick type with Karabegov form $kf(⋆) = \hat{ω}$

Deligne-Fedosov class calculates as

$$cl(⋆) = \frac{1}{i}([\hat{ω}] - \frac{δ}{2}).$$

[..] denotes the de-Rham class of the forms and $δ$ is the canonical class of the manifold i.e. $δ := c_1(K_M)$.

standard star product $⋆_K$ (with Karabegov form $\hat{ω} = (1/ν)ω_{-1}$)

$$cl(⋆_K) = \frac{1}{i}(\frac{1}{ν}[ω_{-1}] - \frac{δ}{2}).$$
For the Karabegov form to be in 1:1 correspondence, we need to fix a convention: Wick or anti-Wick for reference. Here we refer to the anti-Wick type product. It \star is of Wick type we set

$$kf(\star) := kf(\star^{op}),$$

where

$$f \star^{op} g = g \star f$$

is obtained by switching the arguments. It is a star product of (anti-Wick) type for the pseudo-Kähler manifold $(M, -\omega)$.
Bordemann and Waldmann: modification of Fedosov’s geometric existence proof.
- fibre-wise Wick product.
- by a modified Fedosov connection a star product \star_{BW} of Wick type is obtained.
- Karabegov form is $-(1/\nu)\omega$
- Deligne class class

$$\text{cl}(\star_{BW}) = -\text{cl}(\star_{BW}^{\text{op}}) = \frac{1}{i} \left(\frac{1}{\nu} [\omega] + \frac{\delta}{2} \right).$$
Neumaier: by adding a formal closed \((1, 1)\) form as parameter each star product of separation of variables type can be obtained by the Bordemann-Waldmann construction.

Reshetikhin and Takhtajan: formal Laplace expansions of formal integrals related to the star product. Coefficients of the star product can be expressed (roughly) by Feynman diagrams.
Berezin-Toeplitz Star Product

- compact and quantizable Kähler manifold \((M, \omega)\),
- quantum line bundle \((L, h, \nabla)\), \(L\) is a holomorphic line bundle over \(M\), \(h\) a hermitian metric on \(L\), \(\nabla\) a compatible connection
- recall \((M, \omega)\) is quantizable, if there exists such \((L, h, \nabla)\), with
 \[
 \text{curv}_{(L, \nabla)} = -i \omega
 \]
- consider all positive tensor powers \((L^m, h^{(m)}, \nabla^{(m)})\),
scalar product

\[\langle \varphi, \psi \rangle := \int_M h^{(m)}(\varphi, \psi) \Omega, \quad \Omega := \frac{1}{n!} \omega \wedge \cdots \wedge \omega \]

\[\Pi^{(m)} : L^2(M, L^m) \longrightarrow \Gamma_{hol}(M, L^m) \]

Take \(f \in C^\infty(M) \), and \(s \in \Gamma_{hol}(M, L^m) \)

\[s \mapsto T_f^{(m)}(s) := \Pi^{(m)}(f \cdot s) \]

defines

\[T_f^{(m)} : \Gamma_{hol}(M, L^m) \rightarrow \Gamma_{hol}(M, L^m) \]

the Toeplitz operator of level \(m \).
Berezin-Toeplitz operator quantization

\[f \mapsto \left(T^{(m)}_f \right)_{m \in \mathbb{N}_0}. \]

has the correct semi-classical behavior

Theorem (Bordemann, Meinrenken, and Schl.)

(a) \[\lim_{m \to \infty} \| T^{(m)}_f \| = |f|_\infty \]

(b) \[\| m \left[T^{(m)}_f , T^{(m)}_g \right] - T^{(m)}_{\{f,g\}} \| = O(1/m) \]

(c) \[\| T^{(m)}_f T^{(m)}_g - T^{(m)}_{f \cdot g} \| = O(1/m) \]
Statement of the previous theorem corresponds to the fact that we have a continuous field of C^*-algebras (with additionally Dirac condition on commutators).

- over $I = \{0\} \cup \{\frac{1}{m} \in \mathbb{N}\}$,
- over $\{0\}$ we set the algebra $C^\infty(M)$, over $\frac{1}{m}$ the algebra $\text{End}(\Gamma_{hol}(M, L^m))$,
- section is given by $f \in C^\infty(M)$

\[f \mapsto (f, T_f^{(m)}, m \in \mathbb{N}). \]
Theorem (BMS, Schl., Karabegov and Schl.)

\[\exists \text{ a unique differential star product} \]

\[f \star_{BT} g = \sum \nu^k C_k(f, g) \]

such that

\[T_f^{(m)} T_g^{(m)} \sim \sum_{k=0}^{\infty} \left(\frac{1}{m} \right)^k T_{C_k(f,g)}^{(m)} \]

Further properties: is of separation of variables type (Wick type)

classifying Deligne-Fedosov class \(\frac{1}{\nu} (\frac{1}{\nu} [\omega] - \frac{\delta}{2}) \) and Karabegov form \(\frac{-1}{\nu} \omega + \omega_{can} \)

possible: auxiliary hermitian line (or even vector) bundle can be added, meta-plectic correction.
Further result: The Toeplitz map of level m

$$T^{(m)} : C^\infty(M) \to \text{End}(\Gamma_{\text{hol}}(M, L^m))$$

is surjective

implies that the operator $Q_f^{(m)}$ of geometric quantization (with holomorphic polarization) can be written as Toeplitz operator of a function f_m (maybe different for every m)

indeed Tuynman relation:

$$Q_f^{(m)} = i \left(T_f^{(m)} \right) - \frac{1}{2m} \Delta f$$
• star product of geometric quantization

• set \(B(f) := (id - \nu \frac{\Delta}{2})f \)

\[
f \star_{GQ} g = B^{-1}(B(f) \star_{BT} B(g))
\]

defines an equivalent star product

• can also be given by the asymptotic expansion of product of geometric quantisation operators

• it is not of separation of variable type

• but equivalent to \(\star_{BT} \).
Where is the Berezin star product??

- It is an important star product: Berezin, Cahen-Gutt-Rawnsley, etc.
- The original definition is limited in applicability.
- We will give a definition for quantizable Kähler manifold.
- Clue: define it as the opposite of the dual of \star_{BT}.
- $f \star_B g := I(I^{-1}(f) \star_{BT} I^{-1}(g))$
- Problem: How to determine I?
- describe the formal I by asymptotic expansion of some geometrically defined $I^{(m)}$
assume the bundle L is very ample (i.e. has enough global sections)

pass to its dual $(U, k) := (L^*, h^{-1})$ with dual metric k

inside of the total space U, consider the circle bundle

$$Q := \{ \lambda \in U \mid k(\lambda, \lambda) = 1 \},$$

$\tau : Q \rightarrow M$ (or $\tau : U \rightarrow M$) the projection,
coherent vectors/states in the sense of Berezin-Rawnsley-Cahen-Gutt:

\[\langle e^{(m)}_\alpha, s \rangle = \alpha \otimes^m (s(\tau(\alpha))) \]

where

\[x \in M \mapsto \alpha = \tau^{-1}(x) \in U \setminus 0 \mapsto e^{(m)}_\alpha \in \Gamma_{hol}(M, L^m) \]

As

\[e^{(m)}_{c\alpha} = \bar{c}^m \cdot e^{(m)}_\alpha, \quad c \in \mathbb{C}^* := \mathbb{C} \setminus \{0\} \]

we obtain:

\[x \in M \mapsto e^{(m)}_x := [e^{(m)}_\alpha] \in \mathbb{P}(\Gamma_{hol}(M, L^m)) \]
Applications

- Bergman projectors $\Pi^{(m)}$, Bergman kernels,

- Covariant Berezin symbol $\sigma^{(m)}(A)$ (of level m) of an operator $A \in \text{End}(\Gamma_{hol}(M, L^{(m)}))$

 $$\sigma^{(m)}(A) : M \to \mathbb{C},$$

 $$x \mapsto \sigma^{(m)}(A)(x) := \frac{\langle e^{(m)}_\alpha, Ae^{(m)}_\alpha \rangle}{\langle e^{(m)}_\alpha, e^{(m)}_\alpha \rangle} = \text{Tr}(AP^{(m)}_x)$$
IMPORTANCE OF THE COVARIANT SYMBOL

- Construction of the Berezin star product, only for limited classes of manifolds (see Berezin, Cahen-Gutt-Rawnsley)
- \(\mathcal{A}^{(m)} \leq C^\infty(M) \), of level \(m \) covariant symbols.
- Symbol map is injective (follows from Toeplitz map surjective)
- For \(\sigma^{(m)}(A) \) and \(\sigma^{(m)}(B) \) the operators \(A \) and \(B \) are uniquely fixed

\[
\sigma^{(m)}(A) \star_{(m)} \sigma^{(m)}(B) := \sigma^{(m)}(A \cdot B)
\]

- \(\star_{(m)} \) on \(\mathcal{A}^{(m)} \) is an associative and noncommutative product
- Crucial problem, how to obtain from \(\star_{(m)} \) a star product for all functions (or symbols) independent from the level \(m \)?
Berezin transform

\[I^{(m)} : C^\infty(M) \to C^\infty(M), \quad f \mapsto I^{(m)}(f) := \sigma^{(m)}(T_f^{(m)}) \]

Theorem: (Karabegov - Schl.)

\(I^{(m)}(f) \) has a complete asymptotic expansion as \(m \to \infty \)

\[I^{(m)}(f)(x) \sim \sum_{i=0}^{\infty} I_i(f)(x) \frac{1}{m^i}, \]

\(I_i : C^\infty(M) \to C^\infty(M), \quad I_0(f) = f, \quad I_1(f) = \Delta f. \)

- \(\Delta \) is the Laplacian with respect to the metric given by the Kähler form \(\omega \)
Berezin Star Product

- From asymptotic expansion of the Berezin transform get formal expression

\[I = \sum_{i=0}^{\infty} l_i \nu^i, \quad l_i : C^\infty(M) \rightarrow C^\infty(M) \]

- Set \(f \star_B g := \text{I}(l^{-1}(f) \star_{BT} l^{-1}(g)) \)

- \(\star_B \) is called the Berezin star product

- \(I \) gives the equivalence to \(\star_{BT} \) (\(I_0 = \text{id} \)). Hence, the same Deligne-Fedosov classes

- If the covariant symbol star product works, it will coincide with the star product \(\star_B \).
- separation of variables type (but now of anti-Wick type).
- Karabegov form is \(\frac{1}{\nu} \omega + \mathbb{F}(i \partial \overline{\partial} \log u_m) \)
- \(u_m \) is the Bergman kernel \(B_m(\alpha, \beta) = \langle e^{(m)}_{\alpha}, e^{(m)}_{\beta} \rangle \) evaluated along the diagonal
- \(\mathbb{F} \) means: take asymptotic expansion in \(1/m \) as formal series in \(\nu \)
- \(I = I_{\star_B} \), the geometric Berezin transform equals the formal Berezin transform of Karabegov for \(\star_B \)
- both star products \(\star_B \) and \(\star_{BT} \) are dual and opposite to each other
Summary of Naturally Defined Star Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Karabegov Form</th>
<th>Deligne Fedosov Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>*(BT) Berezin-Toeplitz</td>
<td>(-\frac{1}{\nu} \omega + \omega_{\text{can}}) (Wick)</td>
<td>(\frac{1}{i} \left(\frac{1}{\nu} [\omega] - \frac{\delta}{2}\right)).</td>
</tr>
<tr>
<td>*(B) Berezin</td>
<td>(\frac{1}{\nu} \omega + \mathbb{F}(i \partial \overline{\partial} \log u_m)) (anti-Wick)</td>
<td>(\frac{1}{i} \left(\frac{1}{\nu} [\omega] - \frac{\delta}{2}\right)).</td>
</tr>
<tr>
<td>*(GQ) geometric quantization</td>
<td>(—)</td>
<td>(\frac{1}{i} \left(\frac{1}{\nu} [\omega] - \frac{\delta}{2}\right)).</td>
</tr>
<tr>
<td>*(K) standard product</td>
<td>((1/\nu) \omega) (anti-Wick)</td>
<td>(\frac{1}{i} \left(\frac{1}{\nu} [\omega] - \frac{\delta}{2}\right)).</td>
</tr>
<tr>
<td>*(BW) Bordemann-Waldmann</td>
<td>(- (1/\nu) \omega) (Wick)</td>
<td>(\frac{1}{i} \left(\frac{1}{\nu} [\omega] + \frac{\delta}{2}\right)).</td>
</tr>
</tbody>
</table>

\(u_m\) Bergman kernel evaluated along the diagonal in \(Q \times Q\)

\(\delta\) the canonical class of the manifold \(M\)
Berezin transform is not only the equivalence relating \star_{BT} with \star_B
also it (resp. the Karabegov form) can be used to calculate the coefficients of these naturally defined star products,
either directly
or with the help of the certain type of graphs (see the very interesting work of Gammelgaard and Hua Xu).
\(\tau(\alpha) = x, \ \tau(\beta) = y \text{ with } \alpha, \beta \in Q \)

\[
\left(I^{(m)}(f) \right)(x) = \frac{1}{\mathcal{B}_m(\alpha, \alpha)} \int_Q \mathcal{B}_m(\alpha, \beta) \mathcal{B}_m(\beta, \alpha) \tau^* f(\beta) \mu(\beta) \\
= \frac{1}{\langle e^{(m)}_\alpha, e^{(m)}_\alpha \rangle} \int_M \langle e^{(m)}_\alpha, e^{(m)}_\beta \rangle \cdot \langle e^{(m)}_\beta, e^{(m)}_\alpha \rangle f(y) \Omega(y) .
\]

Note that:

\[
u_m(x) := \mathcal{B}_m(\alpha, \alpha) = \langle e^{(m)}_\alpha, e^{(m)}_\alpha \rangle , \]

\[
u_m(x, y) := \mathcal{B}_m(\alpha, \beta) \cdot \mathcal{B}_m(\beta, \alpha) = \langle e^{(m)}_\alpha, e^{(m)}_\beta \rangle \cdot \langle e^{(m)}_\beta, e^{(m)}_\alpha \rangle
\]

are well-defined on \(M \) and on \(M \times M \) respectively.