Virtual-power-based Quasicontinuum Methods for Discrete Dissipative Materials

Lars Beex, Stéphane Bordas
Ron Peerlings, Marc Geers
Ondrej Rokos, Jan Zeman
Pierre Kerfriden
Dissipative discreteness at small scales

Foams

Additive manufacturing

Collagen

Paper/cardboard

Textiles
Electronic textile
Elastoplastic spring lattice

![Elastoplastic spring lattice image]

[Graph showing engineering stress vs. engineering strain]

480 µm
Spring lattice with nodal sliding
Spring lattice with nodal sliding

\[F_{sc} = k\ell_0 / 100 \]

\[F_{sc} = k\ell_0 / 200 \]

\[F_{sc} = k\ell_0 / 400 \]

\[e_f = 8 \]

\[e_f = 4 \]

\[e_f = 2 \]
Quasicontinuum method (Tadmor et al, 1996)

\[K \cdot u = f \]
Quasicontinuum method (Tadmor et al, 1996)

\[K \cdot u = f \]

\[\sum_{i=1}^{n} K_i \cdot u = \sum_{i=1}^{n} f_i \]
Quasicontinuum method (Tadmor et al, 1996)

\[K \cdot u = f \]

\[N^T \cdot K \cdot N \cdot u = N^T \cdot f \]

\[\sum_{i=1}^{n} K_i \cdot u = \sum_{i=1}^{n} f_i \]
Quasicontinuum method (Tadmor et al, 1996)

\[
K \cdot u = f
\]

\[
N^T \cdot K \cdot N \cdot u = N^T \cdot f
\]

\[
\sum_{i=1}^{n} K_i \cdot u = \sum_{i=1}^{n} f_i
\]

\[
N^T \cdot \sum_{i=1}^{n} K_i \cdot N \cdot u = N^T \cdot \sum_{i=1}^{n} f_i
\]
Quasicontinuum method (Tadmor et al, 1996)

\[K \cdot u = f \]

\[\sum_{i=1}^{n} K_i \cdot u = \sum_{i=1}^{n} f_i \]

\[N^T \cdot K \cdot N \cdot u = N^T \cdot f \]

\[N^T \cdot \sum_{i=1}^{n} K_i \cdot N \cdot u = N^T \cdot \sum_{i=1}^{n} f_i \]

\[N^T \cdot K_r \cdot N \cdot u = N^T \cdot f_r \]
Quasicontinuum method (Tadmor et al, 1996)

\[K \cdot u = f \]

\[\sum_{i=1}^{n} K_i \cdot u = \sum_{i=1}^{n} f_i \]

\[N^T \cdot K \cdot N \cdot u = N^T \cdot f \]

\[N^T \cdot \sum_{i=1}^{n} K_i \cdot N \cdot u = N^T \cdot \sum_{i=1}^{n} f_i \]

\[N^T \cdot K_r \cdot N \cdot u = N^T \cdot f_r \]

\[N^T \cdot \sum_{i=1}^{s} K_i \cdot N \cdot u = N^T \cdot \sum_{i=1}^{s} f_i \]
Quasicontinuum method (Tadmor et al, 1996)

- Ideal for local events in large-scale lattice computations
- Underlying lattice fully resolved where needed
- No continuum/constitutive assumptions
Virtual-power-based QC framework

Summation
Virtual-power-based QC framework

Summation 2
Virtual-power-based QC framework

Accuracy and efficiency

Plastic strain at 10% horizontal stretch

-0.04 0 0.12
Virtual-power-based QC framework

Bond failure and fiber sliding

99 unit cells
Results: bond failure and fiber sliding

Horizontal displacement, relative to uniform displacement
Conclusions

Virtual-power-based QC methodology

Summation: 1. exact rule
2. central rule

Dissipative effects included in QC via internal variables
- for elastoplasticity at sampling spring level
- for nodal sliding interpolated due to nonlocality
QC method for beams

QC method for irregular networks

Variational QC methods + adaptivity

Ondrej Rokos & Jan Zeman
Ondrej Rokos & Jan Zeman

6943 sampling interactions

561 repeats

time step 0

damage 0
damage 1
Ongoing & future work

Applications: textiles, printed structures, foams

(goal-oriented) Adaptivity

Stochastics