Propagating uncertainty using FE advanced Monte-Carlo methods: application to non-linear hyperelastic models

Paul Hauseux, Jack S. Hale and Stéphane P. A. Bordas

05/09/2016
Context: Soft-tissue biomechanics simulations with uncertainty

- Non-linear hyperelastic model as a stochastic PDE with random coefficients
- Partially-intrusive Monte-Carlo methods to propagate uncertainty

\[
\text{Deformation of the beam: mean } +/\text{- standard deviation}
\]

- Ipyparallel and mpi4py to massively parallelise individual forward model runs across a cluster
1) Monte-Carlo method

- A non-linear stochastic system to solve can be written as:

\[F(u, \omega) = 0 \]

- Expected value of a quantity of interest [Caflisch 1998]:

\[
E(\psi(u(x, \omega))) = \int_{\Omega} \psi(u(x, \omega)) \ dP(\omega) = \frac{1}{Z} \sum_{z=1}^{Z} \psi(u(x, \omega_z)) + o\left(\frac{||\psi||}{\sqrt{Z}}\right)
\]

Probability space: \((\Omega, \mathcal{F}, P)\)

Random parameters: \(\omega = (\omega_1, \omega_2, \ldots, \omega_M)\)

- The classical Monte-Carlo approach:

\[
E(\psi(u(x, \omega)))_{MC} \approx \frac{1}{Z} \sum_{z=1}^{Z} \psi(u(x, \omega_z))
\]
2) MC method with use of sensitivity information

- Expected value of a quantity of interest [Cao et al. 2004]:

\[
E(\psi(u(x, \omega)))^{SD-MC} \approx \frac{1}{Z} \sum_{z=1}^{Z} \left(\psi(u(x, \omega_z)) - \sum_{i=1}^{M} \frac{d\psi}{d\omega_i}(\bar{\omega}) \times (\omega_i - \bar{\omega}_i) \right)
\]

- Tangent linear model to evaluate the sensitivity derivatives [Farrell et al. 2013]:

\[
\underbrace{\frac{\partial F(u, \omega)}{\partial u}}_{U \times U} \underbrace{\frac{du}{d\omega}}_{U \times M} = - \underbrace{\frac{\partial F(u, \omega)}{\partial \omega}}_{U \times M}
\]

U: size of the deterministic problem
M: number of random parameters

- First and Second moments of the displacement:

\[
\bar{u} \approx \frac{1}{Z} \sum_{z=1}^{Z} \left(u(x, \omega_z) - \sum_{i=1}^{M} \frac{du}{d\omega_i}(\bar{\omega}) \times (\omega_i - \bar{\omega}_i) \right)
\]

\[
\bar{u}^2 \approx \frac{1}{Z} \sum_{z=1}^{Z} \left(u^2(x, \omega_z) - 2\bar{u} \sum_{i=1}^{M} \frac{du}{d\omega_i}(\bar{\omega}) \times (\omega_i - \bar{\omega}_i) \right)
\]
3) Multi-level MC method with use of PCE

- Polynomial chaos expansion (PCE) [Wiener 1936]:

 \[u^k(x, \omega) = \sum_{\alpha \in \mathcal{J}_{m,p}} u^k_\alpha(x) H_\alpha(\omega) \]

- ML-MC method [Matthies 2008, Giles 2015]:

Algorithm 1 Algorithm for the multilevel Polynomial Chaos Expansion Monte-Carlo method

1: Solve the deterministic system with average parameters to obtain \(u^d \)
2: \(k \leftarrow 1 \)
3: while no convergence do
4: \(z = 1 \) to \(Z \) do
5: \(\omega_z = (\omega_1^z, \omega_2^z, \ldots, \omega_M^z) \)
6: \(u^k(\omega_z) = F_{pce}(u^{k-1}(\omega_z)) \) or \(u^d \) if \(k = 1 \)
7: Call to deterministic solver to do \(d \) (1 or more) iterations with starting values \(u^k(\omega_z) \) and all random parameter function of \(\omega_z \)
8: output: \(u^k(\omega_z) \) after \(d \) iterations
9: end for
10: Calculate \(F_{pce} \), the PCE of \(u^k \) from \(Z \) values of \(\omega_z \) and \(u^k(\omega_z) \)
11: \(k = k + 1 \)
12: end while
4) 3D Numerical simulations

- The stored strain energy density function for a compressible Mooney–Rivlin material:

\[W = C_1 (\bar{I}_1 - 3) + C_2 (\bar{I}_2 - 3) + D_1 (\det \mathbf{F} - 1)^2 \]

- The total potential energy: \(\Pi = W \, d\mathbf{x} - \rho \mathbf{g} d\mathbf{x} \), \(\mathbf{g} = g \mathbf{g}, g = 9.81 \, m.s^{-2} \)

- 2 RV with beta(2,2) distribution:

\[
\rho(\omega_1) = \rho^0 (1 + \omega_1 / 2) \\
D_1(\omega_2) = D_1^0 (1 + \omega_2)
\]

\[
\begin{cases}
D_1^0 = 2 \cdot 10^5 \, \text{Pa} \\
C_2 = 2 \cdot 10^5 \, \text{Pa} \\
C_1 = 10^4 \, \text{Pa} \\
\rho^0 = 600 \, \text{kg/m}^3
\end{cases}
\]
4) 3D Numerical simulations
4) 3D Numerical simulations

![Graph showing the comparison between different simulation methods (MC, MC-SD, ML-MC) for varying values of Z (ū, ūy, std) across different scales (10 to 1e+05).]
4) 3D Numerical simulations

\[|u_{y}^{max}| (\text{mm}) \]
• Partially-intrusive Monte-Carlo methods to propagate uncertainty

• By using sensitivity information and multi-level methods with polynomial chaos expansion we demonstrate that computational workload can be reduced by one order of magnitude over commonly used schemes

• Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

• Ipyparallel and mpi4py to massively parallelise individual forward model runs across a cluster