Relationship between ZnT8Ab, the SLC30A8 gene and disease progression in children with newly diagnosed type 1 diabetes

LOTTE B. NIELSEN¹, FARIBA VAZIRI-SANI², SVEN PÖRKEN¹, MARIE-LOUISE M. ANDERSEN¹, JANNET SVENSSON¹, REGINE BERGHOOLDT³, FLEMMING POCIOT¹, PHILIP HOUGAARD⁴, CARINE DE BEAUFORT⁵, LUIS CASTAÑO⁶, HENRIK B. MORTENSEN¹, ÅKE LERNMARK², & LARS HANSEN¹ On Behalf of the Hvidoere Study Group on Childhood Diabetes

¹Department of Paediatrics, Glostrup University Hospital, Glostrup, Denmark, ²Department of Clinical Sciences, Lund University/ CRC, Skåne University Hospital SUS, Malmö, Sweden, ³Hagedorn Research Institute, Gentofte, Denmark, ⁴Department of Statistics, University of Southern Denmark, Odense, Denmark, ⁵Clinique Pédiatrique, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg, and ⁶Hospital de Cruces and University of Basque Country, CIBERDEM, Bizkaia, Spain

(Submitted 8 December 2010; accepted 28 March 2011)

Abstract
Autoantibodies against the newly established autoantigen in type 1 diabetes, zinc transporter 8, ZnT8, are presented as two types, ZnT8RAb and ZnT8WAb. The rs13266634 variant of the SLC30A8 gene has recently been found to determine the type of ZnT8Ab. The aim of this study was to explore the impact of this genetic variant and the ZnT8Ab on the residual beta-cell function during disease progression the first year after disease diagnosis in children with newly diagnosed type 1 diabetes. This cohort consists of 257 children aged < 16 years, all patients were newly diagnosed with type 1 diabetes. A Boost-test was carried out at 1, 6, and 12 months to characterize the residual beta-cell function. Carriers of the CC and CT genotype groups of the rs13266634 SNP of the SLC30A8 gene had higher stimulated C-peptide levels the first year after onset compared with those of the TT genotype group (29%, p = 0.034). CC genotype carriers were highly associated with the presence of ZnT8RAb subtype during disease progression (compared with TT, p < 0.0001). On the other hand, the TT genotype was associated with the presence of ZnT8WAb subtype during disease progression (compared with CC, p < 0.0001).

The C allele of the SLC30A8 gene is associated with preserved beta-cell function in type 1 diabetes patients. The genetic determination of the rs13266634 variant on the ZnT8Ab specificity is sustained the first 12 months after the diagnosis of type 1 diabetes in a pediatric cohort.

Keywords: ZnT8Ab, residual beta-cell function, type 1 diabetes, children, SLC30A8

Introduction
The T-cell-mediated beta-cell destruction in type 1 diabetes is directed against beta-cell antigens with insulin, GAD-65, and islet cell antigen 512 being the classical and well-known ones. These antigens together identify 80% of the patients at clinical diagnosis or at risk of developing type 1 diabetes [1]. Recently, the zinc transporter 8, ZnT8, has been established as a new major autoantigen in type 1 diabetes [1]. Several studies [2,3] report a strong genetic association between a nonsynonymous single-nucleotide polymorphism, rs13266634, of the ZnT8 encoding gene, SLC30A8, and the type of ZnT8Ab (either arginine (Arg/R)- or tryptophan (Trp/W)-recognizing antibodies). This genetic determination of an autoimmune reaction has not been described for any of the other diabetes-related autoantibodies, and it is not known if it is associated with the differences in disease progression/severity or whether this specificity is stable over time.

Variants of different non-HLA-diabetes risk genes have been shown to influence beta-cell function up to 12 months after diagnosis. Previously, we reported the effect of the insulin VNTR region on the residual beta-cell function and the level of insulin autoantibodies in type 1 diabetes patients [4]. The VNTR region on the insulin gene is a tandem repeat region with several variants. It has been reported to influence insulin secretion and insulin autoimmunity [5]. The presence of insulin VNTR region 1 (VNTR 1) is highly associated with preserved beta-cell function [4]. This suggests that the VNTR 1 region on the insulin gene influences the genetic risk for type 1 diabetes and the level of insulin autoantibodies, and may influence beta-cell function and insulin secretion.
(IAA) during disease progression in type 1 diabetes children [4]. Furthermore, two classical type 2 diabetes genes, the Kir6.2 and the PPARgamma, were found to influence glycemic control during disease progression in type 1 diabetes patients [5,6]. No association of the ZnT8Ab's or the rs13266634 variant with the reduced beta-cell function in type 1 diabetes has been reported. The rs13266634 variant has, however, been reported to be associated with the development of T2D [7], and has been associated with the reduced first-phase insulin release following an intravenous glucose load in a glucose-tolerant population [8].

The objective of this study was to investigate (1) the association of the rs13266634 variant of the SLC30A8 gene and the ZnT8Ab's with the residual beta-cell function, (2) the stability of the epitope-specific ZnT8Abs during disease progression, and (3) whether HLA risk groups were significantly associated with the ZnT8Ab titer levels in a cohort of children with new onset type 1 diabetes.

Subjects and methods

Study populations from The Hvidoere Study Group on Childhood

The study population was collected through The Hvidoere Study Group on Childhood Diabetes and is described in Mortensen et al. [9]. The cohort included 126 girls and 131 boys, 84% of the patients were white Caucasian, and age at clinical diagnosis was 9.1 ± 3.7 years (mean ± SEM), body mass index 16.5 ± 3.2 kg/m², and HbA1c 11.2 ± 2.1% at the time of diagnosis. DKA (HCO₃ ≤ 15 mmol/l and/or pH ≤ 7.30) was present in 20.7% of the cases at the time of diagnosis.

Exclusion criteria were suspected non-type 1 diabetes (type 2 diabetes, maturity-onset diabetes of the young or secondary diabetes), decline of enrollment into the study by patients or parents, and patients initially treated outside of the centers for more than 5 days. There were no significant differences with respect to gender distribution, age, anthropometric data, Hba1c at diagnosis, ethnicity, or family history of diabetes between patients included and patients not included into the study (data not shown). The diagnosis of type 1 diabetes was according to the World Health Organization criteria. The study was performed according to the criteria of the Helsinki II Declaration and was approved by the local ethic committee in each center. All patients, their parents, or guardians gave informed consent.

Stimulated C-peptide test

Residual beta-cell function (C-peptide) in response to a Boost-test (6 ml/kg (max: 360 ml) of Boost/Sustacal (Mead Johnson, Evansville, IN, USA; 237 ml = 8 fl oz contains 33 g carbohydrate, 15 g protein and 6 g fat, a total of 240 kcal) was followed 1, 6, and 12 months ((± 1 week) after diagnosis in all 257 children with newly diagnosed type 1 diabetes. Blood was drawn 90 min after ingestion of the Boost™ drink. Serum samples were labeled and frozen at −20°C until shipment on dry ice. C-peptide was analyzed centrally. Samples were thawed only once for RIA determination. Plasma C-peptide was analyzed by a fluoroenzymometric assay (AutoDELFIA™ C-peptide). Analytical sensitivity: better than 4.97 pmol/l coefficient of variation (CV) 5%.

Typing of the SLC30A8 gene

Genotyping of the rs13266634 variant of the ZnT8 gene, SLC30A8, was done both at KBioscience using an in-house KASPar assay system and at Steno Diabetes Center, Denmark, using a predesigned TaqMan assay (Applied Biosystems, Foster City, CA, USA) on a TaqMan 7900HT (Applied Biosystems). The concordance rate between the two assays was 97%.

HLA

Typing of the HLA-class II DRB1 locus was performed by direct sequencing of exon 2 of DRB1 according to Immuno Histocompatibility Working Group. The HLA risk groups were defined as follows: high risk (DRB1 03/04, 04/04), moderate risk (DRB1 03/03, 04/08), and low risk (all other DRB1 genotype combinations).

Diabetes-related autoantibodies (IAA, islet cell antibodies, glutamic acid decarboxylase, IA-2A, and ZnT8Ab)

IAA. Insulin antibodies were measured by a modification of the method described by Williams et al. [10]. The cut-off limit for positivity is 1.56 relative units (RU), representing the 99th percentile in a group of 371 non-diabetic subjects.

Islet cell antibodies. Islet cell antibodies (ICA) of the IgG class were detected by indirect immunofluorescence using commercial Primate Pancreas slides from INOVA. The sera were screened at a dilution of 1:2 and FITC-labeled anti-human IgG (Dako, Copenhagen, Denmark) was used as conjugate.

Glutamic acid decarboxylase. Antibodies to the 65 kDa isoform of glutamic acid decarboxylase (GADA) were quantified by a direct radioimmunoassay (Diamyd Anti-GAD-65 RIA; Diamyd Diagnostics, Stockholm, Sweden) according to the protocol provided by the manufacturer. Sera were run in duplicate, and the results were read on a gamma counter (Wizard 1470;
Wallac/PerkinElmer, Turku, Finland) and calculated from a standard curve. The cut-off limit was 9.5 units/ml and the intra- and interassay coefficients of variation were 2.4 and 3.6%, respectively.

IA-2A. Antibodies to the protein tyrosine phosphatase-related IA-2 molecule (IA-2A) were analyzed with a radiobinding assay as previously described [11]. The results were expressed as RU based on a standard curve run on each plate using an automated calculation program (MultiCalc; Wallac). The limit for IA-2A positivity (0.77 RU) was set at the 99th percentile in 374 non-diabetic children and adolescents. The interassay CV was <12%. This assay had a disease sensitivity of 72% and a specificity of 100% based on the 2005 Diabetes Autoantibody Standardisation Programme workshop.

ZnT8Ab

Subcloning of the C-Terminal construct (Arg 325) ZnT8R from pCDNA3.1 to generate pThZnT8R

The original C-terminal cDNA construct coding for Arg at position 325 [1] was a kind gift from John C Hutton (Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Science Center, Aurora, CO, USA). The insert was subcloned into the pTnT™ vector (Promega, Madison, WI, USA) as described [12,13]. The ZnT8W variant was generated by site-directed mutagenesis and confirmed by DNA sequencing [12,13].

Coupled in vitro transcription/translation of cDNA for ZnT8R and ZnT8W

The coupled *in vitro* transcription/translation of the ZnT8R in the pCDNA3.1 vector and the two new plasmids, pThZnT8R and pThZnT8W, were performed as follows. The reaction mixture of 2 μg ZnT8R in the pCDNA3.1 vector, pThZnT8R or pThZnT8W, 50 μl TNT® rabbit reticulocyte lysate, 4 μl TNT® reaction buffer, 2 μl amino acid mixture minus methionine, 2 μl RNasin® Ribonuclease inhibitor (Promega), 2 μl SP6 RNA Polymerase, 4 μl 35S-methionine (Amersham Int., Amersham, Buckinghamshire, UK, >1000 Ci/mmole), and nuclease-free water to a final volume of 100 μl was incubated for 90 min at 30°C with shaking (300 rpm in Eppendorf Thermomixer comfort, Eppendorf, www.eppendorf.com).

The translation product was immediately subjected to gel filtration on Illustra™ NAP-5 Columns (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and percent radioactivity incorporated into protein was counted (1450 MicroBeta TriLux Microplate Scintillation-Luminescence Counter, Perkin Elmer Life and Analytical Sciences, Shelton, CT, USA, www.perkinelmer.com). The percent radioactivity for ZnT8R in the pCDNA3.1 vector was 10 ± 3% (mean ± SD) compared to >40% for each new plasmids including pThZnT8R and pThZnT8W. The translation product corresponding to the most C-terminal part of ZnT8 protein (aa268-aa369) for ZnT8R and ZnT8W was demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography.

Autoantibody radiobinding assay for ZnT8R and ZnT8W

The RBA for the individual variants was performed separately with 5 μl of sera essentially as described [12]. Duplicate serum samples were incubated over night at 4°C with 60 μl labeled antigen diluted in antigen buffer (150 mM NaCl, 20 mM Tris, pH 7.4, 0.15% Tween20, 0.1% BSA) at a final concentration 425 ± 25 cpm/μl using MicroWell™ plates (Nunc, www.nalgunuc.com). Antibody bound was separated from free-labeled antigen with Protein A Sepharose (20%) and the radioactivity determined in a beta-counter (a 1450 MicroBeta TriLux Microplate Scintillation-Luminescence Counter, Perkin Elmer Life and Analytical Sciences, www.perkinelmer.com). The results were expressed in in-house units using two different standard curves of type 1 diabetes-sera positive for each of ZnT8R and ZnT8W, respectively. Positivity for ZnT8RAb was defined as titer values ≥60 U/ml and for ZnT8WAb ≥58 U/ml. Out of 257 patients, 251 completed ZnT8Ab measurements.

Statistics

The association between the rs13266634 variant and the ZnT8Ab level was determined by logistic regression with age, sex, HLA risk groups, and DKA at onset as confounding factors at all three visits (1, 6, and 12 months after onset). Stimulated C-peptide (logarithmic) and insulin dose-adjusted HbA1c (IDAA1c) [14] were analyzed as dependent variables in two separate multiple regression models by a compound symmetrical repeated measurement model of all time points with rs13266634 genotype, ZnT8W/RAb levels, sex, age, positivity for other diabetes-related autoantibodies (IAA, GADA, islet cell autoantibodies (ICA), insulinoma-associated antigen-2 (IA-2A)), and HLA risk groups (high (DRB1 03/03, 04/04), moderate (DRB1 03/03, 03/08), low (all other genotype combinations)) as covariates. P-values below 0.05 were considered statistical significant.

Results

Frequency of ZnT8Ab

One month after diabetes onset, 68% of the patients tested positive for either one or both of the ZnT8Ab
variants (ZnT8RAb and/or ZnT8WAb). At 6 and 12 months after onset, the overall positivity was nonsignificantly decreased to 63 and 61%, respectively. The frequency of patients tested positive for ZnT8RAb was highest throughout the study period compared with the frequency of patients tested positive for ZnT8WAb ($p < 0.0001$) (Figure 1).

In the same Hvidoere cohort, we previously diagnosed 24 out of 261 (9.2%) pancreatic antibody negative (ICA, GADA, IA-2A) children with new onset type diabetes. When we include the measurement of ZnT8Ab, six patients from this autoantibody negative subgroup were identified as ZnT8Ab positive (five patients ZnT8RAb positive and one patient positive for both ZnT8Ab variants), reducing the frequency of Ab-negative patients by 25% (Table I) in the whole cohort.

ZnT8Ab titer level associates with age-at-onset

The frequency of ZnT8Ab positive was significantly higher ($p = 0.03, 0.03, 0.03$ at 1, 6, and 12 months after onset, respectively) in patients above 5 years ($n = 133$) at onset compared with the patients below 5 years ($n = 20$) at onset (Table II). By contrast, the prevalence of the ZnT8WAb was independent of age-at-onset (data not shown).

SLC30A8 rs13266634 genotype in relation to residual beta-cell function

In a co-dominant model (comparing differences in stimulated C-peptide between all three genotype groups), carriers of the SLC30A8 rs13266634 TT genotype had significantly lower stimulated C-peptide 1 month after onset compared with CC genotype carriers (est.: 0.644 pmol/l, $p = 0.049$). The CT and CC genotype carriers showed similar levels of stimulated C-peptide which allowed us to use a dominant model with respect to the C allele (CT + CC versus TT) in a mixed model including all visits 1, 6, and 12 months after onset. The TT genotype carriers showed 29% lower stimulated C-peptide levels compared with the CT + CC genotype carriers during the study period (est.: 0.71 pmol/l, $p = 0.034$) (Figure 2). Adding a gene*visit interaction term to model showed no differential gene effect over time ($p = 0.53$).

IAA, GADA, ICA, IA-2A, and ZnT8Ab in relation to glycemic control and residual beta-cell function

The observed progressive decline in ZnT8Ab during disease progression was concurrent with the decline in stimulated C-peptide (Figure 3). There was, however, no association between positivity or titer levels of ZnT8Ab and the residual beta-cell function as estimated by stimulated C-peptide at any time points during disease progression ($p = 0.21$ (Trp) and $p = 0.95$ (Arg)). Nor can the ZnT8Ab measured

Table I. The distribution of Ab-positive and negative patients in the Hvidoere cohort according to GAD, IA-2A, ICA, and ZnT8Ab measured 1 month after disease onset ($n = 249$).

<table>
<thead>
<tr>
<th>ZnT8Ab</th>
<th>+</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab positive patients (ICA/GADA/IA-2A)</td>
<td>164</td>
<td>61</td>
</tr>
<tr>
<td>–</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

Table II. Frequency of patients positive for ZnT8RAb according to age-at-onset.

<table>
<thead>
<tr>
<th>Time after</th>
<th>1 month</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-at-onset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 years</td>
<td>47%</td>
<td>40%</td>
<td>37%</td>
</tr>
<tr>
<td>(p = 0.03)</td>
<td>64%</td>
<td>59%</td>
<td>57%</td>
</tr>
<tr>
<td>(p = 0.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ^2-test for differences in ZnT8RAb positivity between age groups: < 5 years ($n = 20$) and > 5 years ($n = 133$) (p-values).
1 month after type 1 diabetes diagnosis predict the
stimulated C-peptide level 12 months after disease
onset (p = 0.30 (Trp) and p = 0.19 (Arg)).

The same lack of predictive value was also evident for
the ICA and IA-2A antibodies (data not shown). On
the contrary, the IAA and GADA antibodies at 1 month
can predict stimulated C-peptide 12 months after
clinical diagnosis (est.: 32% lower C-peptide, p = 0.02,
est.: 39% lower C-peptide, p = 0.0004). GADA at 1
month also predicts Hba1c at 12 months (est.: 0.48%,
p = 0.012), whereas none of the other diabetes-related
autoantibodies predicts HbA1c at 12 months.

ZnT8Ab titer levels according to HLA risk genes

The ZnT8RAb levels were significantly higher in
carriers of the low HLA risk groups compared with
carriers of the moderate and high HLA risk groups 1
and 6 months after onset (p = 0.04) and borderline
significant at 12 months after onset (p = 0.06). The
levels of the ZnT8RAb were comparable in the
moderate and high risk groups (Figure 4), justifying a
model in which carriers of the low HLA risk group are
compared with the moderate and high HLA risk
groups. There were no significant differences in the
distribution of ZnT8WAb according to HLA risk
groups (data not shown).

**Association between the rs13266634 gene variant
and ZnT8Ab specificity**

The genotype distribution in this cohort (CC 46.8%,
CT 41.7%, and TT 11.5%) was in Hardy–Weinberg
equilibrium. We find the rs13266634 SNP is highly
associated with the ZnT8Ab type 1 month after
disease onset and this association is sustained during
disease progression (6 and 12 months after disease
onset). The CC genotype carriers have significantly
higher ZnT8RAb compared with the TT genotype
carriers (1 month p < 0.0001, est.: 370 U/ml)
(Figure 5A).

The heterozygous carriers have intermediate values
for both ZnT8Ab variants. The opposite picture was
evident for the ZnT8WAb, in which the TT carriers
have a significantly higher ZnT8WAb compared with
the CC genotype carriers (1 month p < 0.0001, est.: 374 U/ml) (Figure 5B). In patients only responding to
either ZnT8RAb or ZnT8WAb, the relationship with
the rs13266634 variant was indeed stronger. A 4.6-fold higher ZnT8RAb frequency was seen among CC carriers compared with the CT carriers, whereas the frequency of ZnT8WAb was 15.5-fold higher among the TT carriers compared with CT carriers (Table III).

Discussion

This study suggests an association between the rs13266634 variant of the SLC30A8 gene and the residual beta-cell function in children with new onset type 1 diabetes and a relation between the HLA risk groups and the titer of ZnT8RAb. Furthermore, a strong relation between the rs13266634 variant of the SLC30A8 gene and the specificity of the ZnT8Ab was found. This is a newly described phenomenon involved for type 1 diabetes associated autoantibodies [2]. Our study supports this association and furthermore extends these observations into a pediatric population from the time of disease onset and the following year.

In the present pediatric cohort, there is a nonsignificant decreasing trend of positivity for ZnT8Ab from onset to 12 months after diagnosis for both Arg- and Trp-recognizing autoantibodies (Figure 1). This is similar to the observed pattern of GADA, IA-2A, and ICA in the same cohort [9], whereas IAA tends to increase from onset due to insulin treatment. A relation between age-at-onset and positivity for ZnT8RAb was previously indicated in a mixed cohort of children and adults, in which the prevalence of ZnT8Ab was low in the very young children but increased dramatically from 3 years onward, peaked at 80% in late adolescence, and tended to decline thereafter [2].

Our study supports this observation because the youngest patients (0–5 years) presented with the lowest ZnT8RAb levels, the age and ZnT8RAb correlation sustained during disease progression (Table II). This difference suggests that the peak of autoimmune response occurred before the time of onset for this age group. Interestingly, this effect of age was not seen for ZnT8WAb levels.

When we analyzed ZnT8Ab in this cohort, an additional 2.3% of the GADA, ICA, and IA-2A negative patients were ZnT8Ab positive (Table I). Lampasona and coworkers have previously identified an additional 1.4% of autoantibody negative subjects as autoantibody positive when testing for ZnT8Ab in an adult-onset type 1 diabetes cohort [15]. In agreement with the previously reported 26% ZnT8Ab-positivity rate among patients classified as autoantibody negative [1], we find that 25% of the children classified as autoantibody negative in our study were ZnT8Ab positive, either for the Arg or Trp variant. Therefore, in clinical practice, the inclusion of ZnT8Ab may help to differentiate clinical phenotypes.

Our study suggests a functional impact of the rs13266634 variant of the SLC30A8 gene on progression of the disease. Analyzing the gene effect in a multiple regression analysis including all three visits (1, 6, and 12 months) in the same model we found, that carriers of the TT genotype had significantly lower residual beta-cell function 12 months after disease diagnosis. This effect was, however, primarily due to the difference observed at 1 month (Figure 2).

The rs13266634 has previously been shown to associate with T2D [7] and reduced first-phase insulin release in a glucose-tolerant population, although this effect appeared to be associated with the CC genotype [8]. At first this may seem contradictory, but assuming a reduced insulin secretory capacity in C-allele carriers, this may turn out to be a beta-cell protective effect in type 1 diabetes. Insulin is a major autoantigen in type 1 diabetes, so it seems plausible to hypothesize that reduced insulin secretory capacity associated with the C-allele and in the presence of insulin directed autoimmune will reduce insulin antigen presentation, reduce beta-cell stress, and slow down autoimmune beta-cell destruction.

On the contrary, the T-allele associated with higher insulin secretory capacity should in the presence of insulin-directed autoimmune lead to higher insulin antigen presentation, beta-cell stress, and autoimmune beta-cell destruction. In accordance with this hypothesis, we find that TT-genotypes have lower residual beta-cell function than CC-genotypes.

Table III. Prevalence of ZnT8Ab according to rs13266634 genotype. ZnT8Ab (Trp and/or Arg) was measured in serum from new onset type 1 diabetes patients 1 month after onset.

<table>
<thead>
<tr>
<th>rs13266634 genotype</th>
<th>XX (243)</th>
<th>CC (114)</th>
<th>CT (101)</th>
<th>TT (28)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Arg probe</td>
<td>149</td>
<td>54</td>
<td>7</td>
<td>25.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Trp probe</td>
<td>97</td>
<td>46</td>
<td>20</td>
<td>71.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Arg only</td>
<td>68</td>
<td>11</td>
<td>0</td>
<td>0.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Trp only</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td>46.4</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

P-values were calculated by Fisher's exact test comparing ZnT8Ab positivity to rs13266634 genotype frequencies.
A concurrent decline in stimulated C-peptide and ZnT8Ab titers (Figure 3) was also previously found in a smaller type 1 diabetes population (n = 21), neither of the two studies found a correlation between ZnT8Ab and residual beta-cell function during the study period [16]. In our study, ZnT8Abs at 1 month did not predict residual beta-cell function at 12 months, although we did find that the level of IAA and GAD at 1 month after diagnosis was associated with a more rapid loss of residual beta-cell function. Together, these observations suggest that the ZnT8Abs alone do not play a major role in the autoimmune destruction of the beta cells, whereas IAA and GADA seem to do so.

The finding that carriers of the HLA low risk alleles have significantly higher ZnT8RAb 1 and 6 months after clinical onset (Figure 4) is most likely a spurious finding as similar was not observed for the other more pathogenically related autoantibodies, GADA and IAA.

The strong association between the rs13266634 variant and the two types of the ZnT8Ab throughout initial clinical disease progression suggests that epitope switching did not occur during the study period (Figure 5). That Trp-recognizing ZnT8Ab was found in a few CC genotype carriers (encoding Arg) indicate, however, that the specificity is not 100% but the association between the genotype and ZnT8Ab subtype is complete when analyzing patients only presenting ZnT8RAb, or only presenting ZnT8WAb (Table III).

Our study confirms the genotypic specificity of ZnT8Ab in a cohort of new onset type 1 diabetes children, and although we did not observe association or predictive value of these autoantibodies on the disease progression, the role of ZnT8 as an autoantigen in the pathogenesis of type 1 diabetes should be explored, like insulin and GAD65 have been, in immune intervention trials with recombinant ZnT8 epitopes. The role of the rs13266634 variant on beta-cell function during disease progression in type 1 diabetes patients needs confirmation from the studies of disease progression in other type 1 diabetes populations.

Acknowledgments
We thank Novo Nordisk for support throughout this study with special thanks to Drs Lene Kaa Meier, Stanislav Smirnov, and Ralf Ackermann. We are also grateful to Oda Troest, Britta Drangsfeldt, and Susanne Kjelberg for their skillful technical assistance. We thank Emma Jacobssen, Ingrid Wigheden, and Ahmed Delli at Department of Clinical Sciences-Diabetes & Celiac Disease, Malmö, Sweden for their excellent technical assistance.

Declaration of interest: This work was supported by the EU 7th Framework Programme DIAPREPP (grant agreement 202013). The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

References

Appendix part available in online