An extension of the concept of distance to functions of several variables

Gergely Kiss, Jean-Luc Marichal, Bruno Teheux

Mathematics Research Unit, University of Luxembourg
Luxembourg, Luxembourg

36th Linz Seminar on Fuzzy Set Theory, Linz, Austria
A pair \((X, d)\) is called a **metric space**, if \(X\) is a nonempty set and \(d\) is a distance on \(X\), that is a function \(d: X^2 \to \mathbb{R}_+\) such that:

(i) \(d(x_1, x_2) = 0\) if and only if \(x_1 = x_2\),

(ii) \(d(x_1, x_2) = d(x_2, x_1)\) for all \(x_1, x_2 \in X\),

(iii) \(d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)\) for all \(x_1, x_2, z \in X\).
A pair \((X, d)\) is called a *metric space*, if \(X\) is a nonempty set and \(d\) is a distance on \(X\), that is a function \(d : X^2 \rightarrow \mathbb{R}_+\) such that:

(i) \(d(x_1, x_2) = 0\) if and only if \(x_1 = x_2\),
(ii) \(d(x_1, x_2) = d(x_2, x_1)\) for all \(x_1, x_2 \in X\),
(iii) \(d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)\) for all \(x_1, x_2, z \in X\).

Multidistance: A generalization of a distance by Martín and Mayor.
A pair \((X, d)\) is called a *metric space*, if \(X\) is a nonempty set and \(d\) is a distance on \(X\), that is a function \(d : X^2 \to \mathbb{R}_+\) such that:

(i) \(d(x_1, x_2) = 0\) if and only if \(x_1 = x_2\),
(ii) \(d(x_1, x_2) = d(x_2, x_1)\) for all \(x_1, x_2 \in X\),
(iii) \(d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)\) for all \(x_1, x_2, z \in X\).

Multidistance: A generalization of a distance by Martín and Mayor.

We say that \(d : \bigcup_{n \geq 1} X^n \to \mathbb{R}_+\) is a *multidistance* if:

(i) \(d(x_1, \ldots, x_n) = 0\) if and only if \(x_1 = \cdots = x_n\),
(ii) \(d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})\) for all \(x_1, \ldots, x_n \in X\) and all \(\pi \in S_n\),
(iii) \(d(x_1, \ldots, x_n) \leq \sum_{i=1}^n d(x_i, z)\) for all \(x_1, \ldots, x_n, z \in X\).
Definition

We say that $d : X^n \to \mathbb{R}_+ \ (n \geq 2)$ is an n-distance if:

1. $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$,
2. $d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and all $\pi \in S_n$,
3. There is a $0 \leq K \leq 1$ such that $d(x_1, \ldots, x_n) \leq K \sum_{i=1}^{n} d(x_1, \ldots, x_n) \mid x_i = z$ for all $x_1, \ldots, x_n, z \in X$.

We denote by K^* the smallest constant K for which (iii) holds.

For $n = 2$, we assume that $K^* = 1$.

n-distance
Definition

We say that $d : X^n \rightarrow \mathbb{R}_+ \ (n \geq 2)$ is an n-distance if:

(i) \[d(x_1, \ldots, x_n) = 0 \text{ if and only if } x_1 = \cdots = x_n, \]

(ii) \[d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)}) \text{ for all } x_1, \ldots, x_n \in X \text{ and all } \pi \in S_n, \]

(iii) \[\exists 0 \leq K \leq 1 \text{ such that } d(x_1, \ldots, x_n) \leq K \sum_{i=1}^{n} d(x_1, \ldots, x_n) |x_i = z \text{ for all } x_1, \ldots, x_n, z \in X. \]

We denote by K^* the smallest constant K for which (iii) holds.

For $n = 2$, we assume that $K^* = 1$.
Definition

We say that $d : X^n \to \mathbb{R}_+ \ (n \geq 2)$ is an n-distance if:

(i) $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$,

(ii) $d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and all $\pi \in S_n$,

We denote by K^* the smallest constant K for which (iii) holds.

For $n = 2$, we assume that $K^* = 1$.
Definition
We say that \(d : X^n \to \mathbb{R}_+ \) \((n \geq 2)\) is an \(n \)-distance if:

(i) \(d(x_1, \ldots, x_n) = 0 \) if and only if \(x_1 = \cdots = x_n \),

(ii) \(d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)}) \) for all \(x_1, \ldots, x_n \in X \) and all \(\pi \in S_n \),

(iii) There is a \(0 \leq K \leq 1 \) such that

\[
d(x_1, \ldots, x_n) \leq K \sum_{i=1}^{n} d(x_1, \ldots, x_n)|_{x_i=z} \text{ for all } x_1, \ldots, x_n, z \in X.
\]
n-distance

Definition

We say that $d : X^n \to \mathbb{R}_+ \ (n \geq 2)$ is an n-distance if:

(i) $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$,

(ii) $d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and all $\pi \in S_n$,

(iii) There is a $0 \leq K \leq 1$ such that

$$d(x_1, \ldots, x_n) \leq K \sum_{i=1}^{n} d(x_1, \ldots, x_n)|_{x_i=z} \quad \text{for all} \quad x_1, \ldots, x_n, z \in X.$$

We denote by K^* the smallest constant K for which (iii) holds. For $n = 2$, we assume that $K^* = 1$.
Example (Drastic n-distance)

The function $d: X^n \rightarrow \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise.
Example (Drastic n-distance)

The function $d : X^n \to \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise.

$K^* = \frac{1}{n-1}$ for every $n \geq 2$.

Proposition

Let d and d' be n-distances on X and let $\lambda > 0$. The following assertions hold.

(1) $d + d'$ and λd are n-distance on X.

(2) $d_1 + d_2$ is an n-distance on X, with value in $[0, 1]$.

Lemma

Let a, a_1, \ldots, a_n be nonnegative real numbers such that $\sum_{i=1}^n a_i \geq a_i$. Then $a_1 + a_2 \leq a_1 + a_2 + \cdots + a_n$.

Example (Drastic n-distance)

The function $d: X^n \to \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise.

$K^* = \frac{1}{n-1}$ for every $n \geq 2$.

Proposition

Let d and d' be n-distances on X and let $\lambda > 0$. The following assertions hold.

(1) $d + d'$ and λd are n-distance on X.

(2) $\frac{d}{1+d}$ is an n-distance on X, with value in $[0,1]$.
Example (Drastic n-distance)

The function $d : X^n \rightarrow \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise.

$K^* = \frac{1}{n-1}$ for every $n \geq 2$.

Proposition

Let d and d' be n-distances on X and let $\lambda > 0$. The following assertions hold.

(1) $d + d'$ and λd are n-distance on X.

(2) $\frac{d}{1+d}$ is an n-distance on X, with value in $[0,1]$.

Lemma

Let a, a_1, \ldots, a_n be nonnegative real numbers such that $\sum_{i=1}^n a_i \geq a$. Then

$$\frac{a}{1+a} \leq \frac{a_1}{1+a_1} + \cdots + \frac{a_n}{1+a_n}.$$
A generalization of n-distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition

Let $g : \mathbb{R}_+^n \to \mathbb{R}_+$ be a symmetric function. We say that a function $d : X^n \to \mathbb{R}_+$ is a g-distance if it satisfies conditions (i), (ii) and

$$d(x_1, \ldots, x_n) \leq g(d(x_1, \ldots, x_n)|_{x_1 = z}, \ldots, d(x_1, \ldots, x_n)|_{x_n = z})$$

for all $x_1, \ldots, x_n, z \in X$.
A generalization of n-distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition

Let $g : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a symmetric function. We say that a function $d : X^n \rightarrow \mathbb{R}_+$ is a g-distance if it satisfies conditions (i), (ii) and

$$d(x_1, \ldots, x_n) \leq g\left(d(x_1, \ldots, x_n)\big|_{x_1=z}, \ldots, d(x_1, \ldots, x_n)\big|_{x_n=z}\right)$$

for all $x_1, \ldots, x_n, z \in X$.

It is natural to ask that $d + d', \lambda d$, and $\frac{d}{1+d}$ be g-distances whenever so are d and d'.
Proposition

Let $g : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a (symmetric) function, d and d' be g-distances. The following assertions hold.

(1) If g is positively homogeneous, i.e., $g(\lambda r) = \lambda g(r)$ for all $r \in \mathbb{R}_+^n$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g-distance.
Proposition

Let \(g : \mathbb{R}^n_+ \to \mathbb{R}_+ \) be a (symmetric) function, \(d \) and \(d' \) be \(g \)-distances. The following assertions hold.

(1) If \(g \) is positively homogeneous, i.e., \(g(\lambda \mathbf{r}) = \lambda g(\mathbf{r}) \) for all \(\mathbf{r} \in \mathbb{R}^n_+ \) and all \(\lambda > 0 \), then for every \(\lambda > 0 \), \(\lambda d \) is a \(g \)-distance.

(2) If \(g \) is superadditive, i.e., \(g(\mathbf{r} + \mathbf{s}) \geq g(\mathbf{r}) + g(\mathbf{s}) \) for all \(\mathbf{r}, \mathbf{s} \in \mathbb{R}^n_+ \), then \(d + d' \) is a \(g \)-distance.
Proposition

Let \(g : \mathbb{R}^n_+ \to \mathbb{R}_+ \) be a (symmetric) function, \(d \) and \(d' \) be \(g \)-distances. The following assertions hold.

1. If \(g \) is positively homogeneous, i.e., \(g(\lambda r) = \lambda g(r) \) for all \(r \in \mathbb{R}^n_+ \) and all \(\lambda > 0 \), then for every \(\lambda > 0 \), \(\lambda d \) is a \(g \)-distance.

2. If \(g \) is superadditive, i.e., \(g(r + s) \geq g(r) + g(s) \) for all \(r, s \in \mathbb{R}^n_+ \), then \(d + d' \) is a \(g \)-distance.

3. If \(g \) is both positively homogeneous and superadditive, then it is concave.
Proposition

Let $g : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a (symmetric) function, d and d' be g-distances. The following assertions hold.

(1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_+^n$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g-distance.

(2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \geq g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_+^n$, then $d + d'$ is a g-distance.

(3) If g is both positively homogeneous and superadditive, then it is concave.

(4) If g is bounded below (at least on a measurable set) and additive, that is, $g(\mathbf{r} + \mathbf{s}) = g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_+^n$, then and only then there exist $\lambda_1, \ldots, \lambda_n \geq 0$ such that

$$g(\mathbf{r}) = \sum_{i=1}^{n} \lambda_i \mathbf{r}_i$$

(1)
Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}^n_+, then $g(r) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of n-distance.
Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}^n_+, then $g(r) = \lambda \sum_{i=1}^{n} r_i$, which gives the 'original' definition of n-distance.

d: $X^n \to \mathbb{R}_+$ ($n \geq 2$) is an n-distance if satisfies (i), (ii) and (iii) There is a $0 \leq K \leq 1$ such that

\[
d(x_1, \ldots, x_n) \leq K \sum_{i=1}^{n} d(x_1, \ldots, x_n)|_{x_i=z} \text{ for all } x_1, \ldots, x_n, z \in X.
\]
Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_+^n, then $g(r) = \lambda \sum_{i=1}^n r_i$, which gives the ’original’ definition of n-distance.

$d: X^n \to \mathbb{R}_+ (n \geq 2)$ is an n-distance if satisfies (i), (ii) and (iii) There is a $0 \leq K \leq 1$ such that

$$d(x_1, \ldots, x_n) \leq K \sum_{i=1}^n d(x_1, \ldots, x_n)|_{x_i=z}$$

for all $x_1, \ldots, x_n, z \in X$.

We denote by K^* the smallest constant K for which (iii) holds.
Example I.

What would be $K*$?
What would be K^*?

Example (Basic examples)

Given a metric space (X, d) and $n \geq 2$, the maps $d_{\text{max}} : X^n \to \mathbb{R}_+$ and $d_{\Sigma} : X^n \to \mathbb{R}_+$ defined by

\[
d_{\text{max}}(x_1, \ldots, x_n) = \max_{1 \leq i < j \leq n} d(x_i, x_j)
\]

\[
d_{\Sigma}(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)
\]
Example 1.

What would be K^*?

Example (Basic examples)

Given a metric space (X, d) and $n \geq 2$, the maps $d_{\text{max}} : X^n \to \mathbb{R}_+$ and $d_\Sigma : X^n \to \mathbb{R}_+$ defined by

$$d_{\text{max}}(x_1, \ldots, x_n) = \max_{1 \leq i < j \leq n} d(x_i, x_j)$$

$$d_\Sigma(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)$$

are n-distances for which the best constants are given by $K^* = \frac{1}{n-1}$.
Generalization

Let X be a set.
Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$.
Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$. For a subgraph G of K_n we denote $E(G)$ the edge set of a graph G.

Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$. For a subgraph G of K_n we denote $E(G)$ the edge set of a graph G. Let \mathcal{P} be a class of graphs over x_1, \ldots, x_n.
Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$. For a subgraph G of K_n we denote $E(G)$ the edge set of a graph G.

Let \mathcal{P} be a class of graphs over x_1, \ldots, x_n.

Theorem

Let (X, d) be a metric space and $n \geq 2$. Then for any nonempty class \mathcal{P} the map $d_{Gr}: X^n \to \mathbb{R}_+$ defined by

$$d_{Gr}(x_1, \ldots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

are n-distances for which the best constants are given by $K^* = \frac{1}{n-1}$.
Example

1. If \(\mathcal{P} = \{ G \cong K_2 \} \), then \(d_{Gr} = d_{\max}(x_1, \ldots, x_n) \).
Example

1. If $\mathcal{P} = \{ G \cong K_2 \}$, then $d_{Gr} = d_{\max}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{ G \cong K_n \}$, then $d_{Gr} = d_{\Sigma}(x_1, \ldots, x_n)$.

5. \mathcal{P} is a class of circles of given size, or the class of spanning trees, etc.
Example

1. If $\mathcal{P} = \{ G \simeq K_2 \}$, then $d_{Gr} = d_{\text{max}}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{ G \simeq K_n \}$, then $d_{Gr} = d_\Sigma(x_1, \ldots, x_n)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P} = \{ G \simeq K_s \}$. Then

$$d_{K_s}(x_1, \ldots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

is an n-metric with $K^* = \frac{1}{n-1}$.
Example

1. If $\mathcal{P} = \{ G \cong K_2 \}$, then $d_{Gr} = d_{\max}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{ G \cong K_n \}$, then $d_{Gr} = d_{\Sigma}(x_1, \ldots, x_n)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P} = \{ G \cong K_s \}$. Then
 \[
 d_{K_s}(x_1, \ldots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)
 \]
 is an n-metric with $K^* = \frac{1}{n-1}$.
4. If \mathcal{P} is the class of Hamiltonian cycles of K_n. Then
 \[
 d_{Ham}(x_1, \ldots, x_n) = \max_{H \in \mathcal{P}} \sum_{(x_i, x_j) \in E(H)} d(x_i, x_j)
 \]
 is an n-metric with $K^* = \frac{1}{n-1}$.

P is a class of circles of given size, or the class of spanning trees, etc.
Example

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\text{max}}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \ldots, x_n)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{K_s}(x_1, \ldots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

is an n-metric with $K^* = \frac{1}{n-1}$.

4. If \mathcal{P} is the class of Hamiltonian cycles of K_n. Then

$$d_{\text{Ham}}(x_1, \ldots, x_n) = \max_{H \in \mathcal{P}} \sum_{(x_i, x_j) \in E(H)} d(x_i, x_j)$$

is an n-metric with $K^* = \frac{1}{n-1}$.

5. \mathcal{P} is a class of circles of given size, or the class of spanning trees, etc.
Examples II.

Example (Geometric constructions)
Let x_1, \ldots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n. It can be shown that this ball always exist, is unique, and can be determined in linear time.
Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n. It can be shown that this ball always exist, is unique, and can be determined in linear time.

(1) The radius of $B(x_1, \ldots, x_n)$ is an n-distance whose best constant $K^* = \frac{1}{n-1}$.
Examples II.

Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n. It can be shown that this ball always exist, is unique, and can be determined in linear time.

1. The radius of $B(x_1, \ldots, x_n)$ is an n-distance whose best constant $K^* = \frac{1}{n-1}$.

2. If $k = 2$, then the area of $B(x_1, \ldots, x_n)$ is an n-distance whose best constant $K^* = \frac{1}{n-3/2}$.
Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n. It can be shown that this ball always exist, is unique, and can be determined in linear time.

1. The radius of $B(x_1, \ldots, x_n)$ is an n-distance whose best constant $K^* = \frac{1}{n-1}$.

2. If $k = 2$, then the area of $B(x_1, \ldots, x_n)$ is an n-distance whose best constant $K^* = \frac{1}{n-3/2}$.

3. The k-dimensional volume of $B(x_1, \ldots, x_n)$ is an n-distance and we conjecture that the best constant K^* is given by $K^* = \frac{1}{n-2+(1/2)^{k-1}}$. This is correct for $k = 1$ or 2.
Examples III.

Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer $n \geq 2$, the Fermat set F_Y of any element subset $Y = \{x_1, \ldots, x_n\}$ of X, is defined as

$$F_Y = \left\{ x \in X : \sum_{i=1}^{n} d(x_i, x) \leq \sum_{i=1}^{n} d(x_i, z) \text{ for all } z \in X \right\}.$$
Examples III.

Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer $n \geq 2$, the Fermat set F_Y of any element subset $Y = \{x_1, \ldots, x_n\}$ of X, is defined as

$$F_Y = \left\{ x \in X : \sum_{i=1}^{n} d(x_i, x) \leq \sum_{i=1}^{n} d(x_i, z) \text{ for all } z \in X \right\}.$$

Since $h(x) = \sum_{i=1}^{n} d(x_i, x)$ is continuous and bounded from below by 0, F_Y is non-empty but usually not a singleton.
Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer $n \geq 2$, the Fermat set F_Y of any element subset $Y = \{x_1, \ldots, x_n\}$ of X, is defined as

$$F_Y = \left\{ x \in X : \sum_{i=1}^{n} d(x_i, x) \leq \sum_{i=1}^{n} d(x_i, z) \text{ for all } z \in X \right\}.$$

Since $h(x) = \sum_{i=1}^{n} d(x_i, x)$ is continuous and bounded from below by 0, F_Y is non-empty but usually not a singleton.

We can define $d_F : X^n \to \mathbb{R}_+$ by

$$d_F(x_1, \ldots, x_n) = \min \left\{ \sum_{i=1}^{n} d(x_i, x) : x \in X \right\}.$$

Proposition

d_F is an n-distance and $K^* \leq \frac{1}{\lceil \frac{n-1}{2} \rceil}$.
Median graphs

Let $G = (V, E)$ be an undirected graph.
Median graphs

Let $G = (V, E)$ be an undirected graph. G is called median graph if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.

Examples: Hypercubes and trees. We can define $d_m: V^3 \to \mathbb{R}^+$ by $d_m(u, v, w) = \min_{s \in V} \{d(u, s) + d(v, s) + d(w, s)\}$.

Proposition d_m is a 3-distance, $d_m(u, v, w)$ is realized by $s = m(u, v, w)$ and $K^* = \frac{1}{2}$.
Median graphs

Let $G = (V, E)$ be an undirected graph. G is called median graph if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.

Examples: Hypercubes and trees.

We can define $d_m: V^3 \to \mathbb{R}^+$ by

$$d_m(u, v, w) = \min_{s \in V} \{ d(u, s) + d(v, s) + d(w, s) \}.$$

Proposition d_m is a 3-distance, $d_m(u, v, w)$ is realized by $s = m(u, v, w)$ and $K^\ast = \frac{1}{2}$.
Median graphs

Let $G = (V, E)$ be an undirected graph. G is called *median graph* if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w. Examples: Hypercubes and trees.
Median graphs

Let $G = (V, E)$ be an undirected graph.
G is called median graph if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.
Examples: Hypercubes and trees.
We can define $d_m : V^3 \to \mathbb{R}_+$ by

$$d_m(u, v, w) = \min_{s \in V} \{d(u, s) + d(v, s) + d(w, s)\}.$$

Proposition

d_m is a 3-distance, $d_m(u, v, w)$ is realized by $s = m(u, v, w)$ and $K^* = \frac{1}{2}$.

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance).
Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m, we can define d_{gm} by

$$d_{gm}(x_1, \ldots, x_n) = \min_{z \in V(H_m)} \sum_{i=1}^{n} d(z, x_i).$$

Let $m = \text{Maj}(x_1, \ldots, x_n)$ denote the majority of x_1, \ldots, x_n. Theorem d_{gm} is a n-distance, $d_{gm}(x_1, \ldots, x_n)$ is realized by (any) $m = \text{Maj}(x_1, \ldots, x_n)$ and $K^* = \frac{1}{n-1}$.
Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m, we can define d_{gm} by

$$d_{gm}(x_1, \ldots, x_n) = \min_{z \in V(H_m)} \sum_{i=1}^{n} d(z, x_i).$$

Let $m = Maj(x_1, \ldots, x_n)$ denote the majority of x_1, \ldots, x_n.*
Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m, we can define d_{gm} by

$$d_{gm}(x_1, \ldots, x_n) = \min_{z \in V(H_m)} \sum_{i=1}^{n} d(z, x_i).$$

Let $m = Maj(x_1, \ldots, x_n)$ denote the majority of x_1, \ldots, x_n.*

Theorem

d_{gm} is a n-distance, $d_{gm}(x_1, \ldots, x_n)$ is realized by (any) $m = Maj(x_1, \ldots, x_n)$ and $K^* = \frac{1}{n-1}$.
\(K^* = 1, \text{ Example IV.}\)

For all of the previous examples \(\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}\) (when we know the exact value).

Question

Are there any \(n\)-distance \(d\) such that the \(K^* = 1\) for any \(n\)?
For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^ = 1$ for any n?*

Yes.
\(K^* = 1, \text{ Example IV.} \)

For all of the previous examples \(\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2} \) (when we know the exact value).

Question

Are there any \(n \)-distance \(d \) such that the \(K^ = 1 \) for any \(n \)?*

Yes. In \(\mathbb{R} \) we can define

\[
A_n(x) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(x) = \min\{x_1, \ldots, x_n\}
\]

and \(d_n(x) = A_n(x) - \min_n(x) \), where \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \).
$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^* = 1$ for any n?

Yes. In \mathbb{R} we can define

$$A_n(x) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(x) = \min\{x_1, \ldots, x_n\}$$

and $d_n(x) = A_n(x) - \min_n(x)$, where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Proposition

d_n is an n-distance for every $n \geq 2$ and $K^* = 1$.
For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^ = 1$ for any n?*

Yes. In \mathbb{R} we can define

$$A_n(x) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(x) = \min\{x_1, \ldots, x_n\}$$

and $d_n(x) = A_n(x) - \min_n(x)$, where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Proposition

d_n is an n-distance for every $n \geq 2$ and $K^* = 1$.

But it is not realized.
$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^ = 1$ for any n?*

Yes. In \mathbb{R} we can define

$$A_n(x) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(x) = \min\{x_1, \ldots, x_n\}$$

and $d_n(x) = A_n(x) - \min_n(x)$, where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

Proposition

d_n is an n-distance for every $n \geq 2$ and $K^* = 1$.

But it is not realized. (For every $\varepsilon > 0$ it can be shown that $K^ > 1 - \varepsilon$.)*
Summary

Table: Critical values

<table>
<thead>
<tr>
<th>n-distance</th>
<th>space X</th>
<th>K^*</th>
<th>nb. of var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{Gr}, d_{max}, d_\sum</td>
<td>arbitrary metric</td>
<td>$\frac{1}{n-1}$</td>
<td>$n > 1$</td>
</tr>
<tr>
<td>$d_{diameter}$</td>
<td>\mathbb{R}^m ($m \geq 1$)</td>
<td>$\frac{1}{n-1}$</td>
<td>$n > 1$</td>
</tr>
<tr>
<td>d_{area}</td>
<td>\mathbb{R}^m ($m \geq 2$)</td>
<td>$\frac{1}{n-3/2}$</td>
<td>$n > 1$</td>
</tr>
<tr>
<td>$d_{volume(k)}$</td>
<td>\mathbb{R}^m ($m \geq k$)</td>
<td>$\frac{1}{n-1-(1/2)^{k-1}}$</td>
<td>$n > 1$</td>
</tr>
<tr>
<td>d_{Fermat}</td>
<td>arbitrary metric</td>
<td>$\frac{1}{\lceil n-1/2 \rceil}$</td>
<td>$n > 1$</td>
</tr>
<tr>
<td>d_{median}</td>
<td>median graph G</td>
<td>$\frac{1}{2}$</td>
<td>$n = 3$</td>
</tr>
<tr>
<td>$d_{hypercube}$</td>
<td>${0, 1}^n$</td>
<td>$\frac{1}{n-1}$</td>
<td>$n > 1$</td>
</tr>
<tr>
<td>d_n</td>
<td>\mathbb{R}</td>
<td>1</td>
<td>$n > 1$</td>
</tr>
</tbody>
</table>
Summary

Table: Critical values

<table>
<thead>
<tr>
<th>(n)-distance</th>
<th>space (X)</th>
<th>(K^*)</th>
<th>nb. of var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{Gr}, d_{max}, d_{\Sigma})</td>
<td>arbitrary metric</td>
<td>(\frac{1}{n-1})</td>
<td>(n > 1)</td>
</tr>
<tr>
<td>(d_{diameter})</td>
<td>(\mathbb{R}^m) ((m \geq 1))</td>
<td>(\frac{1}{n-1})</td>
<td>(n > 1)</td>
</tr>
<tr>
<td>(d_{area})</td>
<td>(\mathbb{R}^m) ((m \geq 2))</td>
<td>(\frac{1}{n-1})</td>
<td>(n > 1)</td>
</tr>
<tr>
<td>(d_{volume(k)})</td>
<td>(\mathbb{R}^m) ((m \geq k))</td>
<td>(\frac{1}{n-3/2})</td>
<td>(n > 1)</td>
</tr>
<tr>
<td>(d_{Fermat})</td>
<td>arbitrary metric</td>
<td>(? \leq \frac{1}{\lceil \frac{n-1}{2} \rceil})</td>
<td>(n > 1)</td>
</tr>
<tr>
<td>(d_{median})</td>
<td>median graph (G)</td>
<td>(\frac{1}{2})</td>
<td>(n = 3)</td>
</tr>
<tr>
<td>(d_{hypercube})</td>
<td>({0, 1}^n)</td>
<td>(\frac{1}{n-1})</td>
<td>(n > 1)</td>
</tr>
<tr>
<td>(d_n)</td>
<td>(\mathbb{R})</td>
<td>1</td>
<td>(n > 1)</td>
</tr>
</tbody>
</table>

Conjecture

\[
\frac{1}{n-1} \leq K^* \leq 1.
\]
Question

1. Are there any n-distance such that $K^* < \frac{1}{n-1}$?
2. Can we characterize the n-distances for which $K^* = \frac{1}{n-1}$?
3. Can we characterize the n-distances for which $K^* = 1$?
4. Can we show an example where $K^* = 1$ is realized?
Thank you for your kind attention!