
On the Achievability of Simulation-Based Security for
Functional Encryption

Angelo De Caro1, Vincenzo Iovino2, Abhishek Jain3, Adam O’Neill4, Omer Paneth5, and
Giuseppe Persiano6

1 IBM Research Zurich, Switzerland, angelo.decaro@gmail.com
2 University of Luxembourg, Luxembourg, vinciovino@gmail.com,

3 Johns Hopkins University, USA abhishek@cs.jhu.edu,
4 Georgetown University, USA amoneill@gmail.com,

5 MIT, USA, omer@bu.edu,
6 University of Salerno, giuper@gmail.com

Abstract. Recently, there has been rapid progress in the area of functional encryption (FE), in
which a receiver with secret-key sky can compute from an encryption of x the value F (x, y) for some
functionality F . Two central open questions that remain are: (1) Can we construct FE secure under
an indistinguishability-based (IND) security notion for general circuits? (2) To what extent can
we achieve a simulation-based (SIM) security notion for FE? Indeed, it was previously shown that
IND-security for FE is too weak for some functionalities [Boneh et al. – TCC’11, O’Neill – ePrint
’10], but that there exist striking impossibility results for SIM-security [Boneh et al. – TCC’11,
Agrawal et al. – ePrint 2012].
Our work establishes a connection between these questions by giving a compiler that transforms
any IND-secure FE scheme for general circuits into one that is SIM-secure for general circuits.
– In the random oracle model, our resulting scheme is SIM-secure for an unbounded number of

ciphertexts and key-derivation queries. We achieve this result by starting from an IND-secure
FE scheme for general circuits with random oracle gates.

– In the standard model, our resulting scheme is secure for a bounded number of ciphertexts and
non-adaptive key-derivation queries (i.e., those made before seeing the challenge ciphertexts),
but an unbounded number of adaptive key-derivation queries. These parameters match the
known impossibility results for SIM-secure FE and improve upon the parameters achieved by
Gorbunov et al. [CRYPTO’12].

The techniques for our compiler are inspired by constructions of non-committing encryption [Nielsen
– CRYPTO ’02] and the celebrated Feige-Lapidot-Shamir paradigm [FOCS’90] for obtaining zero-
knowledge proof systems from witness-indistinguishable proof systems.
Our compiler in the standard model requires an IND-secure FE scheme for general circuits, it
leaves open the question of whether we can obtain SIM-secure FE for special cases of interest under
weaker assumptions. To this end, we next show that our approach leads to a direct construction of
SIM-secure hidden vector encryption (an important special case of FE that generalizes anonymous
identity-based encryption). The scheme, which is set in composite order bilinear groups under sub-
group decision assumptions, achieves security for a bounded number of ciphertexts but unbounded
number of both non-adaptive and adaptive key-derivation queries, again matching the known im-
possibility results. In particular, to our knowledge this is the first construction of SIM-secure FE (for
any non-trivial functionality) in the standard model handling an unbounded number of adaptive
key-derivation queries.
Finally, we revisit the negative results for SIM-secure FE. We observe that the known results leave
open the possibility of achieving SIM-security for various natural formulations of security (such as
non-black-box simulation for non-adaptive adversaries). We settle these questions in the negative,
thus providing essentially a full picture of the (un)achievability of SIM-security.

Keywords. Functional Encryption, Simulation-Based Security, Random Oracle Model.

2 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

1 Introduction

One of the most important achievements of the modern theory of cryptography is the formal-
ization of the notion of a secure cryptosystem given in the seminal work of Goldwasser and
Micali [GM84]. There, two notions of security were proposed, one is an indistinguishability-
based notion and the other is simulation-based, and they were shown to be equivalent in the
sense that an encryption scheme meets one security definition if and only if it meets the other.

More than twenty years onwards, researchers have started looking at a much more sophis-
ticated type of encryption called functional encryption (FE). A functionality F is a function
F : K×M → {0, 1} where K is the key space and M is the message space. A functional encryp-
tion scheme for F is a special encryption scheme in which, for every key k ∈ K, the owner of
the secret key Msk associated with the public key Pk can generate a special token or secret key
Tokk that allows the computation of F (k,m) from a ciphertext of m computed under public key
Pk. In other words, whereas in traditional encryption schemes decryption is an all-or-nothing
affair, in functional encryption it is possible to finely control the amount of information that is
revealed by a ciphertext. This opens up exciting applications to access control, executing search
queries on encrypted data, and secure delegation of computation, among others.

Unlike in the case of classical cryptosystems, a general study of the security of FE did not
appear initially. Instead, progressively more expressive forms of FE were constructed in a series of
works (see, e.g., [BDOP04,BW07,KSW08,LOS+10,OT12,Wat12]) that adopted indistinguishability-
based (IND) notions of security. The study of simulation-based (SIM) notions of security for
functional encryption were initiated only comparatively recently by Boneh, Sahai, and Waters
[BSW11] and O’Neill [O’N10]. Quite interestingly, they show there exists clearly insecure FE
schemes for certain functionalities that are nonetheless deemed secure by IND security, whereas
these schemes do not meet the stronger notion of SIM-security. On the other hand, negative re-
sults have also emerged showing SIM-security is not always achievable [BSW11,BO12,AGVW12].
This leads to the main question that we study in this work:

To what extent is SIM-security for functional encryption achievable? In particular, can
schemes for IND-secure functional encryption be “bootstrapped” to the stronger notion
of SIM-security?

In other words, while previous work investigated whether IND-security implies SIM-security, we
study the more general question of whether a SIM-secure FE scheme can be constructed from
an IND-secure one. Our results demonstrate that, despite the weaknesses of IND, essentially
optimal constructions of SIM-secure FE can indeed be constructed based on IND-secure ones.
We also close some possibilities for achieving SIM-security left open by existing negative results
by extending them to various alternative natural notions of simulation (such as non-black-box
and unbounded simulation), thus providing essentially a full picture of the achievability of SIM-
security. We next discuss our results in more detail.

1.1 A Compiler for General Functionalities

Our first result is a general transformation that takes an IND-secure functional encryption
scheme for all polynomial-size circuits and constructs a functional encryption scheme for the
same functionality that is SIM-secure. We actually give two transformations, one in the (pro-
grammable) random oracle model [BR93] and one in the standard model.

To design our transformations, we make a connection between the construction of SIM-
secure FE from IND-secure FE and the construction of zero-knowledge proof systems from

On the Achievability of Simulation-Based Security for Functional Encryption 3

witness indistinguishable proof systems, as studied in the celebrated work of Feige, Lapidot
and Shamir [FLS90]. Recall that in the FLS paradigm, the simulator operates the proof system
in a “trapdoor” mode which is indistinguishable from the behavior of the honest party to the
adversary.

Adopting this paradigm to FE, we define a notion of “trapdoor circuits” which have addi-
tional “slots” in plaintext and keys that are used only by the simulator to program the function-
ality, not by the real system. (That is, we increase the length of the plaintext and keys versus the
starting FE scheme to include these extra slots.) More concretely, one such slot in the plaintext
is a flag that indicates to a secret key that the system is operating in trapdoor mode. This tells
the key to check its own additional slots as well as additional slots in the plaintext to determine
the output of the functionality in some fashion. For example, in the random oracle model, we can
mask the output value using a hash function, so that it can be adaptively programmed by the
simulator using an extension to the technique of Nielsen [Nie02] for achieving non-committing
encryption. Using this approach:
• In the standard model, we achieve SIM-security for a bounded number of ciphertexts and non-

adaptive key-derivation queries (i.e., those made before seeing the challenge ciphertext) but
an unbounded number of adaptive key-derivation queries.

• In the random oracle model, we achieve SIM-security for an unbounded number of challenge
messages and key-derivation (i.e., token) queries, which is the best level of security one can
hope for.

The result in the standard model exactly matches recent impossibility results (as well as im-
provement we give that are discussed later).7 Specifically [BSW11,BO12] show that a bounded
number of ciphertexts is necessary when considering adaptive queries. (And indeed, if we only
consider non-adaptive queries, our construction can be extended to an unbounded number of
challenge messages.) Furthermore, Agrawal et al. [AGVW12] show that a bounded number of
non-adaptive key-derivation queries is necessary for general functionalities (that is, they give an
impossibility result for a particular functionality).

FE in the random oracle model. In the random oracle model transformation, the trapdoor
circuits we use must themselves query the random oracle. Therefore we require that the func-
tionality supported by the IND-secure FE includes even circuits that access the random oracle.
We also augment the definition of IND-secure FE to address functionalities that access an oracle.
We note that this notion of FE in the random oracle model is incomparable to IND-secure FE
in the standard model.

Comparison to Prior Constructions. We note that it is currently a central open question in
functional encryption to construct an IND-secure FE scheme for general circuits.8 Therefore,
we do not currently obtain any concrete new construction as a result of our compiler. Rather,
we see this result as providing a connection between this question and the question of whether
SIM-secure FE can be achieved (saying that for general functionalities, achieving SIM security
is no harder than achieving IND, so research can focus on the latter).

If IND-secure FE for general functionalities is achieved our compiler will give interesting
new results. In the random oracle model, the only prior construction to achieve SIM-security
(for an unbounded number of ciphertexts and token queries) is the identity-based encryption

7 We note that our transformed scheme, as for all our constructions of SIM-secure FE in the standard model
meeting bounded security notions (such as for HVE described below), still meets IND-security for an unbounded
number of messages and key queries. In this sense, it achieves “hedged” security in the unbounded case.

8 We emphasize that, since our transformation matches the known impossibility results, we do not obtain any
impossible result for IND-secure FE. Indeed, we believe IND-secure FE for general circuits is possible.

4 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

scheme of Boneh et al. [BSW11]; in fact, they explicitly raise the open question of constructing
SIM-secure FE for general functionalities in the random oracle model. In the standard model,
the prior construction of Gorbunov et al. [GVW12] achieves SIM-security for only a bounded
number of adaptive token queries, whereas we handle an unbounded number. Furthermore their
scheme has ciphertext size depending on the size of the circuit for the functionality, whereas
ours does not enforce this (i.e., it has this property only if the starting IND-secure scheme
does). We note that Goldwasser et al. [GKP+12] recently gave a construction where ciphertext
size does not depend on the output size, but they handle only a bounded number of non-
adaptive key queries. Finally, we mention recent works [SW12,GVW13] that construct attribute-
based encryption (ABE) for general circuits (i.e., “public-index predicate encryption” in the
terminology of [BSW11]). Unfortunately, ABE does not seem sufficient for our compiler (roughly,
because we need a “private index” property to prevent the adversary from detecting the trapdoor
mode).

Why is IND-security Enough? The above shows that, surprisingly, despite the weaknesses of
IND-security shown in [BSW11,O’N10], an IND-secure FE scheme for general circuits is enough
to go “all the way“ to SIM security. A natural question is how this can be the case, given that
IND-security is known to be weak (even vacuous) for some functions. To answer this, let us look
at the counter-example provided by [O’N10], which is an f (which we think of here as a circuit)
for which there is another function g such that g is “hard to compute” from f but is isomorphic to
g, meaning f and g have the same equality pattern across the domain. In this case, despite IND-
security, a token for f may also allow computing g. However, the corresponding transformed
circuit produced by our compiler is such that it agrees with f (via its added programmable
“slots” in the plaintext) on all the challenge messages but no longer agrees with g, because g
is computed honestly on the actual encrypted message, which is a “dummy” one. Thus, the
transformed circuit cannot have this weakness (since otherwise we could violate IND-security).

1.2 Simulation-Secure Hidden Vector Encryption

Note that our compiler requires a IND-secure FE scheme for all polynomial-time circuits; in
general, for a specific functionality F , we do not know how to compile an IND-secure FE scheme
for F into a SIM-secure one. However, we also show that our approach leads to a direct con-
struction of hidden-vector encryption HVE, a generalization of anonymous IBE introduced by
[BW07]. The scheme is set in composite order bilinear groups and is proven secure under the
general subgroup decision assumption [BWY11]. Our scheme is similar to IND-secure construc-
tions (see [OT12,DCIP13]) except that it uses additional subgroups. Indeed, the presence of
an additional subgroup component in the simulated ciphertexts acts as the “flag” here.9 The
simulated secret key also has a component in this subgroup which we can use to program the
output of the functionality to output 0 when needed (the output of HVE is only one bit). Our
scheme is secure for a bounded number of challenge messages (which is necessary when consider-
ing adaptive queries in the standard model as per [BSW11,BO12]) and an unbounded number of
key-derivation queries both before and after seeing the challenge ciphertext. (The impossibility
result of [AGVW12] does not apply to HVE.) In particular, to the best of our knowledge our
scheme is the first construction of SIM-secure FE (for any functionality) in the standard model
handling an unbounded number of adaptive token queries.

We remark that a functional encryption scheme for HVE can be derived from the general
result of [GVW12]. However, the construction of [GVW12] imposes an upper bound on the

9 In this sense, we compile an IND-secure scheme into a SIM-secure scheme in a non-blackbox way; we are hopeful
that this approach can work for schemes in composite order groups for other functionalities as well.

On the Achievability of Simulation-Based Security for Functional Encryption 5

number of tokens that can be seen by an adversary and is less efficient (this is due to the fact
that our construction is tailored for HVE whereas the one of [GVW12] is a for a general class).
On the other hand, [O’N10] shows that when restricted to non-adaptive token queries, IND and
SIM security are equivalent for “preimage sampleable” functionalities. Interestingly, we show
that if HVE is pre-image sampleable then it is possible to decide NP in probabilistic polynomial
time. Therefore it is unlikely that pre-image samplability can be used to construct SIM-secure
HVE, and in any case this would achieve security only for non-adaptive token queries.10

1.3 Stronger Impossibility Results

The positive results presented above should be compared to the known impossibility results for
simulation-secure FE. Boneh, Sahai and Waters [BSW11] show an impossibility for an adversary
that makes an unbounded number of ciphertext queries and one adaptive token query. Recently,
Agrawal, Gorbunov, Vaikuntanathan, and Wee [AGVW12] showed a different impossibility re-
sult for an adversary that make an unbounded number of non-adaptive token queries and one
ciphertext query. To complete the picture and understand the limitation of simulation-based se-
cure FE we address several natural notions of security that fall outside the reach of the existing
impossibilities, but for which no positive results are known.

We first focus on the aspect of adaptivity in negative results above. We note that both of the
results are established by arguing about the order in which the adversary’s view is simulated. In
particular, the definition considered by [AGVW12] mandates that the simulator first simulate
the tokens and only then simulate the ciphertexts. Similarly, [BSW11] uses a non-programmable
random oracle to guarantee that the simulator first simulate ciphertexts and only then simulate
tokens (recently, [BO12] showed how to eliminate the random oracle from this negative result).
We ask whether impossibilities exist even for natural security notions that do not enforce such
ordering on the simulation strategy.

Concretely, the impossibility of [AGVW12] uses a black-box simulation-based security def-
inition that enforces order on the simulator. This leaves open the possibility of of simulation
secure FE against adversaries making unbounded non-adaptive key queries using non-black-box
simulators. Indeed, in other contexts, non-black-box simulation has proved to be strictly more
powerful then black-box simulation [Bar01]. As another example, the impossibility of [AGVW12]
addresses the case of non-adaptive key queries, however, it relies on the fact that the ciphertext
query is made after key queries are answered. Thus, we consider the natural question of achiev-
ing simulation-secure FE against adversaries that are fully non-adaptive in the sense that they
choose their ciphertext and token queries simultaneously (considered for the first time in this
work).

We give the appropriate security definitions both for non-black-box simulation with non-
adaptive key queries (based on the non-black-box definition of [BSW11]), and for simulation
with fully non-adaptive adversaries. We then show that both definitions are not achievable. For
the case of non-adaptive key queries we demonstrate this by using the techniques of [BO12]
in the context of the [AGVW12] impossibility. For the fully non-adaptive case, we give a new
extension of [AGVW12] that uses unbounded number of ciphertext queries as well as key queries.

Our second focus is on the output length of the functionality. Recently [GKP+12] give a
construction of FE for boolean functionalities with “succinct” ciphertexts. That is, ciphertext

10 We note that a couple recent works [BO12,BF12] extend the equivalence of IND and SIM for pre-image
sampleable functionalities to adversaries that also make very restricted adaptive key queries (but an unbounded
number of them); however, in this work we are only interested in potentially bounding number of such queries
but not restricting them in any other way.

6 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

length does not grow with the size of the functionality’s circuit, but only with the depth. In
contrast, for functionalities with longer output, the ciphertext size in all existing constructions
grows linearly with the output length of the functionality. It is natural to wonder if we can
construct an FE scheme where the ciphertext size is instead independent of the functionality’s
output length. Such a scheme is desirable since it does not force the encrypting party to place
an a priori upper bound on the output length of the functions that can be evaluated from the
ciphertext. Additionally, such an encryption scheme could potentially support functionalities
that perform some computation on the plaintext and output a new FE ciphertext encrypting
the result. The possibility of combining such functionalities and evaluating them recursively on
their own output, has various applications [AGG12].

Unfortunately, we rule out such schemes in general. Namely, we give syntax for such FE
(previous definition implicitly bound the functionality’s output length) and show that such FE
cannot satisfy the simulation-based security definition. Our impossibility uses ideas similar to
[AGVW12], however we do not assume unbounded collusion. In fact, our impossibility holds for
adversaries that make only single ciphertext query and a single and non-adaptive key query.

We summarize the existing and new negative results for simulation-secure FE in Table 1.

Work Simulation
type

NA-Key
queries

Ad-Key
queries

Simultaneous
Key queries

Ciphertext
queries

Simulation
time

Short
ciphertext?

[BSW11] NBB
(NPRO Model) -NA- 2 -NA- UB UB -NA-

[BO12] NBB -NA- 2 -NA- UB PPT -NA-

[AGVW12] BB UB -NA- -NA- 1 PPT -NA-

This NBB UB -NA- -NA- 1 PPT -NA-

This NBB -NA- -NA- UB UB PPT -NA-

This NBB -NA- UB -NA- UB UB -NA-

This NBB -NA- 1 -NA- 1 PPT Yes
Table 1. Negative Results for Sim-secure FE. UB stands for unbounded number of queries or running time.
BB/NBB stands for Black-box/Non-black-box simulation.

1.4 Organization

In Section 2 we give the basic definitions for FE. In Section 3 we describe the transformations from
IND-secure to SIM-secure FE, both in the random oracle model and in the plain model. Section 4
describes the construction of SIM-secure FE for the hidden vector encryption functionality. The
details of the negative results are given in Section 5.

1.5 Subsequent Work

Subsequent to our work, [GGH+13] constructed the first (selective) IND-secure FE scheme
for general circuits based on indistinguishability obfuscation [BGI+01,GGH+13]. Subsequently,
their construction was extended to achieve adaptive security in multiple works based on varying
assumptions [Wat15,ABSV15,GGHZ16]. By applying our transformation from IND-security to
SIM-security in the standard model, these results can be extended to obtain SIM-secure FE.

In a subsequent work, Iovino and Żebrowski [IŻ15] constructed a SIM-secure FE scheme in
the random oracle model where the number of (non-adaptive and adaptive) key queries are a
priori bounded. The main advantage of their result is that the bound on the key queries is not
reflected in size of the ciphertexts but only on the decryption time.

On the Achievability of Simulation-Based Security for Functional Encryption 7

Hubacek and Wichs [HW15] give a general lower bound on the communication complexity
of secure function evaluation for functions with long output. Some of the known impossibility
results for SIM-secure functional encryption follow as corollaries from their result.

In an attempt to overcome some existing impossibility results, De Caro and Iovino [CI16]
proposed a new simulation-based security definition where the simulator can rewind the the
adversary.

Recently, Agrawal, Koppula and Waters [AKW16] proved that there does not exist any
(0, poly, poly)-SIM-secure FE scheme for the class of (weak) pseudo-random functions in the
random oracle model. This does not contradict our transformation in the random oracle model
as it relies upon an IND-secure scheme for boolean circuits with random oracle gates. Indeed,
(when combined with our transformation) their result rules out the existence of such an IND-
secure FE scheme.

2 Definitions

A negligible function negl(k) is a function that is smaller than the inverse of any polynomial in k.
If D is a probability distribution, the writing “x← D” means that x is chosen according to D.
If D is a finite set, the writing “x← D” means that x is chosen according to uniform probability
on D. If q > 0 is an integer then [q] denotes the set {1, . . . , q}. All algorithms, unless explicitly
noted, are probabilistic polynomial time and all adversaries and distinguishers are modeled by
non-uniform polynomial time algorithms. If B is an algorithm and A is an algorithm with access
to an oracle then AB denotes the execution of A with oracle access to B. If a and b are arbitrary
strings, then a|b denotes the string representing their delimited concatenation.

We now present some basic definitions that we will later use in our formulation of functional
encryption.

Functionality. We start by defining the notion of a functionality.

Definition 1 [Functionality] A functionality F = {Fn}n>0 is a family of functions Fn : Kn ×
Mn → Σ where Kn is the key space for parameter n, Mn is the message space for parameter
n and Σ is the output space. Sometimes we will refer to functionality F as a function from
F : K ×M → Σ with K = ∪nKn and M = ∪nMn.

In this work, our main focus will be on the following functionality.

Definition 2 [Circuit Functionality] The Circuit functionality has key space Kn equals to the
set of all n-input Boolean circuits Cn and message space Mn the set {0, 1}n of n-bit strings. For
C ∈ Cn and m ∈Mn, we have

Circuit(C,m) = C(m),

2.1 Functional Encryption in the Standard Model

Functional encryption schemes are encryption schemes for which the owner of the master secret
can compute restricted keys, called tokens, that allow to compute a functionality on the plaintext
associated with a ciphertext.

Below, we present the syntax, correctness, and indistinguishability and simulation-based
security definitions of functional encryption in the standard model. In Section 2.2, we extend
these definitions to the random oracle model.

8 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Syntax. We start by presenting the syntax of a functional encryption scheme. A functional en-
cryption scheme FE for the circuit functionality Circuit is a tuple FE = (Setup,KeyGen,Enc,Eval)
of four PPT algorithms:

1. Setup(1λ, 1n) outputs public and master secret keys (Pk,Msk) for security parameter λ and
length parameter n that are polynomially related.

2. KeyGen(Msk, C), on input a master secret key Msk and a circuit C ∈ Cn outputs a token Tok.
3. Enc(Pk,m), on input public key Pk and plaintext m ∈Mn outputs ciphertext Ct;
4. Eval(Pk,Ct, Tok) outputs y ∈ Σ ∪ {⊥}.

Correctness. For all (Pk,Msk)← Setup(1λ, 1n), all C ∈ Cn andm ∈Mn, for Tok← KeyGen(Msk, C)
and Ct ← Enc(Pk,m), we have that Eval(Pk,Ct, Tok) = F (k,m) whenever Circuit(C,m) 6= ⊥,
except with negligible probability over the coins of KeyGen, Enc and Eval.

Indistinguishability-based security The indistinguishability-based notion of security for
functional encryption scheme FE = (Setup,KeyGen,Enc,Eval) for circuit functionality Circuit over
(C,M) is formalized by means of the following game INDFE

A between an adversary A = (A0,A1)
and a challenger Ch. Below, we present the definition for only one message; it is easy to see the
definition extends naturally for multiple messages.

INDFE
A (1λ, 1n)

1. Ch generates (Pk,Msk)← Setup(1λ, 1n) and runs A0 on input Pk;
2. A0 submits queries Ci ∈ Cn for i = 1, . . . , q1 and, for each such query, Ch computes

Toki = FE.KeyGen(Msk, Ci) and sends it to A0.
When A0 stops, it outputs two challenge plaintexts m0,m1 ∈ Mn and its internal
state st.

3. Ch picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct = Enc(Pk,mb)
and sends Ct to A1 that resumes its computation from state st.

4. A1 submits queries Ci ∈ Cn for i = q1+1, . . . , q and, for each such query, Ch computes
Toki = KeyGen(Msk, Ci) and sends it to A1.

5. When A1 stops, it outputs b′.
6. Output: Output 1 if

– |m0| = |m1|
– For i = 1 . . . , q, Ci(m0) = Ci(m1)
– b = b′

else output 0.

The advantage of adversary A = (A0,A1) in the above game is defined as

AdvFE,INDA (1λ, 1n) = Pr[INDFE
A (1λ, 1n) = 1]− 1/2

Definition 3 We say that FE is indistinguishably secure (IND security, for short) if all non-
uniform PPT adversaries A = (A0,A1) have at most negligible advantage in the above game.

Simulation-based security In this section, we give a simulation-based security definition for
FE similar to the one given by Boneh, Sahai and Waters [BSW11]. For simplicity of exposition,
below, we present the definition for only one message; it is easy to see the definition extends
naturally for multiple messages.

On the Achievability of Simulation-Based Security for Functional Encryption 9

Definition 4 [Simulation-Based security] A functional encryption scheme FE = (Setup,KeyGen,
Enc,Eval) for the circuit functionality Circuit defined over (Cn,Mn) is simulation-secure (SIM se-
curity, for short) if there exists a simulator algorithm Sim = (Sim0,Sim1) such that for all adver-
sary algorithms A = (A0,A1) the outputs of the following two experiments are computationally
indistinguishable.

RealExpFE,A(1λ, 1n)

(Pk,Msk)← FE.Setup(1λ, 1n);

(m, st)← AFE.KeyGen(Msk,·)
0 (Pk);

Ct← Enc(Pk,m);

α← AFE.KeyGen(Msk,·)
1 (Pk,Ct, st);

Output: (Pk,m, α)

IdealExpFE,A
Sim (1λ, 1n)

(Pk,Msk)← FE.Setup(1λ, 1n);

(m, st)← AFE.KeyGen(Msk,·)
0 (Pk);

(Ct, st′)← Sim0(Pk, |m|, {Ci, Toki,Circuit(Ci,m)});
α← AO(·)1 (Pk,Ct, st);
Output: (Pk,m, α)

Here, {Ci} correspond to the token queries of the adversary. Further, oracle O(·) is the second
stage of the simulator, namely algorithm Sim1(Msk, st′, ·, ·). Algorithm Sim1 receives as third
argument a circuit Cj for which the adversary queries a token, and as fourth argument the
output value Circuit(Cj ,m). Further, note that the simulator algorithm Sim1 is stateful in that
after each invocation, it updates the state st′ which is carried over to its next invocation.

Remark 5 [Simulated Setup] The above follows the security definition of [GVW12] in that in
the ideal experiment, the setup and non-adaptive key derivation queries are handled honestly
(not by the simulator). More generally, we could have an algorithm Sim.Setup in place of FE.Setup
in the ideal experiment; that is, the public key parameters of the ideal experiment could be
generated by the simulator.

For simplicity, we use this relaxation with Sim.Setup in our construction for hidden vector
encryption (and thus for IBE). (However, the construction can be modified to work with the
above definition as well.) We stress that, in terms of security guarantees, however, we do not
find a reason to prefer this more restrictive formulation.

Remark 6 [(q1, q2, `)-SIM — Bounded messages and queries] To make the definition more pre-
cise, we define (q1, q2, `)-SIM security, where q1 = q1(λ), q2 = q2(λ), ` = `(λ) are polynomials
that are fixed a priori, as follows. In this definition, we require that SIM-security as define above
holds for adversaries A where A0 makes at most q1 queries and outputs message vectors of length
and most `, and furthermore A1 makes at most q2 queries. In the case that a parameter is an
unbounded polynomial we use the notation poly. Thus, for example, (q1, poly, `)-SIM security
means that the adversary in the security definition makes a q1-bounded number of non-adaptive
key derivation queries but an unbounded number of adaptive key-derivation queries, and out-
puts a `-bounded message vector. In the case that q1 = 0 we say that the adversary is strictly
adaptive.11

2.2 Functional Encryption in the Random Oracle Model

For one of our results, we will also consider functional encryption in the random oracle model.

11 Curiously, due to [AGVW12], we see that a strictly adaptive adversary can be easier to handle than a non-
adaptive one for general functionalities, in that we can achieve security for a bounded number of ciphertexts
and unbounded number of adaptive queries, but the number of non-adaptive queries must be a-priori bounded.

10 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Oracle-Aided Circuit Functionality. We consider oracle-aided boolean circuits that are given
access a random oracle. Such a circuit queries to the random oracle and obtain answers that
are then used in the computation of the circuit. One may also think of such a circuit as having
random oracle gates.

We denote a random oracle by RO. A boolean circuit with random oracle gates is denoted
as CRO. Finally, the circuit functionality in the random oracle model is denoted as CircuitRO.

Syntax. Let RO denote a random oracle. We consider functional encryption schemes for the
CircuitRO functionality. Such a functional encryption scheme consists of four algorithms
(Setup,KeyGen,Enc,Eval) that are described in the same manner as in Section 2.1, with the
following two differences: (1) The KeyGen algorithm takes as input a circuit CRO (from CircuitRO)
with random oracle gates. (2) Further, all algorithms get access to the random oracle.

Correctness. For every oracle RO, every (Pk,Msk) ← SetupRO(1λ, 1n), every n-input oracle-
aided circuit CRO in CircuitRO, and every m ∈ Mn. Let Tok ← KeyGenRO(Msk, CRO) and Ct ←
EncRO(Pk,m). We have that EvalRO(Pk,Ct, Tok) = CRO(m) whenever CircuitRO(C,m) 6= ⊥,
except with negligible probability over the coins of KeyGen, Enc and Eval.

Indistinguishability-based Security Indistinguishability-based security in the random oracle
model is defined in a similar manner as the standard model except that the adversary gets access
to the random oracle, and in order to win the game we require that in all the token queries, on
both challenge plaintexts the circuit queried by the adversary produces the same output and
makes the same sequence of oracle queries. It follows that the random oracle queries that occur
during a token evaluation are not hidden.

Specifically let RO be a random oracle. We consider the game INDFE
A between an adversary

A = (A0,A1) and a challenger Ch described in Figure 1. We present the definition for only one
message; it is easy to see the definition extends naturally for multiple messages.

INDFE
A (1λ, 1n):

1. Ch generates (Pk,Msk)← SetupRO(1λ, 1n) and runs ARO
0 on input Pk;

2. ARO
0 submits queries CRO

i ∈ Cn for i = 1, . . . , q1 and, for each such query, Ch computes Toki =
FE.KeyGenRO(Msk, CRO

i) and sends it to ARO
0 .

When A0 stops, it outputs two challenge plaintexts m0,m1 ∈Mn and its internal state st.
3. Ch picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct = EncRO(Pk,mb) and sends

Ct to A1 that resumes its computation from state st.
4. ARO

1 submits queries CRO
i ∈ Cn for i = q1 + 1, . . . , q and, for each such query, ChRO computes

Toki = KeyGenRO(Msk, CRO
i) and sends it to ARO

1 .
5. When A1 stops, it outputs b′.
6. Output: Output 1 if

– |m0| = |m1|
– For i = 1, . . . , q, CRO

i (m0) = CRO
i (m1) and the two executions CRO

i (m0), CRO
i (m1) make

exactly the same sequence of oracle queries.
– b = b′

else output 0.

Fig. 1. IND-security in RO Model.

On the Achievability of Simulation-Based Security for Functional Encryption 11

The advantage of adversary A = (A0,A1) in the above game is defined as

AdvFE,INDA (1λ, 1n) = Pr[INDFE
A (1λ, 1n) = 1]− 1/2

Where the probability is also over RO.

Definition 7 We say that FE is indistinguishably secure (IND security, for short) if all non-
uniform PPT adversaries A = (A0,A1) have at most negligible advantage in the above game.

Simulation-based Security Simulation-based security in the random oracle model is defined
in a similar manner as the standard model, except that all algorithms including the adversary,
simulator and distinguisher (that tries to distinguish the output of the two experiments) get
access to a random oracle RO. In the ideal experiment, we let the simulator “program” the
random oracle’s answers. In our application we will only consider simulation-based security in
the random oracle model for the plain (non oracle-aided) circuit functionality.

Definition 8 A functional encryption scheme FE = (Setup,KeyGen,Enc,Eval) for the circuit
functionality Circuit is simulation-secure in the programmable random oracle model (SIM security
in the RO model, for short) if there exists a simulator algorithm Sim = (Sim0,Sim1,SimRO) such
that for all adversary algorithms A = (A0,A1), the outputs of the following two experiments
are computationally indistinguishable.

RealExpFE,A(1λ, 1n)

(Pk,Msk)← FE.SetupRO(1λ, 1n);

(m, st)← AFE.KeyGenRO(Msk,·),RO
0 (Pk);

Ct← EncRO(Pk,m);

α← AFE.KeyGenRO(Msk,·),RO
1 (Pk,Ct, st);

Output: (Pk,m, α)

IdealExpFE,A
Sim (1λ, 1n)

(Pk,Msk)← FE.SetupSimRO(1λ, 1n);

(m, st)← AFE.KeyGenSimRO(Msk,·),SimRO
0 (Pk);

Ct← Sim0(Pk, |m|, {Ci, Toki,Circuit(Ci,m)});
α← AO(·),SimRO

1 (Pk,Ct, st);

Output: (Pk,m, α)

Here, {Ci} correspond to the token queries of the adversary. SimRO answers the random
oracle queries made by any algorithm. Oracle O(·) is the second stage of the simulator, namely
algorithm Sim1(Msk, st′, ·, ·). Algorithm Sim1 receives as third argument a circuit Cj for which
the adversary queries a token, and as fourth argument the output value Circuit(Cj ,m). Finally,
note that Sim0, Sim1 and SimRO are stateful algorithms that share a common state.

3 From Indistinguishability to Simulation-Based Security

In this section, we show transformations from IND-secure functional encryption to SIM-secure
functional encryption scheme.

In the random oracle model, the resulting scheme is secure for an unbounded number of
messages and unbounded number of key queries, and in the standard model it is secure for a
bounded number of messages and bounded number of non-adaptive key queries (but unbounded
number of adaptive key queries). This matches known impossibility results, which we extend to
even weaker security models in Section 5.

12 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

3.1 Trapdoor Circuits

The idea of our transformations is to replace the original circuit with a “trapdoor” one that
the simulator can use to program the output in some way. This approach is inspired by the
FLS paradigm of Feige, Lapidot and Shamir [FLS90] to obtain zero-knowledge proof systems
from witness indistinguishable proof systems. Below we present two constructions of trapdoor
circuits, one in the random oracle model and one in the standard model.

Definition 9 [RO-Based Trapdoor Circuit] Let C be a circuit on n-bits. Let RO : {0, 1}n ×
{0, 1}n → {0, 1}n be a random oracle and F = {fs : s ∈ {0, 1}k}k∈N be a pseudo-random function
family. For y ∈ {0, 1}n define the corresponding RO-based trapdoor circuit TrapRO1 [C,F]y on
(3n+ 1)-bits as follows:

Circuit TrapRO1 [C,F]y(m′)
(m, flag, x, r)← m′

z ← RO(x, y)
If flag = 1 then return z ⊕ fr(y)
Else return C(m)

Definition 10 [Standard-Model Trapdoor Circuit] Fix q > 0. Let C be a n-bit input n-bit
output circuit and let SE = (SE.Enc, SE.Dec) be a symmetric-key encryption scheme with key-
space {0, 1}s, message-space {0, 1}n, and ciphertext-space {0, 1}ν . For k′ ∈ {0, 1}n+ν define the
corresponding standard-model trapdoor circuit Trap2[C,SE]k

′
on ((2q + 1)n + 1 + s)-bit inputs

and n-bit outputs as follows:

Circuit Trap2[C,SE]k
′
(m′)

(r, cSE)← k′ ; (m, flag, kSE, (r1, y1), . . . , (rq, yq))← m′

If flag = 1 then
If there exists i such that r = ri then return yi
Else y ← SE.Dec(kSE, cSE) ; Return y

Else return C(m)

3.2 RO-based Transformation

Overview. We now present our transformation from IND-secure FE to SIM-secure FE in the
random oracle model. Namely, we show how to transform an IND-secure FE scheme for the
CircuitRO functionality (where circuits have random oracle gates) to a SIM-secure FE scheme for
the Circuit functionality, that supports an unbounded number of message and token queries.

The main idea is to put additional “slots” in the plaintexts and secret keys that will only
be used by the simulator. A plaintext will have four slots and a secret key will have two. In the
plaintext, the first slot will be the actual message m. The second slot will be a bit flag indicating
whether the ciphertext is in trapdoor mode. The third slot is a random string x and finally the
fourth slot will be a seed r for a PRF. In the secret key, the first slot will be the actual circuit
C and the second slot will be a random string y.

For evaluation, if the ciphertext is not in trapdoor mode (flag = 0) then we simply output
the result of the circuit C on the message m. If the ciphertext is in trapdoor mode, then the
output is RO(x, y)⊕ fr(y), where RO is a random oracle and fr is the PRF keyed by r.

On the Achievability of Simulation-Based Security for Functional Encryption 13

Definition 11 [RO-Based Transformation] Let RO : {0, 1}n × {0, 1}n → {0, 1}n be a random
oracle and F = {fs : s ∈ {0, 1}k}k∈N be a pseudo-random function family. Let IndFE =
(IndFE.Setup, IndFE.Enc, IndFE.KeyGen, IndFE.Eval) be a functional encryption scheme for the
functionality CircuitRO.

We define a new functional encryption scheme SimFE1[RO,F] = (Setup,KeyGen,Enc,Eval)
for Circuit as follows.

– SetupRO(1λ, 1n): returns the output of IndFE.SetupRO(1λ, 13n+1) as its own output.
– EncRO(Pk,m): on input Pk and m ∈ {0, 1}n, the algorithm chooses x at random from {0, 1}n,

sets m′ = (m, 0, x, 0n) and returns IndFE.EncRO(Pk,m′) as its own output.
– KeyGenRO(Msk, C): on input Msk and a n-input Boolean circuit C, the algorithm chooses

random y ∈ {0, 1}n and returns (y, Tok) where Tok← IndFE.KeyGenRO(Msk,TrapRO1 [C,F]y).
– EvalRO(Pk,Ct, Tok): on input Pk, Ct and Tok, returns the output IndFE.EvalRO(Pk,Ct, Tok).

Theorem 12 Suppose IndFE is an IND-Secure FE in the random oracle model for the CircuitRO

functionality. Then SimFE1 is an (poly, poly, poly)-SIM-secure FE in the random oracle model
for the Circuit functionality.

Intuition. To gain some intuition, it is instructive to consider a simpler system where fr(y)
in the evaluation is simply replaced by r. In this case, the fourth slot in the plaintext acts
as an encryption under Nielsen’s RO-based non-committing encryption scheme [Nie02], whose
decryption can be adaptively programmed. However, this approach does not work for multiple
keys, since then the simulator would need to program two hash outputs to r ⊕ C1(m) and
r ⊕ C2(m), which would not look independently random to the distinguisher. To solve this
problem, we use a PRF to generate a “fresh” ciphertext for each secret key. Since the number of
secret keys is unbounded, we need to generate more randomness than can be contained in the
plaintext slot, and thus we use a PRF.

Proof. Suppose there is an adversaryA = (A0,A1) against SimFE1 that outputs at most ` = `(λ)
messages and q = q(λ) key-derivation queries. Note that here `, q are unbounded polynomial,
not fixed a priori. We construct a simulator Sim = (Sim0, Sim1,SimRO) as follows.

– First, SetupRO(1λ, 1n) computes (Pk,Msk)← IndFE.SetupRO(1λ, 13n+1).
– Let m1, . . . ,m` be the challenge messages output by A0 on input Pk.

Sim0 receives as input the public parameter Pk, the q1 non-adaptive token queries C1, . . . , Cq1
made by A0, along with the values zi,1 = C1(mi), . . . , zi,q1 = Cq1(mi) for each 1 ≤ i ≤ ` and
the tokens (y1, Tok1), . . . , (yq1 , Tokq1) generated by KeyGenRO to answer A0’s non-adaptive
token queries. Sim0 proceeds as follows:
• For each 1 ≤ i ≤ `, Sim0 chooses random xi, ri ∈ {0, 1}n. If A0 queried the random oracle

on any point (xi, yj) or if for any distinct 1 ≤ i, i′ ≤ `, xi = xi′ or if for any distinct
1 ≤ j, j′ ≤ q1, yj = yj′ , Sim0 aborts.

• For each 1 ≤ i ≤ ` and for each 1 ≤ j ≤ q1, SimRO programs the random oracle by
setting RO(xi, yj) = fri(yj)⊕zi,j .

• For each 1 ≤ i ≤ `, Sim0 sets m̃i = (0n, 1, xi, ri) and then it computes C̃ti ← IndFE.EncRO(Pk, m̃i).
Sim0 outputs (C̃t1, . . . , C̃t`).

– Sim1 answers the adaptive query for circuit Cj , for j = q1 + 1, . . . , q, by having on input the
master secret key Msk and zi,j = Cj(mi), for all 1 ≤ i ≤ `, in the following way:
• Sim1 chooses random yj ∈ {0, 1}n. If A0 or A1 queried the random oracle on any point

(xi, yj) for 1 ≤ i ≤ ` or if yj = yj′ for 1 ≤ j′ ≤ j , Sim1 aborts.

14 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

• SimRO programs the random oracle by setting RO(xi, yj) = fri(yj)⊕zi,j , for all 1 ≤ i ≤ `.
Sim1 outputs the pair (yj , IndFE.KeyGen(Msk,TrapRO1 [Cj , F]yj)).

All queries to RO are answered randomly except the queries that were programmed by
SimRO. We now prove that Sim is a good simulator meaning that, for all PPT adversaries
A = (A0,A1), RealExpSimFE,A and IdealExpSimFE,A

Sim are computationally indistinguishable.
This is proved via a sequence of hybrid experiments as follows.

– Hybrid HA1 : This is the ideal experiment IdealExpSimFE,A
Sim .

– Hybrid HA2 : We change the way challenge ciphertexts are generated. Namely, instead of
setting m̃i = (0n, 1, xi, ri) to form challenge ciphertext C̃ti, we set m̃i = (mi, 0, xi, 0

n).
– Hybrid HA3 : In this experiment, we change the strings fri(yj) to independent truly random

strings r′i,j . That is, we program RO(xi, yj) to answer r′i,j⊕zi,j instead of fri(yj)⊕zi,j .
– Hybrid HA4 : This experiment never aborts and we change all answers given by RO to be truly

random and independent of all other values in the experiment. This is the real experiment
RealExpSimFE,A.

We now show that the relevant distinguishing probabilities between adjacent hybrids are
negligible, which completes the proof.

Hybrid HA1 to Hybrid HA2 : This transition reduces to IND-security of the starting FE scheme.
For sake of contradiction, suppose there exists a distinguisher D that distinguishes with non-
negligible probability the output distributions of HA1 and HA2 . Then, A and D can be used to
construct a successful IND adversary B = (B0,B1) for IndFE:

Adversary B0: On input the public parameters Pk generated by IndFE.SetupRO, run A0 on
input Pk forwarding its oracle queries to RO

– Answer A0’s key-derivation query Ci by using its oracle IndFE.KeyGenRO(Msk, ·) as follows:
choose a random yi ∈ {0, 1}n and output the pair (yi, Toki) where Toki = IndFE.KeyGenRO(
Msk,TrapRO1 [Ci,F]yi).

– Eventually, A0 outputs message m1, . . . ,m` and the state st.
– For all 1 ≤ i ≤ `, choose xi ∈ {0, 1}n and ri ∈ {0, 1}n at random. Then for each 1 ≤ i ≤ `

and for each 1 ≤ j ≤ q1, program the random oracle by setting RO(xi, yj) = fri(yj) ⊕ zi,j .
Then set m̃i ← (0n, 1, xi, ri), m̃

′
i = (mi, 0, xi, 0

n).
– Output (m̃1, . . . , m̃`) and (m̃′1, . . . , m̃

′
`) as the two challenge plaintexts.

Adversary B1: On input the public parameters Pk, a ciphertext Ct and the state st, run A1

on the same inputs

– Answer a key-derivation query Cj made by A1 as follows: choose random yj ∈ {0, 1}n and
program the random oracle by setting RO(xi, yj) = fri(yj)⊕zi,j , for all 1 ≤ i ≤ `. Return
(yi, Toki) where Toki ← IndFE.KeyGenRO(Msk,TrapRO1 [Ci,F]yi)).

– Eventually, A1 outputs α.
– Invoke D on input (Pk, (m1, . . . ,m`), α) and return D’s guess.

We now bound the advantage of the IND adversary B. First, we show that for every key-
derivation query Cj made by A, it is the case that for every for all 1 ≤ i ≤ `, TrapRO1 [Cj ,F]yj (m̃i),
and TrapRO1 [Cj ,F]yj (m̃′i) produce the same output and make the same oracle queries.

TrapRO1 [Cj ,F]yj (m̃i) = TrapRO1 [Cj ,F]yj (mi, 1, xi, ri)

= RO(xi, yi)⊕ fri(yi)
= Cj(mi)

= TrapRO1 [Cj ,F]yj (mi, 0, xi, 0
n)

= TrapRO1 [Cj ,F]yj (m̃′i) .

On the Achievability of Simulation-Based Security for Functional Encryption 15

Furthermore, from Definition 9, it follows that TrapRO1 [Cj ,F]yj makes the same random oracle
queries on inputs m̃i and m̃′i. In particular, TrapRO1 [Cj ,F]yj queries RO on input (xi, yi) in both
cases.

Finally, B succeeds whenever D does.

Hybrid HA2 to Hybrid HA3 : This transition reduces to security of the PRF. Since the dis-
tinguisher now gets no information about the PRF key, this reduction is straightforward and
omitted here.

Hybrid HA3 to HA4 : The probability that Sim0 and Sim1 sample some (xi, yj) = (xi′ , yj′)
where (i, j) 6= (i′, j′) is negligible and since the probability that A0 or A1 query some (xi, yj)
before either xi or yj is also negligible, the probability of abort in the experimentHA3 is negligible.
Since the values r′i,j are random and not used anywhere else in the experiment we have that the
adversary’s views in both experiments are statistically close.

3.3 Standard-Model Transformation

Overview. Here we give our transformation from IND to SIM security in the standard model.
Again, we put additional “slots” in the plaintexts and secret keys that will only be used by the
simulator. A plaintext will have 3 + 2q slots and a secret key will have two. As for the previous
transformation, in the plaintext, the first slot will be the actual message m and the second slot
will be a bit flag indicating whether the ciphertext is in trapdoor mode. Instead, the third slot
will be a random symmetric key skSE, that will be used to handle adaptive queries, and the last
2q slots will be q pairs (ri, zi), where ri is a random string and zi is a programmed string. These
2q slots will be used to handle q non-adaptive queries. On the other hand, in a secret key for
circuit C, the first slot is random string r, that for non-adaptive queries will be equal to one of
the ri in the challenge ciphertext, and c will be a ciphertext, under SE, for a programmed string.

For evaluation, if the ciphertext is not in trapdoor mode (flag = 0) then we simply evaluate
the original circuit C of the message m. If the ciphertext is in trapdoor mode, depending on the
nature of the secret key (non-adaptive or adaptive), if r = ri for some i ∈ [q] then we output zi,
otherwise we output Dec(skSE, c).

Definition 13 [Standard-Model Transformation] Let IndFE = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen,
IndFE.Eval) be a functional encryption scheme for the functionality Circuit. Let SE = (SE.Enc,SE.Dec)
be a symmetric-key encryption scheme with key-space {0, 1}s, message-space {0, 1}n, and ciphertext-
space {0, 1}ν . We require for simplicity that SE has pseudo-random ciphertexts.12 We define a
new functional encryption scheme SimFE2[SE] = (Setup,KeyGen,Enc,Eval) for Circuit as follows.

– Setup(1λ, 1n): returns the output of IndFE.Setup(1λ, 1n(2q+1)+s+1) as its own output. In ad-
dition the algorithm picks a random key skSE ∈ {0, 1}s and keeps it in the secret key Msk.

– Enc(Pk,m): on input Pk and m ∈ {0, 1}n, the algorithm sets m′ = (m, 0, 0s, (0n, 0n), . . . ,
(0n, 0n)) and returns the output of IndFE.Enc(Pk,m′) as its own output.

– KeyGen(Msk, C): on input Msk and a n-input Boolean circuit C, the algorithm chooses
random r in {0, 1}λ, computes c ∈ {0, 1}ν as the encryption of a random n-bit plaintext
with respect to skSE, computes Tok as Tok← IndFE.KeyGen(Msk,Trap2[C,SE]k

′
) and returns

(r, c, Tok).

– Eval(Pk,Ct, Tok): on input Pk, ciphertext Ct and token (r, c, Tok), returns the output of
IndFE.Eval(Pk,Ct, Tok).

12 This assumption can easily be relaxed (by making simple modifications to our construction) to IND-CPA, but
for practical blockcipher-based constructions it is not really an extra requirement anyway.

16 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Theorem 14 Suppose IndFE is IND-Secure. Then SimFE2 is (q1, poly, 1)-SIM-secure (cf. Re-
mark 6).

We note that it is straightforward to modify our construction to be (q1, poly, `)-SIM secure (i.e.,
security for an a prior bounded number of challenge messages). The idea is simply to use many
“lists” in the FE ciphertext and symmetric ciphertexts in FE keys. Furthermore, we remark that
our construction is also IND-secure for an unbounded number of messages and key queries. In
this sense, it can be viewed as having “hedged” security.

Intuition. The intuitions behind this theorem are very similar in spirit to that of Theorem 12.
Let us restate them to clarify our choices. First, consider a simpler system where the 2q pairs
(ri, zi) are replaced by a single pair (r̃, z̃). This approach does not work for multiple non-adaptive
keys, since then the simulator would need to program z̃ to be C1(m) and C2(m) at the same
time. To solve this problem, we add additional pairs in the ciphertext, one for each non-adaptive
query. This is also the reason why we need an a-priori bound on the number of non-adaptive
queries. For adaptive queries instead the simulator can program the second slot of the secret key
to be an encryption of the expected output on the functionality.

Proof. Suppose there is an adversary A = (A0,A1) against SimFE2 that outputs at most q
non-adaptive key queries. We construct a simulator Sim = (Sim.Setup, Sim0, Sim1) as follows:

– Sim.Setup on inputs 1λ, 1n sets (Pk,Msk)← IndFE.Setup(1λ, 1n(2q+1)+s+1).
– Sim0 on input the public parameter Pk, token queries C1, . . . , Cq made by A0, the Boolean

values z1 = C1(m), . . . , zq = Cq(m) where m is the challenge message output by the ad-
versary, and the tokens (r1, c1, Tok1), . . . , (rq, cq, Tokq) generated by KeyGen to answers A0’s
token queries, does the following:
It chooses a random symmetric key kSE. It sets m̃ = (0n, 1, kSE, (r1, z1), . . . , (rq, zq)) and then
it computes C̃t as C̃t← IndFE.Enc(Pk, m̃) and stores kSE in the state.

– Sim1 on input the master secret key Msk, the state, Boolean circuit Cj and zj = Cj(m) does
the following:
Sim1 picks random yj ∈ {0, 1}n and then sets cj

R← SE.Enc(kSE, zj), where kSE is taken from

the state, and k′j ← (yj , cj) and returns Tokj as (k′j , IndFE.KeyGen(Msk,Trap2[C,SE]k
′
j)).

We now prove that Sim is a good simulator meaning that for all PPT adversaries A =
(A0,A1), RealExpSimFE,A and IdealExpSimFE,A

Sim are computationally indistinguishable.
This is proved via a sequence of hybrid experiments as follows.

– Hybrid HA1 : This is the ideal experiment IdealExpSimFE,A
Sim .

– Hybrid HA2 : In this experiment, we change how the challenge ciphertexts are generated.
Instead of setting the challenge plaintext as m̃ = (0n, 1, kSE, (r1, z1), . . . , (rq, zq)) we set
m̃ = (m, 0, 0λ, (0n, 0n), . . . , (0n, 0n)). This step reduces to IND security of the starting FE
scheme.

– Hybrid HA3 : This is the real experiment RealExpSimFE,A. The main difference with HA2 is

that instead of setting, cj
R← SE.Enc(kSE, zj), we set cj

R← {0, 1}ν . This step reduces to
pseudo-randomness of SE.

Hybrid HA1 to Hybrid HA2 : For sake of contradiction, suppose there exists a distinguisher

D that distinguishes with non-negligible probability the output distribution of HA1 and HA2 .
Then, A and D can be used to construct a successful IND adversary B for IndFE. Specifically,
B = (B0,B1) does the following.

On the Achievability of Simulation-Based Security for Functional Encryption 17

– B0 on input the public parameters Pk generated by IndFE.Setup, runs A0 on input Pk.
Then, B0 answers A0’s key-derivation query Ci by using its oracle IndFE.KeyGen(Msk, ·) as
follows: B0 chooses random ri ∈ {0, 1}λ and ci ∈ {0, 1}ν and sets k′i = (ri, ci), and returns
(k′i, Tok) where Tok← IndFE.KeyGen(Msk,Trap2[Ci, SE]k

′
).

Eventually, A0 outputs a message m and the state st. B0 chooses a random symmetric key
kSE and sets x← (0n, 1, kSE, (r1, z1), . . . , (rq, zq)) and x′ ← (m, 0, 0s, (0n, 0n), . . . , (0n, 0n)).
B0 outputs x and x′ as the two challenge plaintexts.

– B1 on input the public parameters Pk, a ciphertext Ct and the state st, runs A1 on the same
inputs.
Then, B1 answers A1’s key-derivation query Ci as follows: B1 picks random yi ∈ {0, 1}n

and then sets ci
R← SE.Enc(kSE, Ci(m)), where kSE and m are taken from the state, and

k′i ← (yi, ci) and returns Toki as (k′i, IndFE.KeyGen(Msk,Trap2[Ci, SE]k
′
i)).

Eventually, A1 outputs α, then B1 invokes D on input (Pk,m, α) and returns D’s guess as
its own guess.

Hybrid HA2 to Hybrid HA3 : This transition reduces to the pseudo-randomness of SE. Since
this transition is similar to the first transition and for lack of space, we omit the details here.

4 Simulation-Based Security for Hidden Vector Encryption

In the section we present a positive result for simulation-based secure functional encryption
for HVE whose semantic security can be proved under static assumptions in the bilinear pair-
ing setting in the standard model against adaptive adversaries obtaining a bounded number of
ciphertexts and asking an unbounded number of tokens.

Definition 15 [HVE Functionality] The HVE functionality has message space Mn equal to the
set of length n Boolean vectors x = 〈x1, . . . , xn〉 and key space Kn equal to the set length n
Boolean vectors y = 〈y1, . . . , yn〉 with ?’s (“don’t-care” entries). HVE(x,y) is equal to 1 iff, for
all 1 ≤ i ≤ n, xi = yi or yi = ?.

We stress that by the impossibility result of [BSW11] it is impossible to have simulation-
based secure HVE against adversaries that see unbounded number of ciphertexts in the standard
model. For simplicity, we present the case of one challenge ciphertext here. We use composite
order bilinear groups whose order is the product of five distinct primes (see Appendix B for a
description). Using the techniques of [Lew12], we can re-write our construction to work in prime
order groups with only a constant blow-up of the number of group elements of ciphertexts and
keys. We also note that one possible avenue for obtaining (non-adaptively) simulation-based
secure functional encryption scheme for HVE could be via the notion of pre-image sampleability
introduced by O’Neill [O’N10]. However, in Appendix A we prove that HVE is unlikely to be
pre-image sampleable.13

4.1 The Scheme

In this section we describe our HVE scheme. To make our description and proofs simpler, we
add to all vectors x and y two dummy components and set both of them equal to 0. We can
thus assume that all vectors have at least two non-star positions.

13 On the other hand, it is easy to see that every functionality is pre-image sampleable if we allow unbounded
simulation, which was recently considered by [AGVW12]. In this case, a SIM-secure scheme for HVE can be
obtained directly from any IND-secure scheme (see [OT12,DCIP13]), but the security guarantees are only for
non-adaptive adversaries and less clear.

18 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Setup(1λ, 1`) : The setup algorithm chooses a description of a bilinear group I = (N =
p1p2p3p4p5, G,GT , e) ← G(1λ) with known factorization, and random g1 ∈ Gp1 , g2 ∈ Gp2 ,
g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [`] and b ∈ {0, 1}, random ti,b ∈ ZN and random Ri,b ∈ Gp3 and
sets

Ti,b = g
ti,b
1 ·Ri,b .

The public key is Pk = [I, g3, (Ti,b)i∈[`],b∈{0,1}], and the master secret key is Msk = [g12, g4,
(ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2. The algorithm returns (Pk,Msk).

KeyGen(Msk, y) : Let Sy be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random ai ∈ ZN for i ∈ Sy under the constraint that

∑
i∈Sy

ai = 0. For i ∈ Sy, the
algorithm chooses random Wi ∈ Gp4 and sets

Yi = g
ai/ti,yi
12 ·Wi .

The algorithm returns ciphertext Ct = (Yi)i∈Sy . Here we use the fact that Sy has size at least 2.

Enc(Pk, x) : The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 and sets

Xi = T si,xi · Zi ,

and returns the token Toky = (Xi)i∈[`].

Eval(Pk,Ct, Toky) : The test algorithm computes T =
∏
i∈Sy

e(Xi, Yi). It returns TRUE if
T = 1, FALSE otherwise.

Correctness. It easy to see that the scheme is correct.

Theorem 16 Under the General Subgroup Decision Assumption (see Appendix B) the HVE
scheme described in Section 4.1 is (poly, poly, 1)-SIM-secure (cf. Remark 6).

We note that one can easily extend our construction to meet (poly, poly, `)-SIM security for
any a priori bounded polynomial `. The idea is simply to use a different subgroup for each
message in the “trapdoor” mode. We also note that our scheme can also be proven IND-secure
for an unbounded number of messages and key queries. In this sense, it can be viewed as having
“hedged” security.

Proof of Security. We give an overview of the proof and the full proof of security to Ap-
pendix C.

5 Impossibility results

In the section we present new negative results for simulation-based secure functional encryption.
We first briefly recall the start of the art.

Boneh, Sahai and Waters [BSW11] show that for the IBE functionality, it is impossible
to achieve (adaptive) simulation-based security when the adversary is allowed to make an un-
bounded number of ciphertext queries and one adaptive token query. Recently, Agrawal, Gor-
bunov, Vaikuntanathan, and Wee [AGVW12] showed a different impossibility result for the

On the Achievability of Simulation-Based Security for Functional Encryption 19

functionality that computes a weak pseudo-random function when the adversary is allowed to
make an unbounded number of non-adaptive token queries and one ciphertext query. Both of
the negative results above are established by arguing about the order in which the adversary’s
view is simulated. In particular, [AGVW12] make use of the argument that the simulator must
first simulate the tokens and only then simulate the ciphertexts. Similarly, [BSW11] uses a
non-programmable random oracle to enforce the ordering that the simulator must first simulate
ciphertexts and only then simulate tokens. Recently, [BO12] show how to get rid of the random
oracle in the result of [BSW11].

Our first contributions are for the non-adaptive case. In this case, [AGVW12] use a black-
box simulation-based security definition that enforce the required order on the simulator (as
discussed above). [AGVW12] therefore do not rule out the possibility of secure FE with non-
black-box simulator or of FE that satisfies a relaxed security definition where the adversary
makes all of it ciphertext and token queries simultaneously before getting any response from
(we refer to this as the fully-non-adaptive simulation-based definition). By leveraging ideas from
[BO12,AGVW12] we obtain new impossibility results for the above cases.

The second type of negative results we obtain are for FE for functionalities with “long”
output. We note that in existing constructions of FE with simulation-based security, the size
of the ciphertext grows linearly with the output length of the functionality [GVW13,GKP+12].
We show that this is inherent by demonstrating an impossibility result for FE where the cipher-
text length is independent of the functionality output length. We first modify the definition of
[BSW11] slightly to allow for such independence (in prior definitions, the length of the func-
tionality’s output for every input length is fixed and the ciphertext length may depend on it).
Then, we use techniques from [AGVW12] to get an impossibility for FE satisfying this defini-
tion. Unlike the impossibility of [AGVW12], our impossibility does not depend on the size of
the collusion, and it holds even of the adversary only makes one token query and one ciphertext
query. In particular, it also holds w.r.t. non-black-box simulation.

5.1 Non-Black-Box Definition

The simulation-based security definition for FE compares a real world experiment where the
adversary interacts with the encryption scheme, to an ideal experiment where the view of the
adversary is simulated by an efficient simulator. The definition of [AGVW12] considers only
a simulator that is given black-box access to the adversary. Such a simulator must run the
adversary, simulates answers to the adversary’s queries, and output the adversary’s view. In
contrast, the impossibility of [BSW11] is with respect to a weaker definition where the simu-
lator is given non-black-box access to the adversary. This definition puts no limitation on the
simulation strategy. As we discuss shortly, the impossibility of [AGVW12] relies on the order
in which the simulator answers the adversaries queries and therefore it does not hold for the
non-black-box simulation-based security definition.

Next we present the definition for FE with non-black-box simulation. This definition is similar
to the non-black-box definition of [BSW11] except for the following differences:

– We consider only non-adaptive key queries instead of only adaptive ones (this will suffice for
our negative result). Since now the adversary may choose its message distribution to depend
on received tokens, we cannot use the same massage sampling algorithm both in the real
and in the ideal world. Instead, in the ideal world, the simulator will specify the message
distribution.

20 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

– Following the definition of [BO12] we let the adversary and the simulator use an auxiliary
input sampled from some distribution. In our negative result, we use this auxiliary input to
store a random key of a collision-resistant hash function.

A stronger variant of FE with non-black-box simulation is defined in [BO12] and our negative
result holds also for their definition.

Definition 17 [Non-Black-Box Simulation] A functional encryption scheme FE = (Setup,KeyGen,
Enc,Eval) for functionality F defined over (K,M) is simulation-secure with non-black-box sim-
ulator if for every distribution on auxiliary input Z, and every PPT adversary A = (A0,A1),
there exists a PPT simulator Sim = (Sim0, Sim1) such that the outputs of the following two
experiments are computationally indistinguishable:

RealExpFE,A(1λ)

(Pk,Msk)← Setup(1λ);
z ← Z;

(M, st)← AKeyGen(Msk,·)
0 (Pk, z);

m←M,Ct← Enc(Pk,m);
α← A1(Ct, st);
Let {ki} be the queries of A0 to KeyGen;
Output: (z,M,m,α, {ki})

IdealExpFE
Sim(1λ)

z ← Z;
(M, st)← Sim0(z);
m←M ;

α← Sim
F (·,m)
1 (st);

Let {ki} be the queries of Sim1 to F ;
Output: (z,M,m,α, {ki})

where the output of A0 and Sim0 consists of an arbitrary state st and a description of a
distribution over messages M .

The impossibility of [AGVW12]. We briefly recall the impossibility of [AGVW12] and explain
why it does not hold for the non-black-box simulation-based security definition. For a pseudo-
random function family {Gs}s∈{0,1}n with one bit output, we consider the functionality F (k, s) =
Gs(k). Let l − 1 be an upper bound on the ciphertext size. The adversary asks tokens for l
arbitrary keys k1, . . . , kl in the domain of G, and for an encryption of a random message s from
the key space of G. The simulator needs to produce tokens {Toki}i∈[l], and then it is given the
functionality’s outputs {Gs(ki)}i∈[l]. Now the simulator has to produce a ciphertext Ct such
that for every i ∈ [l], Gs(ki) = Eval(Pk,Ct, Toki). Now, on the one hand, the simulator needs to
“encode” all of the functionality’s outputs into Ct. On the other hand, the functionality’s outputs
are l pseudo-random bits, while |Ct| < l−1. Since a pseudo-random string cannot be compressed
by an efficient adversary we get a contradiction. (Note that the simulator cannot encode the
functionality’s outputs into the tokens {Toki} since these are fixed before the simulator learns
the outputs.)

Impossibility of realizing the non-black-box definition (sketch). In the non-black-box simulation
definition the real and the simulated outputs may contain the generated tokens and ciphertext.
However, the simulator is only required to produce the simulated tokens and ciphertext after
receiving the functionality’s outputs. Since the tokens may encode a lot of information (at least as
much as the functionality’s outputs) the impossibility of [AGVW12] does not apply. To commit
the simulator to the tokens before learning the functionality’s outputs we use technique of
[BDWY12]. This technique was recently used by [BO12] to extend the impossibility of [BSW11]

On the Achievability of Simulation-Based Security for Functional Encryption 21

to hold for a non-black-box definition and without using a non-programmable random oracle.
The main idea is to use a collision-resistant hash function to commit the simulator to the tokens.

In order to extend the hash function idea to the non-adaptive setting, we consider a slightly
different functionality that takes messages of the form (s, h) where s is a key for a the pseudo-
random function family G = {Gs}s∈{0,1}n , and h is the output of a collision-resistant hash
function taken from a family H = {Hi}i∈{0,1}n . The functionality F (k, (s, h)) = Gs(k) com-
putes the pseudo-random function ignoring the hash value. We define Z to be a distribution on
auxiliary input that contains a random key for H. Consider the following real world adversary
(A0,A1). A0 is given a key i for H as auxiliary input. Let l − 1 be an upper bound on the ci-
phertext size. A0 will then make l token queries for arbitrary keys k1, . . . , kl in the domain of G.
When A0 is given the tokens Tok = (Tok1, . . . , Tokl) it outputs the description of a distribution
M on messages and it’s entire state st. A0 computes h0 = Hi(Tok|Pk) and chooses M to be the
uniform distribution over Un × h0. W.l.o.g assume that the distribution M is described simply
by specifying h0. That is, s is a random key for G and h is the constant h0. A1 is given the
ciphertext Ct, and the state of A0 including h0 and the tokens Tok. A1 outputs (Pk,Ct, h0, Tok).
Let M be the distribution that A0 outputs. By construction we have that with probability 1
the real world experiment contains an index i, the message distribution M , a sampled message
(s, h)←M and the output (Pk,Ct, h0, Tok) such that M is specified by h0, h = h0 and for every
j ∈ [l], Eval(Pk,Ct, Tokj) = Gs(kj).

Assume towards contradiction that there exist a PPT simulator (Sim0, Sim1) for (A0,A1). By
the correctness of the simulation it must be that with overwhelming probability over the auxiliary
input i, Sim0 outputs a state st and the message distribution M specified by h0. Additionally,

with overwhelming probability over a message (s, h0)←M and over Sim1, Sim
Gs(·)
1 (st) outputs

(Pk′,Ct′, h0, Tok
′) such that j ∈ [l], Eval(Pk′,Ct′, Tok′j) = Gs(kj).

We use Sim1 to construct a distinguisher D that given oracle access to a function O can
distinguish whether O is a random function in G or a truly random function. D runs Sim1

on st and forwards it oracle queries to O. Sim1 outputs (Pk′,Ct′, h0, Tok
′). D outputs 1 Iff

Eval(Pk′,Ct′, Tok′j) = O(kj) for all j ∈ [l]. As argued before, it follows from the correctness of
the simulation that if O is a random function in G, D outputs 1 with overwhelming probability.
To get a contradiction to the pseudo-randomness of G, it is left to bound the probability that
D outputs 1 when O is a truly random function away from 1.

Consider a procedure Ch that samples s ← {0, 1}n and runs Sim1 on st and with oracle
access to Gs. With overwhelming probability, the output of Sim1 contains a public key Pk0
and tokens Tok0 such that h0 = Hi(Tok0|Pk0). Recall that in the execution of D, if h0 6=
Hi(Tok

′|Pk′) with noticeable probability then D outputs 0 with the same probability and we
are done. If h0 = Hi(Tok

′,Pk′) then Tok0 = Tok′ and Pk0 = Pk′ with overwhelming probability,
otherwise we can use D and Ch to construct an adversary for the collision-resistant hash. Since
the values {O(kj)}j∈[l] are uniformly random and independent of Tok0,Pk0 and since |Ct′| ≤ l−1
it follows that with probability 1/2 over the choice of O, there does not exist Ct′ such that
Eval(Pk0,Ct′, Tok0[j]) = O(kj) for all j ∈ [l] and D must output 0. Thus, overall we get that if
O is a truly random function, then D outputs 1 with probability at most negligibly over 1/2,
which is a contradiction.

5.2 Fully Non-Adaptive Definition

In this section we give an impossibility result for a relaxation of the simulation-security consid-
ering only adversaries that are fully non-adaptive. Recall that prior security definitions consider
the following two kinds of real world adversaries:

22 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

1. Non-adaptive adversaries who are only allowed to make token queries before the ciphertext
queries.

2. Adaptive adversaries who, in addition to the above, are allowed to make additional token
queries after receiving the ciphertexts, in an adaptive manner.

As discussed before, both the impossibility results in [BSW11,AGVW12] crucially rely on the
order in which the adversaries queries are made. [BSW11] relies on the ability of the adversary
to choose its token queries adaptively on the ciphertext and [AGVW12] use the fact that the
adversary makes an adaptive ciphertext query after receiving the tokens. In contrast, we consider
a natural relaxation of simulation-based security for FE where the real world adversary is strictly
weaker than all previously considered definitions of simulation-based secure FE. In particular, we
consider a fully non-adaptive adversary who makes token and ciphertext queries simultaneously.
It is not difficult to see that the former impossibilities do not hold for such an adversary.

Below, we formally define security against fully non-adaptive adversaries. Our definition
allows for non-black-box simulation. For simplicity of exposition, we define security for only one
message. Our definition extends naturally to capture security for multiple messages.

Definition 18 [Fully Non-Adaptive Security] A functional encryption scheme FE for function-
ality F is fully non-adaptively secure if there exists a simulator algorithm Sim such that for all
adversary algorithms A = (A0,A1) the outputs of the following two experiments are computa-
tionally indistinguishable.

RealExpFE,A(1λ)

(Pk,Msk)← Setup(1λ);
(m, {ki}qi=1, st)← A0(Pk);
Tokki ← KeyGen(Msk, ki);
Ct← Enc(Pk,m);
α← A1(Pk, {Tokki},Ct, st);
Output: (Pk, α)

IdealExpFE,A
Sim (1λ)

(Pk,Msk)← Setup(1λ);
(m, {ki}qi=1, st)← A0(Pk);
α← Sim(Pk,Msk, st, {ki, F (ki,m)});
Output: (Pk, α)

Impossibility of realizing the fully non-adaptive definition. We briefly sketch how to extend
the impossibility of [AGVW12] for fully non-adaptive adversaries. The central idea is to use
many ciphertext queries instead of just one. The intuition is that in the non-adaptive case the
simulator can encode information about the function outputs in the tokens that might be long.
By using many ciphertext queries, the same tokens are used to decrypt many ciphers, making
the length of the tokens insignificant. Similarly to the impossibility of [AGVW12] we consider
the functionality F (k, s) = Gs(k) where {Gs}s∈{0,1}n is a pseudo-random function family. Let
λ be an a priori upper bounds on the length of the tokens and ciphertexts. For any l > 2 · λ,
consider an adversary A that asks tokens for l arbitrary keys k1, . . . , kl in the domain of G,
and for l ciphertexts encrypting random message s1, . . . , sl from the key space of G. Now, in
order to simulate the view of such an adversary, the simulator needs to produce tokens {Toki}
and ciphertext {Ctj} such that for every i, j ∈ [`], Gsj (ki) = Eval(Pk,Ctj , Toki). Thus, the
simulator needs to “encode” the function outputs, which correspond to l2 pseudo-random bits,
into 2l ·λ < l2 bits (l tokens and l ciphertexts of length λ). Since a pseudo-random string cannot
be compressed by an efficient adversary, we get a contradiction.

On the Achievability of Simulation-Based Security for Functional Encryption 23

Extending the technique. We note that a similar technique can be used to eliminate the use
of a collision-resistant hash function in the impossibility of [BO12] and in the impossibility for
non-black-box simulation given in the previous section. In both cases the hash function is used
to bind the simulator to it previous answers by embedding a short hash of these answers in the
next adaptive queries. Instead we can use many adaptive key queries (in the case of [BO12])
or many ciphertext queries (in the impossibility for non-adaptive queries) to encode the entire
answer of the simulator (without a shrinking hash) in the adaptive queries.

In the case of adaptive queries, we get an impossibility for adversaries that makes an un-
bounded number of ciphertext queries and an unbounded number of adaptive key queries. This
impossibility does not use random oracles and holds even against a computationally unbounded
simulator.

In the case of non-adaptive queries, we get an impossibility for adversaries that makes an
unbounded number of non-adaptive key queries and an unbounded number of ciphertext queries.
This impossibility uses pseudo-random function but does not use collision-resistant hashing.

We finally remark that our negative result for fully non-adaptive adversaries and adaptive
adversaries is in keeping with our standard model compiler that yields SIM-secure FE with
unbounded number of adaptive key queries.

5.3 Functional Encryption for Functionalities with Long Output

Gorbunov, Vaikuntanathan and Wee [GVW12] give a positive result for bounded-query simulation-
based secure FE. The main drawback of their result is that the ciphertext size depends on the size
of the functionality. Recently, Goldwasser et al. [GKP+12] construct a simulation-based secure
FE with “compact” ciphertexts for boolean functions. However, for functionalities with longer
output, the ciphertexts in both of these constructions grows linearly with the output length of
the functionality. Here, we show that this is, in fact, inherent. More specifically, we show that it
is impossible to construct FE schemes where the ciphertext length is independent of the output
length of the functionality.

We start by defining syntax for functional encryption where the ciphertext size is independent
of the function output length. Existing definition of FE [GVW12,BSW11] considers functional-
ities with some fixed ratio between the input and output length. In particular, the length of
ciphertexts in the resulting scheme may depend on this ratio. It is desirable to define FE such
that at the time of encryption, the encrypting party does not need to place an upper bound on
the size or output length of the functions that can be evaluated from the ciphertext.

Let F : Kn,t×Mn → Σt be a function family where Kn,t is the key space, Mn is the message
space and Σt is the output space. (Note that the key space is parameterized according to both
the input and output length).

A functional encryption scheme FE for F consists of four algorithms (FE.Setup,FE.KeyGen,
FE.Enc,FE.Eval) defined as follows. Let λ be the security parameter and n = poly(λ), t = poly(λ).

– FE.Setup(1λ) is a ppt algorithm that takes as input (the unary representation of) the security
parameter λ and outputs the public and the master secret keys (Pk,Msk).

– FE.KeyGen(Msk, k) is a ppt algorithm that takes as input the master secret key Msk and a
key k ∈ Kn,t, and outputs a token Tokk.

– FE.Enc(Pk,m) is a ppt algorithm that takes as input the public key Pk and a plaintext
m ∈Mn, and outputs a ciphertext Ct.

– FE.Eval(Ct, Tok) is a ppt algorithm that takes as input a ciphertext Ct and a token Tok, and
outputs σ ∈ Σt.

24 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Correctness: We make the following correctness requirement from FE.
For all (Pk,Msk) ← FE.Setup(1λ, 1n), all k ∈ Kn,t and m ∈ Mn, for Tok ← FE.KeyGen(Msk, k)
and Ct ← FE.Enc(Pk,m), we have that FE.Eval(Pk,Ct, Tok) = F (k,m) except with negligible
probability.

Impossibility of FE with ciphertext size independent of function output length. We now briefly
sketch an impossibility result for constructing FE schemes where ciphertext size is independent of
the function output length. We consider security against non-adaptive adversaries. In particular,
we construct a non-adaptive adversary A who makes one (non-adaptive) token query and one
ciphertext query such that the view of A cannot be simulated. (Our impossibility does not
assume unbounded collusion as in [AGVW12].) For simplicity of presentation, we sketch an
impossibility with respect to the block-box simulation-security definition of [AGVW12]. This
can be extended to rule out also non-black box simulator by making use of techniques in [BO12]
as used previously in this section.

Let l − 1 denote the a priori upper bound on the ciphertext length of an FE scheme. Let
G be a pseudo-random generator that expands an n-bit seed to l bits. We will consider the
functionality F (k, s) = G(s). Now consider an adversary A who first makes a token query for
a key k. On receiving the token Tokk, A makes a ciphertext query for ransom message s in the
domain of G. Now, in order to simulate the view of such an adversary, the simulator first needs
to produce a token Tokk, then the simulator is given the function output G(s). The simulator
is then required to produce a ciphertext Ct such that G(s) = Eval(Pk,Ct, Tokk). Thus, on the
one hand, the simulator needs to “encode” the function output into Ct of length at most l − 1
bits, while on the other hand, the function output is an l-bit pseudo-random string. Since a
pseudo-random string cannot be compressed by an efficient adversary, we get a contradiction.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adap-
tive security in functional encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
657–677, 2015.

[AGG12] Joel Alwen, Rosario Gennaro, and Dov Gordon. On the relationship between functional encryption
and fully homomorphic encryption. Manuscript, 2012.

[AGVW12] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption:
New perspectives and lower bounds. Cryptology ePrint Archive, Report 2012/468, 2012. http:

//eprint.iacr.org/.
[AKW16] Shashank Agrawal, Venkata Koppula, and Brent Waters. Impossibility of simulation secure functional

encryption even with random oracles. Cryptology ePrint Archive, Report 2016/959, 2016. http:

//eprint.iacr.org/.
[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115, 2001.
[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption

with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 506–522, Interlaken,
Switzerland, May 2–6, 2004. Springer, Berlin, Germany.

[BDWY12] Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott Yilek. Standard security does not imply
security against selective-opening. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 645–662,
Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

[BF12] Manuel Barbosa and Pooya Farshim. On the semantic security of functional encryption schemes. To
appear at PKC, 2012.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-
23, 2001, Proceedings, pages 1–18, 2001.

On the Achievability of Simulation-Based Security for Functional Encryption 25

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe
Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in
Computer Science, pages 325–341, Cambridge, MA, USA, February 10–12, 2005. Springer, Berlin,
Germany.

[BO12] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possibility results, im-
possibility results and the quest for a general definition. Cryptology ePrint Archive, Report 2012/515,
2012. http://eprint.iacr.org/.

[Bon07] Dan Boneh. Bilinear groups of composite order (invited talk). In Tsuyoshi Takagi, Tatsuaki
Okamoto, Eiji Okamoto, and Takeshi Okamoto, editors, PAIRING 2007: 1st International Conference
on Pairing-based Cryptography, volume 4575 of Lecture Notes in Computer Science, page 1, Tokyo,
Japan, July 2–4, 2007. Springer, Berlin, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and Communications
Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture Notes
in Computer Science, pages 253–273, Providence, RI, USA, March 28–30, 2011. Springer, Berlin,
Germany.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Salil P.
Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture Notes
in Computer Science, pages 535–554, Amsterdam, The Netherlands, February 21–24, 2007. Springer,
Berlin, Germany.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective
opening attack. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume
6597 of Lecture Notes in Computer Science, pages 235–252, Providence, RI, USA, March 28–30, 2011.
Springer, Berlin, Germany.

[CI16] Angelo De Caro and Vincenzo Iovino. On the power of rewinding simulators in functional en-
cryption. Designs, Codes and Cryptography, pages 1–27, 2016. http://dx.doi.org/10.1007/

s10623-016-0272-x.
[DCIP13] Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully secure hidden vector encryption.

In Michel Abdalla and Tanja Lange, editors, Pairing-Based Cryptography - Pairing 2012 - 5th Inter-
national Conference, Cologne, Germany, May 16-18, 2012, Revised Selected Papers, volume 7708 of
Lecture Notes in Computer Science, pages 102–121. Springer, 2013.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on
a single random string (extended abstract). In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 308–317. IEEE Computer
Society, 1990.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 40–49, 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without obfus-
cation. In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part II, pages 480–511, 2016.

[GKP+12] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Succinct functional encryption and applications: Reusable garbled circuits and beyond. (To appear
at STOC 2013) Cryptology ePrint Archive, Report 2012/733, 2012. http://eprint.iacr.org/.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sci-
ences, 28(2):270–299, 1984.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 162–179,
Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Germany.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits. To
appear at STOC, 2013.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, pages 163–172. ACM, 2015.

[IŻ15] Vincenzo Iovino and Karol Żebrowski. Simulation-based secure functional encryption in the random
oracle model. In Progress in Cryptology - LATINCRYPT 2015 - 4th International Conference on

26 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Cryptology and Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015,
Proceedings, pages 21–39, 2015.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In Nigel P. Smart, editor, Advances in Cryptology – EURO-
CRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162, Istanbul, Turkey,
April 13–17, 2008. Springer, Berlin, Germany.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order
setting. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 318–335, Cambridge, UK,
April 15–19, 2012. Springer, Berlin, Germany.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes
in Computer Science, pages 62–91, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 111–126, Santa Barbara, CA, USA, August 18–22,
2002. Springer, Berlin, Germany.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, 2010. http://eprint.iacr.org/.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner prod-
uct encryption. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 591–608, Cambridge,
UK, April 15–19, 2012. Springer, Berlin, Germany.

[SW12] Amit Sahai and Brent Waters. Attribute-based encryption for circuits from multilinear maps. Cryp-
tology ePrint Archive, Report 2012/592, 2012. http://eprint.iacr.org/.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 218–235, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Germany.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryption. In
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II, pages 678–697, 2015.

A Hidden Vector Encryption is not Preimage Sampleable

In this section we prove that if HVE is pre-image sampleable then we can decide 3SAT in
polynomial time. We start by reviewing the notion of a pre-image sampleable functionality by
O’Neill [O’N10].

Definition 19 [[O’N10]] Functionality F : K ×M → {0, 1} is pre-image sampleable (PS, for
short) if there exists a sampler algorithm Sam such that for all PPT adversaries A,

Prob
[(
m, (ki)

l=poly(λ)
i=1

)
← A(1λ); m′ ← Sam(1λ, |m|, (ki, F (ki,m))li=1) :

F (ki,m) = F (ki,m
′) for i = 1, . . . , l] = 1− ν(λ)

for a negligible function ν. For q > 0, we say that F is q-pre-image sampleable (q-PS, for short)
if the sampler algorithm Sam is guaranteed to work only with respect to adversaries A that
output at most q pairs (ki, bi).

The following theorem is from [O’N10].

Theorem 20 If functionality F is PS then any IND-Secure functional encryption scheme FE for
F is also SIM-Secure for non-adaptive adversaries.

Next we prove that the fact that the HVE functionality is PS has unexpected complexity-
theoretic consequences.

On the Achievability of Simulation-Based Security for Functional Encryption 27

Theorem 21 If HVE is PS then SAT can be decided in probabilistic polynomial time.

Proof. Let Sam be a sampler algorithm for HVE and consider the following algorithm B that,
on input a Boolean formula Φ = φ1 ∧ . . . ∧ φc in CNF with c clauses and l variables x1, . . . , xl,
performs the following computation. In the description of B, we will identify l-bit strings with
truth assignment to variables x1, . . . , xl.

For each clause φi of Φ, B computes key ki = (k1,i, . . . , kl,i) ∈ {0, 1, ?}l in the following way.
Let h ∈ {0, 1}l be a truth assignment that does not satisfy the i-th clause φi. For j = 1, . . . , l,
B sets kj,i in the following way

kj,i =

hj , if xj appears in φi;

1− hj , if x̄jappears in φi;

?, otherwise.

Keys k1, . . . , kc enjoy the following (easy to verify) property. Let m ∈ {0, 1}l be a truth assign-
ment over the variables x1, . . . , xl. Then, m satisfies Φ iff HVE(m, ki) = 0 for i = 1, . . . , c.
B then runs algorithm Sam on input ((k1, 0), . . . , (kc, 0)) and let m be Sam’s output. If m

is a satisfying truth assignment for Φ then B decides that Φ is satisfiable. Otherwise, B decides
that Φ is not satisfiable.

Let us now prove that B’s output is correct with high probability. Notice that Sam is only
guaranteed to work if it is given in input a sequence (ki, bi) for which there exists an m ∈ {0, 1}l
such that bi = HVE(m, ki). So we distinguish two cases. In the first case, we assume that Φ is
satisfiable. Then the input of Sam is exactly as required by Definition 19 and thus, except with
negligible probability, Sam outputs m such that HVE(m, ki) = 0 for i = 1, . . . , c. By our previous
observation such an m is a satisfying assignment for Φ and B is correct.

Suppose instead that Φ is not satisfiable. Then Sam will not output a satisfying assignment
and B is correct.

B The Bilinear Setting and Complexity Assumptions

In this section we describe the bilinear setting with groups of composite order and the assumption
that we will use to prove adaptive security of the scheme presented in Section 4.1.

Composite order bilinear groups were first used in Cryptography by [BGN05] (see also
[Bon07]). We suppose the existence of an efficient group generator algorithm G which takes
as input the security parameter λ and outputs a description I = (N,G,GT , e) of a bilinear
setting, where G and GT are cyclic groups of order N , and e : G×G → GT is a map with the
following properties:

1. (Bilinearity) ∀ g, h ∈ G and a, b ∈ ZN it holds that e(ga, hb) = e(g, h)ab.
2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the respective cyclic
groups. We require that the group operations in G and GT as well as the bilinear map e are
computable in deterministic polynomial time in λ. In our construction we will make hardness
assumptions for bilinear settings whose order N is product of five distinct primes each of length
Θ(λ). For an integer m dividing N , we let Gm denote the subgroup of G of order m. From the
fact that the group is cyclic, it is easy to verify that if g and h are group elements of co-prime
orders then e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our
constructions.

In our construction we will make the following hardness assumptions for bilinear settings
whose order N is product of five distinct primes each of length Θ(λ).

28 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Assumption 1. The assumption is a subgroup-decision type assumption for bilinear settings.
More formally, we have the following definition. First pick a random bilinear setting I = (N =
p1p2p3p4p5,G,GT , e)← G(1λ) and then pick

A3 ← Gp3 , A4 ← Gp4 ,A13 ← Gp1p3 , A12 ← Gp1p2 , T0 ← Gp1p3 , T1 ← Gp2p3 ,

and set D = (I, A3, A4, A13, A12). We define the advantage of any A in breaking Assumption 1
to be

AdvA1 (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that Assumption 1 holds for generator G if for all probabilistic polynomial-time
algorithms A, AdvA1 (λ) is a negligible function of λ.

Assumption 2. The assumption is a subgroup-decision type assumption for bilinear settings.
More formally, we have the following definition. First pick a random bilinear setting I = (N =
p1p2p3p4p5,G,GT , e)← G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4 ← Gp4 , T0 ← Gp3 , T1 ← Gp3p5 ,

and set D = (I, A1, A2, A3, A4). We define the advantage of any A in breaking Assumption 2 to
be

AdvA2 (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that Assumption 2 holds for generator G if for all probabilistic polynomial-time
algorithms A, AdvA2 (λ) is a negligible function of λ.

Assumption 3. The assumption is a subgroup-decision type assumption for bilinear settings.
More formally, we have the following definition. First pick a random bilinear setting I = (N =
p1p2p3p4p5,G,GT , e)← G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4 ← Gp4 , A15 ← Gp1p5 , T0 ← Gp1 , T1 ← Gp1p5 ,

and set D = (I, A1, A2, A3, A4, A15). We define the advantage of any A in breaking Assumption
3 to be

AdvA3 (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that Assumption 3 holds for generator G if for all probabilistic polynomial-time
algorithms A, AdvA3 (λ) is a negligible function of λ.

Assumption 4. The assumption is a subgroup-decision type assumption for bilinear settings.
More formally, we have the following definition. First pick a random bilinear setting I = (N =
p1p2p3p4p5,G,GT , e)← G(1λ) and then pick

A2 ← Gp2 , A3 ← Gp3 , A4 ← Gp4 , A14 ← Gp1p4 , A15 ← Gp1p5 , T0 ← Gp1p4p5 , T1 ← Gp4p5 ,

and set D = (I, A2, A3, A4, A14, A15). We define the advantage of any A in breaking Assumption
4 to be

AdvA4 (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that Assumption 4 holds for generator G if for all probabilistic polynomial-time
algorithms A, AdvA4 (λ) is a negligible function of λ.

On the Achievability of Simulation-Based Security for Functional Encryption 29

Assumption 5 (General Diffie-Hellman for composite order groups). The assumption is a kind
of Diffie-Hellman assumption in the bilinear setting of composite order. More formally, we have
the following definition. First pick a random bilinear setting I = (N = p1p2p3p4p5,G,GT , e)←
G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , A5 ← Gp5 , α, β ← ZN ,

T0 = Aαβ1 ·D4, T1 ← Gp1p4 ,

and set D = (I, A1, A2, A3, A4, A5, A
α
1 · B4, A

β
1 · C4) . We define the advantage of any A in

breaking Assumption 5 to be

AdvA5 (λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that Assumption 5 holds for generator G if for all probabilistic polynomial-time
algorithms A, AdvA5 (λ) is a negligible function of λ.

B.1 General Subgroup Decision Assumption

In this section we show that assumptions 1, 2, 3 and 4 are special cases of the General Subgroup
Decision Assumption introduced by Bellare et al. [BWY11] that is defined for bilinear groups of
composite order product of m distinct primes, p1, . . . , pm. We use m = 5.

For each non-empty subset S ⊆ [m] we denote by GS the subgroup of order
∏
i∈S pi in the

bilinear group G. Then the assumption is stated in the following way: Pick a random bilinear
setting I = (N = p1 · · · pm,G,GT , e) ← G(1λ). Let S0, S1, S2, . . . , Sk be non-empty subsets of
[m] such that for each 2 ≤ j ≤ k, either Sj ∩ S0 = Sj ∩ S1 = ∅ or Sj ∩ S0 6= ∅ and Sj ∩ S1 6= ∅.
and then pick

Z2 ← GS2 , . . . , Zk ← GSk , T0 ← GS0 , T1 ← GS1 ,

and set D = (I, Z2, . . . , Zk). We define the advantage of a PPT adversary A in breaking General
Subgroup Decision Assumption to be

AdvAGSD(λ) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that the General Subgroup Decision Assumption holds for generator G if, for all S0, . . . , Sk
that satisfy the conditions above and for all probabilistic polynomial-time algorithmsA, AdvAGSD(λ)
is a negligible function of λ.

We now show that Assumptions 1, 2, 3 and 4 are a special case of the General Subgroup
Decision Assumption. In all cases we let m = 5.

– For Assumption 1, we let S0 = {1, 3}, S1 = {2, 3}, S2 = {3}, S3 = {1, 3}, S4 = {1, 2}, S5 =
{4} .

– For Assumption 2, we let S0 = {3}, S1 = {3, 5}, S2 = {1}, S3 = {2}, S4 = {3}, S5 = {4} .
– For Assumption 3, we let S0 = {1}, S1 = {1, 5}, S2 = {1}, S3 = {2}, S4 = {3}, S5 = {4}, S6 =
{1, 5} .

– For Assumption 4, we let S0 = {1}, S1 = {1, 5}.S2 = {2}, S3 = {3}, S4 = {4}, S5 = {1, 5} .

It is easy to see that in all cases the condition given in the assumption is verified.

30 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

C Proof of Theorem 16

C.1 Overview

Our simulator Sim consists of three algorithms: Sim.Setup, Sim.Enc, and Sim.KeyGen that share
a common state. Algorithm Sim.Setup produces two public keys Pk and Pk′. Pk is given to
the adversary (that may use it to generate his own ciphertexts) and Pk′ instead is used to
generate the simulated ciphertext. Sim.Enc is used to compute the simulated ciphertext and
takes as input the public key Pk′ and the sequence (yk, zk)

q1
k=1, where zk = HVE(yk,x), x is the

plaintext output by the adversary and q1 is the number of queries asked by the adversary in the
first stage. Sim.KeyGen instead is used to answer the adaptive queries asked by the adversary
after seeing the simulated ciphertext. When the adversary asks to see a token for y, Sim.KeyGen
is invoked with the master secret key Msk, the value y and the value HVE(x,y), where x is the
challenge ciphertext output by the adversary. We stress that the simulator does not have access
to x.

Algorithm Sim.Setup constructs two public keys Pk (that is given to the adversary) and Pk′

(that is used to produce the simulated ciphertext) and a master secret key Msk (that is used to
answer the queries of the adversary). In public key Pk the ti,b’s are encoded in the Gp2 part of
the Ti,b’s (instead of the Gp1 part as in normal public key) whereas Pk′ is generated correctly.
Then, notice that the simulated ciphertext is independent from Pk, and this gives us enough
freedom to manipulate the Gp1 part of the simulated ciphertext and tokens the adversary sees
in the second stage. The subgroup Gp3 will help us to hide this transition. Algorithm Sim.Enc
simulates the encryption of the challenge plaintext x provided by the adversary. It receives on
input the queries yk, k = 1, . . . , q1, asked by the adversary in the first stage (the non-adaptive
one) and the values zk = HVE(yk,x), for k = 1, . . . , q1.

Sim.Enc does not have access to x and by Theorem 21 the pre-image sampleability cannot be
used to sample an x′ such that HVE(yk,x) = HVE(yk,x

′) for all k. But still some information
about x can be derived from the inputs. Indeed, observe that if HVE(y,x) = 1, then y and x
coincide in all non-star entries of y. For these positions, Sim.Enc computes the ciphertext Ct
just like the encryption algorithm; for all remaining positions, the ciphertext output by Sim.Enc
has a random Gp1 part.

Notice that such a simulated ciphertext Ct is then compatible with all the tokens the adver-
sary sees in first stage in the sense that Eval(Pk,Ct, Tokyk) = HVE(yk,x), for k = 1, . . . , q1. Un-
fortunately, the simulation is not adequate. In the second stage, the adversary could ask to see a
token Toky for a vector y such that HVE(y,x) = 1 and we could have that Eval(Pk,Ct, Toky) = 0.
This is because the Gp1 part of simulated ciphertext Ct and the token Toky do not cancel out
correctly upon decryption. Thus we remove the Gp1 part from the matching tokens the adversary
sees in the second stage and use Gp5 . Specifically, Gp5 will be introduced in the simulated ci-
phertext and matching second stage tokens in such a way that it will cancel out upon decryption
and will provide us enough entropy to remove the Gp1 part from the adaptive tokens. Thus, each
component of the ciphertext computed by Sim.Enc contains also a random Gp5 part that will be
used for constructing the answers to the adaptive queries of the adversary. Notice the analogy
between the Gp5 part and the flag used in the trapdoor circuits. If the Gp5 part is absent the
ciphertext is in normal mode, otherwise it acts in trapdoor mode.

C.2 Full Proof

We start by describing the three algorithms used by Sim.

On the Achievability of Simulation-Based Security for Functional Encryption 31

Algorithm Sim.Setup : constructs two public keys Pk (that is given to the adversary) and Pk′

(that is used to produce the simulated ciphertext) and a master secret key Msk (that is used to
answer the queries of the adversary). In public key Pk the ti,b’s are encoded in the Gp2 part of
the Ti,b’s (instead of the Gp1 part as in normal public key) whereas Pk′ is generated correctly.
Then, notice that the simulated ciphertext is independent from Pk, and this gives us enough
freedom to manipulate the Gp1 part of the simulated ciphertext and tokens the adversary sees
in the second stage. The subgroup Gp3 will help us to hide this transition.

Specifically, Sim.Setup randomly chooses a description of a bilinear group I = (N = p1p2p3p4p5,
G,GT , e)← G(1λ) with known factorization, and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 .
Then, for i ∈ [`] and b ∈ {0, 1}, Sim.Setup picks random ti,b ∈ ZN , Ri,b, R

′
i,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 · Ri,b and T ′i,b = g

ti,b
1 · R′i,b. The public keys are Pk = [I, g3, (Ti,b)i∈[`],b∈{0,1}] and

Pk′ = [I, g3, (T ′i,b)i∈[`],b∈{0,1}], and the master secret key is Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], where

g12 = g1 · g2. Sim.Setup returns (Pk,Pk′,Msk).

Algorithm Sim.Enc : simulates the encryption of the challenge plaintext x provided by the
adversary. It receives on input the queries yk, k = 1, . . . , q1, asked by the adversary in the first
stage (the non-adaptive one) and the values zk = HVE(yk,x), for k = 1, . . . , q1.

Sim.Enc does not have access to x and by Theorem 21 the pre-image sampleability cannot be
used to sample an x′ such that HVE(yk,x) = HVE(yk,x

′) for all k. But still some information
about x can be derived from the inputs. Indeed, observe that if HVE(y,x) = 1, then y and x
coincide in all non-star entries of y. For these positions, Sim.Enc computes the ciphertext Ct
just like the encryption algorithm; for all remaining positions, the ciphertext output by Sim.Enc
has a random Gp1 part.

Notice that such a simulated ciphertext Ct is then compatible with all the tokens the adver-
sary sees in first stage in the sense that Eval(Pk,Ct, Tokyk) = HVE(yk,x), for k = 1, . . . , q1. Un-
fortunately, the simulation is not adequate. In the second stage, the adversary could ask to see a
token Toky for a vector y such that HVE(y,x) = 1 and we could have that Eval(Pk,Ct, Toky) = 0.
This is because the Gp1 part of simulated ciphertext Ct and the token Toky do not cancel out
correctly upon decryption. Thus we remove the Gp1 part from the matching tokens the adver-
sary sees in the second stage and use Gp5 . Specifically, Gp5 will be introduced in the simulated
ciphertext and matching second stage tokens in such a way that it will cancel out upon decryp-
tion and will provide us enough entropy to remove the Gp1 part from the adaptive tokens. Thus,
each component of the ciphertext computed by Sim.Enc contains also a random Gp5 part that
will be used for constructing the answers to the adaptive queries of the adversary.

More formally, for a sequence Q = (yk, zk)
q1
k=1 with zk = HVE(yk,x), for k = 1, . . . , q1, we

let MPos denote the set of indices 1 ≤ i ≤ ` for which there exists k ∈ {1, . . . , q1} such that
zk = 1 and yk,i 6= ?. Notice that, by the observation above, for all i ∈ MPos, the value xi can
be derived from the sequence Q. Then, Sim.Enc(Pk, (yk, zk)

q1
k=1) can be described as follows.

The algorithm parses Pk as Pk = [I, g3, (Ti,b)i∈[`],b∈{0,1}] and, for all i ∈ MPos, derives the
value xi from the input sequence. Then, the algorithm chooses random s ∈ ZN and, for each
i ∈ [`], random Zi ∈ Gp3 , and, for each i ∈ [`]: If i /∈ MPos, randomly select ri ∈ ZN and set
Xi = T rii,0 · g

si
5 ·Zi. If i ∈ MPos, set Xi = T si,xi · g

si
5 ·Zi. Sim.Enc returns one output, the challenge

ciphertext Ct = (Xi)i∈[`], and keeps the vector (si)i∈[`] in the state so that it can be used by
algorithm Sim.KeyGen.

Algorithm Sim.KeyGen : simulates the answer to the second stage queries of the adversary. It
receives as input the master secret key Msk, the vector y for which the token has to be simulated
and the value z = HVE(y,x), where x is the challenge plaintext.

32 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

For each j ∈ Sy, Sim.KeyGen selects random Wj ∈ Gp4 and random aj ∈ ZN under the
constraint that

∑
j∈Sy

aj = 0. Then, it distinguishes two cases.

z = 0: In this case, the algorithm generates a token with a random Gp1 part. Specifically, for

each j ∈ Sy, Sim.KeyGen chooses random cj ∈ ZN and sets Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

z = 1: In this case, the algorithm generates a token without the Gp1 part and with a Gp5

part that will cancel out against the simulated ciphertext upon decryption. Specifically, for each

j ∈ Sy, Sim.KeyGen sets Yj = g
aj/tj,yj
2 · gaj/sj5 ·Wj .

We remind the reader that the vector (sj)j∈[`] is the same vector used by Sim.Enc (and is
stored in the state of the simulator). Also, note that the key output by Sim.KeyGen behaves as
expected when matched against the ciphertext output by Sim.Enc.

Thus proving Theorem Theorem 16 requires showing that the following two experiments are
indistinguishable

RealExpA(1λ, 1`)
(Pk,Msk)← Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Enc(Pk,x);

α← AKeyGen(Msk,·)
1 (Pk,Ct, st);

Output: (Pk,x, α)

IdealExpASim(1λ, 1`)
(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.Enc(Pk′, (yk,HVE(yk,x))q1k=1);

α← ASim.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,x, α)

and we do so by using three intermediate hybrids that we call H1, H2 and H3. The proof consists
of four main steps (see Figure 2 for a quick reference).

Real H1 H2 H3 Ideal

Setup Sim.Setup Sim.Setup Sim.Setup Sim.Setup

Enc Enc Sim.A.Enc Sim.A.Enc Sim.Enc

KeyGen KeyGen KeyGen Sim.KeyGen Sim.KeyGen

Fig. 2. The hybrids used in the proof of security.

The first step of our proof consists in constructing the public key by means of Sim.Setup. This
has the effect of projecting the public key (and thus the ciphertexts the adversary constructs by
himself) to a different subgroup from the one of the challenge ciphertext. Specifically:

HA1 (1λ, 1`)
(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Enc(Pk′,x);

α← AKeyGen(Msk,·)
1 (Pk,Ct, st);

Output: (Pk,x, α)

The first step of the proof consists in proving that the outputs of RealExpA and HA1 are
indistinguishable for all ppt adversaries A.

On the Achievability of Simulation-Based Security for Functional Encryption 33

The second step modifies the simulated ciphertext by adding a Gp5 part. This will be used
in successive experiments to answer to the adversary’s adaptive token queries. Specifically:

HA2 (1λ, 1`)
(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.A.Enc(Pk′,x);

α← AKeyGen(Msk,·)
1 (Pk,Ct, st);

Output: (Pk,m, α)

where algorithm Sim.A.Enc proceeds as follows.

Algorithm Sim.A.Enc on input public key Pk′ = [I, g3, (T ′i,b)i∈[`],b∈{0,1}], the algorithm chooses
random s ∈ ZN . Then, for i ∈ [`], the algorithm chooses random Zi ∈ Gp3 and random si ∈ ZN ,
sets

Xi = T ′i,xi
s · gsi5 · Zi ,

returns the tuple (Xi)i∈[`] and stores the vector (si)i∈[`] in the state so that it can be used by
Sim.KeyGen.

The second step of the proof consists in proving that the outputs of HA1 and HA2 are indis-
tinguishable for all ppt adversaries A.

The third step computes the simulated answers using the Sim.KeyGen algorithm that adds a
Gp5 part that cancels out with the one added in the simulated ciphertext.

HA3 (1λ, 1`)
(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.A.Enc(Pk′,x);

α← ASim.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,x, α)

Thus the third step of the proof consists in the defining hybrid experiment HA3 and in proving
that it is indistinguishable from HA2 for all ppt adversaries A.

The fourth step consists in proving that hybrid HA3 is indistinguishable from the ideal exper-
iment for all ppt adversaries A.

This concludes the proof of Theorem 16. In the following we give the proof for each transition.

C.3 The first step of the proof

In this section we prove that Real and H1 are indistinguishable.

Lemma 22 If Assumption 1 holds, then for all PPT adversaries A, RealA ≈c H1
A.

Proof. Suppose there exists an adversary A for which RealA and H1
A are distinguishable.

Then, we show a PPT algorithm B which receives an instance of Assumption 1, (I, A3, A4, A13,
A12) with challenge T and, depending on the nature of T , simulates RealA or H1

A. This suffices
to prove the Lemma.

34 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Setup: B sets g12 = A12, g3 = A3, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses
random ti,b ∈ ZN and sets

Ti,b = T ti,b and T ′i,b = A
ti,b
13 .

Then B sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] ,

and
Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input Pk.
Token Queries: B uses Msk to answer the token queries of A.
Ciphertext: B computes Ct = Enc(Pk′,x).

This concludes the description of algorithm B.
The view of A consists of Pk,Ct and the answer of the queries. The answers of the queries

are distributed, independently from the nature of the challenge T , as in RealA and as in H1
A.

If T ∈ Gp1p3 then Pk is constructed exactly as in RealA. Moreover, the ciphertext Ct, even
though is constructed using Pk′, has the same distribution of a ciphertext constructed using Pk
and thus the view of A is the same as in RealA.

On the other hand, when T ∈ Gp2p3 then Pk and Ct are distributed as in H1
A. 2

C.4 The second step of the proof

In this section we prove that H1 is indistinguishable from H2.

Lemma 23 If Assumption 2 holds then, for all PPT adversaries A, H1
A ≈c H2

A.

Proof. Suppose there exists an adversary A for which H1
A and H2

A are not indistinguishable.
Then, we show a PPT algorithm B which receives an instance of Assumption 2, (I, A1, A2, A3, A4)
and challenge T and, depending on the nature of T , simulates H1

A or H2
A. This suffices to prove

the Lemma.

Setup: B sets g2 = A2, g12 = A1 · A2, g3 = A3, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B
chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 ·Ri,b and T ′i,b = g

ti,b
1 ·R′i,b .

Then B sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] ,

and
Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input Pk.
Token Queries: B runs algorithm KeyGen on input Msk to answer token queries.
Simulated Ciphertext: B generates the simulated ciphertext for x as follows. B chooses, for

i ∈ [`], random ri ∈ ZN and random Zi ∈ Gp3 , and sets

Xi = g
ti,xi
1 · T ri · Zi

On the Achievability of Simulation-Based Security for Functional Encryption 35

This concludes the description of algorithm B.

First of all, notice that, independently from the nature of challenge T , Pk,Pk′ and Msk are
distributed as in the output of Sim.Setup and thus like in H1

A and H2
A. Similarly for the answers

to the token queries. Finally it is easy to see that if T ∈ Gp3 then Ct is distributed as in H1
A

and if T ∈ Gp3p5 then Ct is distributed as in H2
A. 2

C.5 The third step of the proof

In this section we prove that H2 is indistinguishable from H3.

Lemma 24 If Assumptions 3, 4, and 5 hold then, for all PPT adversaries A, HA2 ≈c HA3 .

The proof of the lemma above consists of three substeps.

First Substep. In the first substep, we define a new experiment called TypeAKeys which differs
from H2 in the way the token queries of the second stage are answered. More specifically,
the token for vector y such that HVE(x,y) = 1 contains a Gp5 part that is related with the
one of the simulated ciphertext. The remaining tokens are like those in H2. We will prove
that, under Assumption 3, H2 ≈c TypeAKeys.

Second Substep. In the second substep, we define a new experiment called TypeBKeys which
differs from TypeAKeys in the way the token for matching queries of the second stage are
generated. More specifically, if the adversary asks for the token for a vector y such that
HVE(x,y) = 1, then the answer does not contain a Gp1 part. The tokens for y such that
HVE(x,y) = 0 instead are computed as in TypeAKeys. We will prove that, under Assumption
4, TypeAKeys ≈c TypeBKeys.

Third Substep. Let q2 be the number of token queries made by the adversary in the second
stage. In the third substep we define, for k = 0, . . . , q2, a new experiment called H3,k which
differs from TypeBKeys in the way the the second stage token queries are answered. More
specifically, the first k tokens asked by the adversary are modified in the following way. The
token for y such that HVE(x,y) = 0 contains a random Gp1 part. Instead if HVE(x,y) = 1
then the token is computed as in TypeBKeys. The tokens for the remaining q2 − k queries
are computed like in experiment TypeBKeys. We observe that TypeBKeys = H3,0 and that
H3,q2 = H3.

We will prove that, under Assumption 5, H3,k−1 ≈c H3,k.

The first substep Let us start by formally defining experiment TypeAKeys in terms of the
algorithm Sim.A.KeyGen used to answer the token queries of the second stage.

Algorithm Sim.A.KeyGen receives in input Msk, y and z = HVE(y,x) where x is the challenge
plaintext provided by the adversary and distinguishes two cases.

z = 0: The answer to the query is computed by running KeyGen on input Msk and y.

z = 1: For each j ∈ Sy, the algorithm chooses random Wj ∈ Gp4 , random aj ∈ ZN under the
constraint that

∑
j∈Syi

aj = 0, and sets

Yj = g
aj/tj,yj
12 · gaj/sj5 ·Wj .

Notice that the vector (sj)j∈[`] is the vector stored in the state by Sim.A.Enc.

36 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

We define hybrid experiment TypeAKeysA as follows.

TypeAKeysA(1λ, 1`)
(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.A.Enc(Pk′,x);

α← ASim.A.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,m, α)

Lemma 25 If Assumption 3 holds then, for all PPT A, HA2 ≈c TypeAKeysA.

Proof. Suppose there exists an adversary A for which H2
A and TypeAKeysA are distinguish-

able. Then, we show a PPT algorithm B that receives an instance of Assumption 3, consisting
of (I, A1, A2, A3, A4, A15) and challenge T , and, depending on the nature of T , simulates H2

A

or TypeAKeysA. This suffices to prove the Lemma.

Setup: B sets g2 = A2, g12 = A1 · A2, g3 = A3, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B
chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 ·Ri,b and T ′i,b = g

ti,b
1 ·R′i,b .

Then B sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] ,

and
Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input Pk.
First Stage Token Queries: B computes the token for y by running KeyGen on input Msk

and y.
Simulated Ciphertext: B generates the simulated ciphertext for vector x as follows. B chooses

random s ∈ ZN and, for i ∈ [`], random Zi ∈ Gp3 , and sets

Xi = A
s·ti,xi
15 · Zi

Second Stage Token Queries: B generates the token for y in the following way.

If HVE(x,y) = 0, the token is computed by running KeyGen on input Msk and y.
If HVE(x,y) = 1, the token is computed as follows. For each j ∈ Sy, B chooses random
Wj ∈ Gp4 and random aj ∈ ZN under the constraint that

∑
j∈Sy

aj = 0. Then B, for
each j ∈ Sy, sets:

Yj = T aj/tj,yj · g
aj/tj,yj
2 ·Wj .

This concludes the description of algorithm B.
Now we observe that the output of B’s setup is distributed like the output of algorithm

Sim.Setup and thus like in H2 and TypeAKeys. Similarly, the simulated ciphertext is distributed
like the output of A.Enc on input Pk′ and x and thus exactly as in H2 and TypeAKeys. Finally,
let us consider the answers to the second stage queries. If T ∈ Gp1 then the answer to the query
for y has the same distribution as the output of KeyGen on input Msk and y and thus it is
distributed as in H2. On the other hand, if T ∈ Gp1p5 then the answer to the query for y has
the same distribution as the output of Sim.A.KeyGen on input Msk,y and HVE(x,y) just like in
TypeAKeys. 2

On the Achievability of Simulation-Based Security for Functional Encryption 37

The second substep Let us start by formally defining experiment TypeBKeys in terms of the
algorithm Sim.B.KeyGen that is used to answer the token queries of the second stage.

Algorithm Sim.B.KeyGen receives in input Msk, y and z = HVE(y,x), where x is the challenge
plaintext provided by the adversary and distinguishes two cases.

z = 0: The answer to the query is computed by running KeyGen on input Msk and y.
z = 1: For each j ∈ Sy, B chooses random Wj ∈ Gp4 and random aj ∈ ZN under the constraint

that
∑

j∈Sy
aj = 0 and sets

Yj = g
aj/tj,yj
2 · gaj/sj5 ·Wj .

Notice that vector (sj)j∈[`] is the vector stored in the state by Sim.A.Enc.

We define hybrid experiment TypeBKeysA as follows.

TypeBKeysA(1λ, 1`)
(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.A.Enc(Pk′,x);

α← ASim.B.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,m, α)

Lemma 26 If Assumption 4 holds then, for all PPT A, TypeAKeysA ≈c TypeBKeysA.

Proof. Suppose there exists an adversary A for which TypeAKeysA and TypeBKeysA are
distinguishable. Then, we show a PPT algorithm B that receives an instance of Assumption
4, consisting of (I, A2, A3, A4, A14, A15) and challenge T , and, depending on the nature of T ,
simulates TypeAKeysA or TypeBKeysA. This suffices to prove the Lemma.

Setup: B sets g2 = A2, g3 = A3, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses random
ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 ·Ri,b and T ′i,b = A

ti,b
15 ·R

′
i,b .

Then B sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] ,

and
Msk = [⊥, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input Pk. Notice that B is unable to compute a complete
Msk as it does not have access to an element from Gp1p2 .

First Stage Token Queries: B generates the token for y in the following way. For each i ∈ Sy,
B chooses random Wi ∈ Gp4 , random ai ∈ ZN under the constraint that

∑
i∈Sy

ai = 0 and
then sets

Yi = A
ai/ti,yi
14 · gai/ti,yi2 ·Wi .

Simulated Ciphertext: B generates the simulated ciphertext for vector x as follows. B chooses
random s ∈ ZN and, for i ∈ [`], random Zi ∈ Gp3 , and sets

Xi = A
s·ti,xi
15 · Zi

38 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Second Stage Token Queries: On input Msk,y and z = HVE(x,y), B generates the token
for vector y in the following way.
For each j ∈ Sy, B chooses random Wj ∈ Gp4 and random aj ∈ ZN under the constraint
that

∑
j∈Sy aj = 0. Then B distinguishes two cases.

z = 0: For each j ∈ Sy, B sets

Yj = A
ai/tj,yj
14 · g

aj/tj,yj
2 ·Wj .

z = 1: For each j ∈ Sy, B sets

Yj = T aj/tj,yj · g
aj/tj,yj
2 ·Wj .

This concludes the description of algorithm B.
We start by observing that Pk has the same distribution of the public key constructed by

algorithm Sim.Setup just like in TypeAKeys and TypeBKeys. Similarly, the answers to the token
queries of the first stage are distributed like the output of KeyGen, despite the fact that B has an
incomplete Msk. Similarly, despite the fact that the public key Pk′ computed by B differs from
the one of Sim.Setup, it is not difficult to see that Ct has the same distribution of the output of
Sim.A.Enc on input a public key Pk′ output by Sim.Setup. Let us now look at the answers to the
token queries of the second stage. It is easy to see that queries for y such that HVE(x,y) = 0 are
distributed as the output of KeyGen. Suppose that T ∈ Gp1p4p5 . Then the answers to matching
queries are distributed like in the output of algorithm Sim.A.KeyGen and thus like in TypeAKeys.
On the other hand, if T ∈ Gp4p5 then the answers to matching queries are distributed like in the
output of algorithm Sim.B.KeyGen and thus like in TypeBKeys.

2

The third substep In this section we prove that, for any PPT adversary A, TypeBKeysA and
HA3 are indistinguishable, under Assumption 5.

For any adversary A that makes q2 queries in the second stage, we define a sequence of
hybrid experiments HA3,k, for k = 0, . . . , q2, such that

HA3,0 = TypeBKeysA and HA3,q2 = HA3 .

Then if TypeBKeysA and HA3 can be distinguished then there must exist k ∈ {1, . . . , q2} such
that hybrid experiments HA3,k−1 and HA3,k are indistinguishable. Moreover, from the definition of
experiment H3,k, it is clear that if k-th token query of the second stage is a matching query (that
is, HVE(x,y) = 1) then HA3,k−1 and HA3,k coincide. Therefore, if A is such that TypeBKeysA and

HA3 can be distinguished there must exist k such that HA3,k−1 and HA3,k can be distinguished and
the k-th token query of A in the second stage is with non-negligible probability a non-matching
query (that is, HVE(x,y) = 0).

Let us now define experiment H3,k. In H3,k second stage token queries are answered by
running a parametrized version of algorithm Sim.KeyGen that, with a slight abuse of notation,
we also call Sim.KeyGen.

Algorithm Sim.KeyGen receives as input the master secret key Msk, the vector y for which the
token must be computed and the value z = HVE(x,y). In addition, Sim.KeyGen receives the
number i of the query and the value k.

For each j ∈ Sy, Sim.KeyGen selects random Wj ∈ Gp4 and random aj ∈ ZN under the
constraint that

∑
j∈Sy

aj = 0. Then, it distinguishes two cases.

On the Achievability of Simulation-Based Security for Functional Encryption 39

z = 0: The depending on the query index i, B does the following.

– If i ≤ k: For each j ∈ Sy, Sim.KeyGen chooses random cj ∈ ZN and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

– If i > k: For each j ∈ Sy, Sim.KeyGen sets

Yj = g
aj/tj,yj
12 ·Wj .

z = 1: For each j ∈ Sy, Sim.KeyGen sets

Yj = g
aj/tj,yj
2 · gaj/sj5 ·Wj .

We remind the reader that the vector (sj)j∈[`] is the vector stored in the state of the simulator.

We observe that for algorithm Sim.B.KeyGen is the parametrized version of Sim.KeyGen with
k = 0. On the other hand, algorithm Sim.KeyGen is the parametrized version of Sim.KeyGen
with k = q2.

Next we define hybrid experiment HA3,k, for an adversary A that ask q2 token queries in the
second stage and for k = 0, . . . , q2,

HA3,k(1
λ, 1`)

(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.A.Enc(Pk′,x);

α← ASim.KeyGen(Msk,·,HVE(x,·),·,k)
1 (Pk,Ct, st);

Output: (Pk,x, α)

Notice that H3,0 = TypeBKeys and H3,q2 = H3.

Lemma 27 If Assumption 5 holds then, for any PPT adversary A, TypeBKeysA ≈c HA3

Proof. Suppose there exists an adversary A such that TypeBKeys and H3 are distinguish-
able. We show a PPT algorithm B that receives an instance of Assumption 5, consisting of
(I, A1, A2, A3, A4, A5, A

α
1 ·B4, A

β
1 ·C4) and challenge T , and, depending on the nature of T , sim-

ulates HA3,k−1 or HA3,k with some non-negligible probability for a random k ∈ {1, . . . , q2}. This
suffices to prove the Lemma.

Setup: B randomly chooses position j ∈ [`] and bj ∈ {0, 1}.
B sets g1 = A1, g2 = A2, g12 = A1 · A2, g3 = A3, g4 = A4, g5 = A5 and, for each i ∈ [`] and

b ∈ {0, 1}, B chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and sets Ti,b = g
ti,b
2 · Ri,b. Moreover,

for all (i, b) ∈ [`]× {0, 1} with (i, b) 6= (j, bj), B sets T ′i,b = g
ti,b
1 ·R′i,b.

Finally, B sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Pk′ = [N, g3, (T
′
i,b)(i,b)∈([`]×{0,1})\{(j,bj)}]

and

Msk = [g12, g4, , (ti,b)(i,b)∈([`]×{0,1})\{(j,bj)}]

and starts the interaction with A on input Pk.

40 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

First Stage Token Queries: In the first stage, B generates token for y in the following way.
For each i ∈ Sy, B chooses random Wi ∈ Gp4 , random ai ∈ ZN under the constraint that∑

i∈Sy
ai = 0 and then sets

Yi = g
ai/ti,yi
12 ·Wi .

However, if yj = bj then B sets

Yj = (Aβ1 · C4)
ai · g

aj/tj,yj
2 ·Wj .

This last setting has the effect of implicitly setting tj,yj ≡ 1/β (mod p1).
Challenge Ciphertext: B generate the challenge ciphertext for vector x in the following way.

If xj = bj then B aborts. Otherwise B chooses random s ∈ ZN and, for i ∈ [`], random
Zi ∈ Gp3 , and sets

Xi = g
s·ti,xi
1 · gs·ti,xi5 · Zi.

Second Stage Token Queries: At the start of the second stage of token queries, B picks a
random k ∈ {1, . . . , q2}.
The i-th token query of the second stage for vector y is answered by B in the following way
by distinguishing the following two cases.
HVE(x,y) = 0: We distinguish between the following three cases

i < k: For each j ∈ Sy, B chooses random Wj ∈ Gp4 , cj ∈ ZN and random aj ∈ ZN
under the constraint that

∑
j∈Sy

aj = 0 and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

i = k: If yj 6= bj then B aborts.
Otherwise let h ∈ [`] be such that h 6= j and yh 6= ? and set S = Sy \ {j, h}, Notice
that such an h always exists since we assumed that each query contains at least two
non-? entries.
Then, for each j ∈ S, B chooses random Wj ∈ Gp4 and random aj ∈ ZN and sets

Yj = g
aj/tj,yj
12 ·Wj .

Then, for position j, B chooses random Wj ∈ Gp4 and random aj ∈ ZN and sets

Yj = T · g
aj/tj,yj
2 ·Wj.

Finally, for position h, B sets

Yh = (Aα1B4)
−1/th,yh · g−s/th,yh1 · g−(s+aj)/th,yh2 ·Wh,

where s =
∑

j∈S aj .
i > k: For each j ∈ Sy, B chooses random Wj ∈ Gp4 and aj ∈ ZN under the constraint

that
∑

j∈Sy
aj = 0 and sets

Yj = g
aj/tj,yj
12 ·Wj .

In the special case that yj = bj, then B sets

Yj = (Aβ1 · C4)
aj · g

aj/tj,yj
2 ·Wj .

On the Achievability of Simulation-Based Security for Functional Encryption 41

HVE(x,yi) = 1: For each j ∈ Sy, B chooses random Wj ∈ Gp4 and aj ∈ ZN under the
constraint that

∑
j∈Sy

aj = 0 and sets

Yj = g
aj/tj,yj
2 · g

aj/tj,yj
5 ·Wj .

This concludes the description of algorithm B.
Let us now prove that the probability that B does not abort while interacting with A is

non-negligible. First observe that the probability that B aborts while constructing the simulated
ciphertext is 1/2. Indeed, the view of A up to this point is independent from j and bj and thus,
since bj is chosen at random by B, the probability that xj = bj is 1/2. Let us now look at the
probability that B aborts while answering the k-th token query of the second stage of A, given
that it has not aborted in the construction of the simulated ciphertext. In this case the view
of A is independent from j and also remember that the probability that the k-th query of A
is non-matching is non-negligible. If this is the case then there must exist one position j such
that yj 6= ? and yj 6= xj . If j = j (which happens with non-negligible probability since A’s view
is independent from the value of j) then B does not abort. Indeed, in this case we would have
yj 6= xj 6= bj which implies that yj = bj .

Let us now look at the view of A while interacting with B. We observe that Pk has the
same distribution of the corresponding output of Sim.Setup. Even though B does not have a
complete Msk as it misses tj,bj , the answer of the first stage queries are distributed as the output
of algorithm KeyGen on input Msk in which tj,bj ≡ 1/β (mod p1). Given that B does not abort,
it is straightforward to see that Ct constructed by B has the same distribution as the output of
Ct← Sim.A.Enc on input Pk′ and x. Let us now look at the answers of the second stage queries.
The matching queries and the first k−1 non-matching queries have the same distribution of the
output of algorithms Sim.KeyGen(Msk, ·,HVE(x, ·), ·, k) and Sim.KeyGen(Msk, ·,HVE(x, ·), ·, k −
1). Notice that, for both types of queries, the missing element of Msk plays no role. Simi-
larly, the last q2 − k non-matching queries of the second stage are distributed as the output
Sim.KeyGen(Msk, ·,HVE(x, ·), ·, k) and Sim.KeyGen(Msk, ·,HVE(x, ·), ·, k − 1) in which the miss-
ing element of Msk is set equal to tj,bj ≡ 1/β (mod p1). Let us finally look at the answer to the

k-th query. If T = Aαβ1 ·D4 then the answer of the query is distributed according to the output
of Sim.KeyGen(Msk, ·,HVE(x, ·), ·, k − 1). Notice that if B does not abort the missing element
of Msk plays no role. On the other hand, if T is random Gp1p4 then the answer of the query is
distributed according Sim.KeyGen(Msk, ·,HVE(x, ·), ·, k). 2

C.6 The fourth step of the proof

In this section we prove that H3 is indistinguishable from IdealExp.

Lemma 28 If Assumption 5 holds then, for all PPT adversaries A, HA3 ≈c IdealExpA.

We start by defining ` + 1 intermediate hybrid experiments I1, . . . , I`+1 such that I1 = H3

and I`+1 = IdealExp and show that, for f = 1, . . . , `+1, If and If+1 are indistinguishable, under
Assumption 5.

To define If , we introduce a parametrized version of algorithm Sim.Enc that, with a slight
abuse of notation, we also call Sim.Enc.

The parametrized version of Sim.Enc takes as input public key Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}],

the challenge ciphertext x, the sequence (yk, zk)
q1
k=1 of the q1 queries asked by the adversary in

the first stage along with zk = HVE(yk,x). In addition we let Sim.Enc take parameter 0 ≤ f ≤ `.

42 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Sim.Enc returns a simulated ciphertext in which the Gp1 part of positions i ≤ f that do not
belong to MPos is random. The remaining positions are well formed.

More formally, Sim.Enc chooses random s ∈ ZN , and, for each i ∈ [`], random Zi ∈ Gp3 and
random si ∈ ZN . Then for each i ∈ [`], Sim.Enc distinguishes the following cases.

– if i < f and i /∈ MPos, Sim.Enc randomly selects ri ∈ ZN and sets

Xi = T
′ri
i,0 · g

si
5 · Zi.

– if i < f and i ∈ MPos, Sim.Enc sets

Xi = T
′s
i,xi · g

si
5 · Zi.

– if i ≥ f Sim.Enc sets

Xi = T
′s
i,xi · g

si
5 · Zi.

Sim.Enc returns the simulated ciphertext Ct = (Xi)i∈[`] and stores the vector (si)i∈[`] in the
state. Notice that if f = `+ 1 the input x is not used by the algorithm and we obtain algorithm
Sim.Enc. On the other hand, if f = 1, we obtain algorithm Sim.A.Enc.

Next, we define, for 1 ≤ f ≤ `+ 1, experiment IAf as follows.

IAf (1λ, 1`)

(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← AKeyGen(Msk,·)
0 (Pk);

Ct← Sim.Enc(Pk′,x, (yk,HVE(yk,x))q1k=1, f);

α← ASim.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,x, α)

Clearly, for all PPT adversariesA, IA1 = H3 and IA`+1 = IdealExpA. Therefore to prove Lemma 28,
it is enough to prove the following lemma.

Lemma 29 If Assumption 5 holds, then for all PPT adversaries A, and for f = 1, . . . , `, IAf ≈c
IAf+1.

To prove the above lemma, we introduce another sequence of intermediate games and make
the following observation.

Observation 30 If f ∈ MPos, the output distributions of Sim.Enc(Pk,x, (yk,HVE(yk,x)qk=1,
f) and Sim.Enc(Pk,x, (yk,HVE(yk,x)qk=1, f + 1) coincide.

Therefore if IAf and IAf+1 are distinguishable then it must be the case that A has a non-
negligible probability of outputting a challenge plaintext x such that f /∈ MPos. For an adversary
A that makes q1 first stage token queries we introduce 2 ·(q+1) intermediate hybrid experiments
LAf,0, . . . , L

A
f,q1

and MAf,q1 , . . . ,M
A
f,0 which differ in the way in which first stage token queries are

answered. Specifically, first stage queries are answered by running the following algorithm.

On the Achievability of Simulation-Based Security for Functional Encryption 43

Algorithm Sim.C.KeyGen takes as input the master secret key Msk, the query y for which a
token has to be computed, the number 1 ≤ i ≤ q1 of the query, integer 1 ≤ f ≤ `+1 and integer
0 ≤ k ≤ q1. The algorithm distinguishes the following cases.

– i ≤ k and yf 6= ?:

The Gp1 part of the token is random.

For each j ∈ Sy, the algorithm chooses random Wj ∈ Gp4 , random cj ∈ ZN and random
aj ∈ ZN under the constraint that

∑
j∈Sy aj = 0 and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

– i ≤ k and yf = ?: the algorithm returns the output of KeyGen(Msk,y).

– i > k: the algorithm returns the output of KeyGen(Msk,y).

We are now ready to describe experiments LAf,k and MAf,k for f = 1, . . . , `+ 1 and k = 0, . . . , q1.

LAf,k(1
λ, 1`)

(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← ASim.C.KeyGen(Msk,·,·,f,k)
0 (Pk);

Ct← Sim.Enc(Pk′,x, (yk,HVE(yk,x))qk=1, f − 1);

α← ASim.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,m, α)

MAf,k(1
λ, 1`)

(Pk,Pk′,Msk)← Sim.Setup(1λ, 1`);

(x, st)← ASim.C.KeyGen(Msk,·,·,f,k)
0 (Pk);

Ct← Sim.Enc(Pk′,x, (yk,HVE(yk,x))qk=1, f);

α← ASim.KeyGen(Msk,·,HVE(x,·))
1 (Pk,Ct, st);

Output: (Pk,m, α)

Before continuing, we observe the following:

Observation 31 For all PPT adversaries A, IAf = Lf,0.

Directly from the definition of the experiments.

Observation 32 For all PPT adversaries A, LAf,q1 = MAf,q1 for f = 1, . . . , `, where q1 is the
number of first stage queries made by A.

From the definitions of the two experiments, it is clear that all the token queries are answered
in the same way in both the experiments and all components Xi for i 6= f of the challenge
ciphertext are computed in the same way. Let us now look at Xf and more precisely to its Gp1

part. In Lf,q1 , the Gp1 part of Xf is computed as T
′s
f,xf

which is exactly how it is computed in

Mf,q1 when f ∈ MPos. On the other hand, when f /∈ MPos, the Gp1 part of Xf is chosen at
random. However, observe that exponents tf,0 mod p1 and tf,1 mod p1 have not appeared in
the answers to key queries since every query has either a ? in position f (in which case position
f of the answer is empty) or a non-? value in position f (in which case the Gp1 part of the
element in position f of the answer is random). Therefore, we can conclude that the Gp1 part
of the component Xf of the answer to the challenge query is also random in Gp1 .

Observation 33 For all PPT adversaries A and for f = 1, . . . , `− 1, MAf,0 = LAf+1,0.

Indeed, in both experiments all key queries are answered correctly, and the challenge query in
Mf,0 is by definition answered in the same way as in Lf+1,0.

By the above observations, for proving Lemma 29 it suffices to prove that Lf,k−1 and Lf,k are
indistinguishable and that Mf,k−1 and Mf,k are indistinguishable, for k = 1, . . . , q1. In the next
section we prove that, under Assumption 5, Lf,k−1 and Lf,k are indistinguishable. The proof
that Mf,k−1 and Mf,k are indistinguishable is similar and omitted.

44 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Indistinguishability of Lf,k and Lf,k−1 We start by describing an algorithm B that takes
as input f and k and an instance of Assumption 5 and interacts with an adversary A. Then,
provided that A outputs a challenge such that f /∈ MPos, B simulates with some non-negligible
probability Lf,k or Lf,k−1 depending on the nature of the challenge. This suffices to prove that
the two hybrids are indistinguishable.

Description of algorithm B

Input: Integers 1 ≤ f ≤ ` + 1 and 0 ≤ k ≤ q, and a randomly chosen instance of Assumption
5 consisting of D = (I, A1, A2, A3, A4, A5, A

α
1B4, A

β
1C4) and challenge T which is either

T = Aαβ1 D4 or random Gp1p4 .

Setup: B starts by constructing public parameters Pk. B sets g1 = A1, g2 = A2, g12 = A1 · A2,
g3 = A3, g4 = A4, g5 = A5 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈
ZN , Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
2 ·Ri,b. Then B sets

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input Pk.

Now, B guesses a position j ∈ [`] and a bit bj ∈ {0, 1} and chooses the following randomness
that will be used in the Gp1 subgroup. Specifically, B chooses, for each i ∈ [`] and i 6= j,
and b ∈ {0, 1}, random t′i,j ∈ ZN . Moreover, B chooses random t′j,cj ∈ ZN where cj = 1− bj.
Notice that the value t′j,bj is unknown to B. It will be provided by the assumption as β at the
exponent.

First Stage Secret Tokens: To simulate the output of Sim.C.KeyGen(Sk,yi, f, k), B does the
following way:

i ≤ k : We have the following mutually exclusive cases.

Case A.1: yf 6= ? . In this case, B outputs a key whose Gp1 part is random.

Specifically, for each j ∈ Syi , B chooses random aj such that
∑

j∈Syj
ai = 0, random

rj ∈ ZN , and random Wj ∈ Gp4 . Then, for each j ∈ Syi , B sets

Yj = g
rj
1 · g

aj/vi,yj
2 ·Wj .

Case A.2: yf = ?. In this case, B outputs a key with a well-formed Gp1 part.

Specifically, B, for each j ∈ Syi , chooses random Wj ∈ Gp4 , random aj ∈ ZN under
the constraint that

∑
j∈Syi

aj = 0 and then sets

Yj = g
aj/t

′
j,yj

1 · g
aj/tj,yj
2 ·Wj .

In the special case that yj = bj, then B sets

Yj = (Aβ1 · C4)
ai · g

aj/tj,yj
2 ·Wj .

i = k : We distinguish between the following cases:

Case B.1: yf = ? . B performs the same steps of Case A.2.
Case B.2: yf 6= ? and yj 6= bj . In this case, B aborts.

On the Achievability of Simulation-Based Security for Functional Encryption 45

Case B.3: yf 6= ? and yj = bj . B mounts T , the challenge of the assumption, in position
j.

Specifically, let S = Syi \{j, h}, where h is an index such that yk,h 6= ?. Such an index
h always exists since we assumed that each query contains at least two non-? entries.
Then, for each j ∈ S, B sets

Yj = g
aj/t

′
j,yj

12 · g
aj/tj,yj
2 ·Wj .

Then, for position j, B sets

Yj = T · g
aj/tj,yj
2 ·Wj ,

and for position h, B sets

Yh = (Aα1B4)
−1/t′h,yh · g

−s/t′h,yh
1 · g−(s+aj)/th,yh2 ·Wh,

where s =
∑

j∈S aj .

i > k : B handles these queries as in Case A.2, independently from whether yf = ? or yf 6= ?.

Challenge Ciphertext: B receives x and has to compute a ciphertext. We distinguishes the
following two cases:

Case C.1: xj = bj . In this case, B aborts.

Case C.2: xj 6= bj . In this case, B computes sequence (yi,HVE(yi,x))q1i=1 for all queries yi
that it has received from A to induce the set MPos.

Then, B chooses random s ∈ ZN , and, for each i ∈ [`], random Zi ∈ Gp3 and random
si ∈ ZN . Then, for each i ∈ [`], if i < f and i /∈ MPos, the algorithm randomly select
ri ∈ ZN and sets

Xi = gri1 · g
si
5 · Zi ,

otherwise, the algorithm sets

Xi = g
s·t′i,xi
1 · gsi5 · Zi .

Second Stage Secret Tokens: To simulate the output of Sim.KeyGen(Msk,yi,HVE(x,yi)), B
does the following way:

HVE(x,yi) = 0 : B generates a secret key with a random Gp1 part and without the Gp5

part.

Specifically, for each j ∈ Syi , B chooses random aj such that
∑

j∈Syj
ai = 0, random

rj ∈ ZN , and random Wj ∈ Gp4 . Then, for each j ∈ Syi , B sets

Yj = g
rj
1 · g

aj/ti,yj
2 ·Wj .

HVE(x,yi) = 1 : B generates a secret key without the Gp1 part and with a Gp5 part corre-
lated with that of the ciphertext.

Specifically, for each j ∈ Syi , B chooses random aj such that
∑

j∈Syj
ai = 0, and random

Wj ∈ Gp4 . Then, for each j ∈ Syi , B sets

Yj = g
aj/ti,yj
2 · gaj/sj5 ·Wj .

46 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

This ends the description of B.

The algorithm B will be used to prove properties of experiments L. We can modify B so
that, on input f and k, the challenge ciphertext is constructed by randomizing the Gp1 part also
of the f -th component. The so modified algorithm, that we call B2, closely simulates the work
of experiments M and will be used to prove properties of these experiments.

Let us define the following two events.

NotAbortA1,B(f, k): denotes the event that B does not abort while computing the answer to the
k-th query in an interaction with A on input f and k. This is equivalent to the event that
yk,f = ? or yk,j = bj.

NotAbortA2,B(f, k): denotes the event that B does not abort while computing the ciphertext in
an interaction with A on input f and k. This is equivalent to the event that adversary A
outputs vector x such that xj = cj = 1− bj.

We can modify, experiments H1, L(f, k) and M(f, k) so that j and bj are chosen just like B
does. This modification makes the definitions of events NotAbortA1,Exp and NotAbortA2,Exp mean-

ingful also for these experiments. We write NotAbortA2 as a shorthand for NotAbortA2,H1
.

Lemma 34 For all f, k and A, Pr[NotAbortA1,B(f, k)] ≥ 1
` .

Proof. The probability of NotAbortA1,B(f, k) is at least the probability that yk,j = bj. Moreover,
the view of A up to the k-th key query is independent from bj and j. Now observe that the yk has
at least two non-star entry and, provided that j is one of these (which happens with probability
at least 2/`), the probability that yk,j = bj is 1/2. 2

Lemma 35 For all f, k and A, Pr[NotAbortA2,Exp(f, k)] ≥ 1
2` for Exp = L(f, k).

Proof. NotAbortA2,Exp(f, k) is the event that yk,j 6= xj in the experiment Exp. It is easy to see
that the probability that j and bj are correctly guessed such that xj = cj = 1 − bj is at least
1/(2`), independently from the view of A. 2

Lemma 36 Suppose event NotAbortA1,B(f, k) occurs. If T = T1 then A’s view up to the challenge
ciphertext in the interaction with B running on input (f, k) is the same as in Lf,k−1. If instead
T = T2 then A’s view up to the challenge ciphertext in the interaction with B running on input
(f, k) is the same as in Lf,k.

Moreover, suppose events NotAbortA1,B(f, k) and NotAbortA2,B(f, k) occur. If T = T1 then A’s
total view in the interaction with B running on input (f, k) is the same as in Lf,k−1. If instead
T = T2 then A’s total view in the interaction with B running on input (f, k) is the same as in
Lf,k.

Proof. First observe that Pk has the same distribution as the public parameters seen by A
in both experiments. The same holds for the answers to the first (k − 1) key queries and to the
last (q1 − k). Let us now focus on the answer to the k-th key query. We have two cases:

Case 1: yf = ?. Then the view of A in the interaction with B is independent from T (see
Case B.1) and, on the other hand, by definition, the two experiments coincide. Therefore the
lemma holds in this case.

On the Achievability of Simulation-Based Security for Functional Encryption 47

Case 2: yf 6= ?. Suppose T = T1 = Aαβ1 · D4 and that NotAbortA1,B(f, k) occurs. Therefore,
yj = bj and B’s answer to the k-th key query has the same distributions as in L(f, k − 1).

On the other hand if T is random in Gp1p4 and NotAbortA1,B(f, k) occurs, the Gp1 parts of
the Yj ’s are random and thus the answer to the k-th query of A is distributed as in Lf,k.

For the second part of the lemma, we observe that the challenge ciphertext has the same
distribution in both experiments and that, if NotAbortA2,B(f, k) occurs, B properly constructs the
challenge ciphertext. 2

Let us now analyze the probability that A does output a challenge such that f /∈ MPos, this is
crucial for B to successfully simulate with some non-negligible probability L(f, k) or L(f, k − 1).

We start by introducing some notation.

EAf,Exp is defined as the event that in experiment Exp the adversary A declare a challenge vector
such that f /∈ MPos . When the adversary A is clear from the context we will simply write
Ef,Exp.

EAf : is defined as the event that in experiment H1, the adversary A declares a challenge vector
such that f /∈ MPos . When the adversary A is clear from the context we will simply write
Ef .

EAf,B(f ′, k): we extend the definition of Ef,Exp to include the experiment played by A against
the algorithm B. Thus we denote by the event that in the interaction between A and B on
input f ′ and k, B does not abort and A declares a challenge vector such that f /∈ MPos. If
A, f ′ and k are clear from the context, we will simply write Ef,B.

EAf,f ′ : is defined as the event that during the execution of If ′ adversary A outputs a challenge
vector such that f /∈ MPos.

Observation 37 For all PPT adversaries A and distinguisher D and all 1 ≤ f ≤ `, we have
that Pr[D(I(f)A) = 1|¬Ef,f] = Pr[D(I(f + 1)A) = 1|¬Ef,f+1].

Proof. By definition of I, if the challenge vector is such that f ∈ MPos, then A’s view in If
and If+1 is the same. 2

Observation 38 For all PPT adversaries A and all 1 ≤ f ≤ `, we have that Pr[EAf,f] =

Pr[EAf,f+1].

Proof. The view of A in If up to the challenge ciphertext is independent from f . 2

Therefore we can set Pr[EAf,f] = Pr[EAf,1] = Pr[EAf].

Lemma 39 If Assumption 2 holds, then for k = 1, . . . , q and f = 1, . . . , `, and for all PPT

adversaries A,
∣∣∣Pr[EAf,G] − Pr[EAf,H]

∣∣∣ and
∣∣∣Pr[NotAbortA2,G] − Pr[NotAbortA2,H]

∣∣∣ are negligible

functions of λ, for experiments G = L(f, k − 1) and H = L(f, k).

Proof. We prove the lemma for Ef,G and Ef,H . A similar reasoning holds for NotAbortA2,G and

NotAbortA2,H . For the sake of contradiction, suppose that Pr[EAf,G] ≥ Pr[EAf,H] + ε for some non-
negligible ε. Then we can modify algorithm B into algorithm B with a non-negligible advantage in
breaking Assumption 2. Algorithm B simply execute B’s code. By Lemma 34 event NotAbort1,B
occurs with probability at least 1/` and in this case B can continue the execution of B’s code
and receive the challenge vector from A. At this point, B checks whether f /∈ MPos. If it is the

48 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

case, B outputs 1; else B outputs 0. It is easy to see that, by Lemma 36, the above algorithm
has a non-negligible advantage in breaking Assumption 2. 2

The proof of the following corollary is straightforward from Lemma 39 and Observations 32-
33.

Corollary 40 For all f = 1, . . . , ` + 1 and k = 0, . . . , q, and all PPT adversaries A, we have

that, for H = Lf,k

∣∣∣Pr[EAf,H]− Pr[EAf]
∣∣∣ and

∣∣∣Pr[NotAbortA2,H]− Pr[NotAbortA2]
∣∣∣ are negligible.

We are now ready to prove that Lf,k−1 ≈c Lf,k. To do this let us define the event SuccA(f, k)
as

SuccA(f, k) := NotAbortA1,B(f, k) ∧ NotAbortA2,B(f, k) ∧ EAf,B(f, k). (1)

When A is clear from the context we use the shortcut Succ(f, k).

We are now ready to prove Lemma 41.

Lemma 41 Suppose there exists an adversary A, a distinguisher D and integers 1 ≤ f ≤ ` and
1 ≤ k ≤ q such that

∣∣Pr[D(GA) = 1]− Pr[D(HA) = 1]
∣∣ ≥ ε, where G = L(f, k − 1), H = L(f, k)

and ε > 0. Then, there exists a PPT algorithm B with AdvB2 ≥ Pr[Ef] · ε/(2 · `2) − ν(λ), for a
negligible function ν.

Proof. Assume without loss of generality that Pr[D(GA) = 1] ≥ Pr[D(HA) = 1] + ε and
consider the following algorithm B. B uses algorithm B as a subroutine and interacts with
A on input integers f and k for which the above inequality holds, and an instance (D,T) of
Assumption 2. If event Succ(f, k) does not occur, B outputs ⊥. Otherwise, B outputs D’s output.
Therefore we have

Pr[B outputs 1|T = T1] = Pr[B outputs 1|T = T1 ∧ Succ(f, k)] · (2)

Pr[Succ(f, k)|T = T1]

By definition of Succ(f, k) we have

Pr[Succ(f, k)|T = T1] = Pr[Ef,B ∧ NotAbort1,B ∧ NotAbort2,B|T = T1]

= Pr[NotAbort1,B|T = T1]·
Pr[Ef,B ∧ NotAbort2,B|NotAbort1,B ∧ T = T1].

Now observe that event NotAbort1,B is determined before B uses T and thus

Pr[NotAbort1,B|T = T1] = Pr[NotAbort1,B].

Moreover, by Lemma 36, if event NotAbort1,B occurs and T = T1, the view of A up to Challenge
Query is equal to the view of A in experiment G and thus

Pr[Ef,B ∧ NotAbort2,B|NotAbort1,B ∧ T = T1] = Pr[Ef,G ∧ NotAbort2,G]

whence
Pr[SuccA(f, k)|T = T1] = Pr[NotAbort1,B] · Pr[NotAbort2,G ∧ Ef,G]

= Pr[NotAbort1,B] · Pr[NotAbort2,G] · Pr[Ef,G]
,

On the Achievability of Simulation-Based Security for Functional Encryption 49

where NotAbort2,G and Ef,G are independent. Finally, if T = T1 and SuccA(f, k) occurs, then,
by Lemma 36, A’s view is exactly as in experiment G, and thus the probability that B outputs
1 is equal to the probability that D output 1. We can thus rewrite Eq. 2 as

Pr[B outputs 1|T = T1] = Pr[D(GA) = 1]·
Pr[NotAbort1,B] · Pr[NotAbort2,G] · Pr[Ef,G]

A similar reasoning yields

Pr[B outputs 1|T = T2] = Pr[D(HA) = 1]·
Pr[NotAbort1,B] · Pr[NotAbort2,H] · Pr[Ef,H]

By using Corollary 40, Lemma 34 and Lemma 35, we can conclude that there exists a negligible
function ν such that we have

AdvB2 = Pr[NotAbort1,B] · Pr[NotAbort2] · Pr[Ef]·(
Pr[D(GA) = 1]− Pr[D(HA) = 1]

)
− ν(λ)

≥ ε

2`2
· Pr[Ef]− ν(λ)

2

The following Lemma can be proved by referring to algorithm B2. We omit further details
since the proof is essentially the same as the one of Lemma 41.

Lemma 42 Suppose there exists an adversary A, a distinguisher D and integers 1 ≤ f ≤ `+ 1
and 1 ≤ k ≤ q such that

∣∣Pr[D(GA) = 1]− Pr[D(HA) = 1]
∣∣ ≥ ε, where G = Mf,k−1, H = Mf,k

and ε > 0. Then, there exists a PPT algorithm B with AdvB2 ≥ Pr[Ef] · ε/(2 · `2) − ν(λ), for a
negligible function ν.

We are finally ready to prove Lemma 29.

Lemma 29. If Assumption 2 holds, If ≈c If+1.

Proof. Suppose that for some adversary A, distinguisher D and f ∈ [`]∣∣Pr[D(IAf) = 1]− Pr[D(IAf+1) = 1]
∣∣ ≥ ε . (3)

Now recall that If = Lf,0 and If+1 = Mf,0. Thus, there exists 1 ≤ k ≤ q such that:∣∣Pr[D(GA) = 1]− Pr[D(HA) = 1]
∣∣ ≥ ε/(2q) ,

where G = Lf,k and H = Lf,k−1 or where G = Mf,k and H = Mf,k−1. Then by Lemma 41,
in the former case, and by Lemma 42 in the latter, we can construct an adversary B against
Assumption 2, such that

AdvB2 ≥
ε

4q`2
· Pr[Ef]− ν(λ)

Now it remains to estimate Pr[Ef]. Notice that we can write

Pr[D(IAf) = 1] = Pr[Ef,f] · Pr[D(IAf) = 1|Ef,f]+

Pr[¬Ef,f] · Pr[D(IAf) = 1|¬Ef,f]
,

50 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

and
Pr[D(IAf+1) = 1] = Pr[Ef,f+1] · Pr[D(IAf+1) = 1|Ef,f+1]+

Pr[¬Ef,f+1] · Pr[D(IAf) = 1|¬Ef,f+1]
,

and by combining Equation 3 and Observations 37 and 38, we obtain

Pr[Ef] ·
∣∣Pr[D(IAf) = 1|Ef,f]− Pr[D(IAf+1) = 1|Ef,f+1]

∣∣ ≥ ε.
Thus, we can conclude that

Pr[Ef] ≥ ε ,

and thus B as advantage

AdvB2 ≥
ε2

4q`2
− ν(λ) .

2

