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Although many computational methods for rare event sampling exist, this type of calculation is not
usually practical for general nonequilibrium conditions, with macroscopically irreversible dynamics
and away from both stationary and metastable states. A novel method for calculating the time-series
of the probability of a rare event is presented which is designed for these conditions. The method
is validated for the cases of the Glauber–Ising model under time-varying shear flow, the Kawasaki–
Ising model after a quench into the region between nucleation dominated and spinodal decompo-
sition dominated phase change dynamics, and the parallel open asymmetric exclusion process. The
method requires a subdivision of the phase space of the system: it is benchmarked and found to
scale well for increasingly fine subdivisions, meaning that it can be applied without detailed fore-
knowledge of the physically important reaction pathways. © 2010 American Institute of Physics.
[doi:10.1063/1.3525099]

I. INTRODUCTION

Events which are highly improbable often have great
importance to the behavior of a system. The classic example
of this is nucleation of a raindrop from supersaturated water
vapor. Because droplets smaller than a critical radius are
energetically unfavorable, the formation of a supercritical
droplet is unlikely to occur on the time scale of thermal mo-
tion of water molecules. Hence, a straightforward computer
simulation would waste much computer time on unimportant
fluctuations before producing an event of interest.

A. The rare event literature

A large number of approaches have been developed
to solve so-called “rare event” problems. Many of these
approaches are based on transition state theory,1, 2 i.e. on the
concept of a quasiequilibrium free energy landscape and of a
particular “slow” motion of the system within this landscape.
The landscape is imagined as consisting of basins linked
together by “transition paths” passing over saddle points.
This landscape can be mapped using equilbrium methods in-
cluding e.g. umbrella sampling,3 multicanonical sampling,4

and Wang–Landau sampling;5 and the motion across saddle
points, once they are identified, can then be simulated di-
rectly by initialising molecular dynamics simulations near to
the saddle or even just reconstructed from the potential of
mean force.6 This approach of proceeding from a free en-
ergy surface to an understanding of the kinetics is princi-
pled and highly attractive but is limited to systems for which
such a surface can be meaningfully defined and practically
computed.

For systems away from equilibrium the concept of free
energy becomes problematic, although theories which use
analogs or extensions of this idea are rapidly being devel-
oped; for example by considering the transition probabilities
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between states7 rather than assigning a free energy and the as-
sociated Boltzmann probability distribution directly to states
themselves.

In order to numerically study rare events under condi-
tions where the concept of a free energy landscape is prob-
lematic, transition path sampling (TPS),8 Forward flux sam-
pling (FFS),9, 10 weighted ensemble (WE),11 and a suite of
related methods have been developed. The basic idea of these
methods is to selectively sample from the set of pathways
which the system can take, by increasing the number of path-
ways in the important regions of the state space of the system,
but compensating by attaching a variable statistical weight to
each path. This group of methods is aimed at steady state
nonequilibrium systems, and except for one very recent pa-
per on WE (Ref. 12) (published after this work was substan-
tially complete) the potential for adapting or reformulating
them to give a time-dependent description of nonstationary
dynamics has not yet been explored. Many processes (such as
quenching, aging, ignition and impact) are naturally framed in
a strictly nonsteady or time-dependent way: beyond the equi-
librium/quasiequilibrium and also the stationary nonequilib-
rium treatments. The development of nonstationary rare event
methods is therefore of potentially great importance.

B. Phase space binning and reweighting

The starting point for this work is a phase space bin-
ning according to some macroscopic coordinate λ (which is
often called the “reaction coordinate” although it is not usu-
ally the true reaction coordinate of the process). Biased sam-
pling is then performed so as to generate paths which move
through specific bins on λ. This strategy of projecting the
phase space of the system onto some subspace of one or more
dimensions; dividing the subspace with a set of partitions and
then running short trajectory paths in or between compart-
ments is common to FFS,9 WE,11 milestoning,13 and boxed
molecular dynamics14 and has been very successful. Although
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these algorithms do not all require detailed balance and are
successful for treating nonequilibrium steady states, applica-
tion to general nonstationary dynamics is still exploratory,
and is so far only shown for WE (Ref. 12) (although the au-
thors stepped back from explicitly claiming this, preferring
to state that the method covers a “broad class of stochastic
processes” rather than the full range of stochastic nonstation-
ary dynamics). The requirement for stationarity in all exist-
ing methods apart from WE arises from the assumption that
microstates from a given compartment can be treated inter-
changably at the compartment boundaries—regardless of, of-
ten importantly, the duration of the path which has led to a
given state.

We generalize this strategy of compartmentation to non-
steady-state systems; in essence only by fixing the duration
of each trajectory fragment (here called a “shot”), so that the
time evolution can easily be tracked. The resulting method,
once sampling and reweighting schemes have been developed
around this central premise, is termed stochastic process rare
event sampling (S-PRES). The most important design choice
is the procedure used to ensure dynamically adaptive sam-
pling rates for the different bins. This is achieved here using a
variant of Rosenbluth sampling, as is sometimes used in FFS;
rather than by moving the bins as has been investigated for
WE. The choice to keep the bin positions fixed has the benefit
of allowing a high-level and mathematically friendly descrip-
tion of the dynamics to be developed online in the form of a
time-dependent matrix of transition frequencies between the
bins.

II. S-PRES: ALGORITHM DESCRIPTION

A. Overview

We define a scalar-valued coordinate λ as a function over
the state space of our system. This coordinate is discretized
into bins labelled by an index i . (Note that the phase space of
the system need neither be discretized nor finite. These con-
ditions only need to hold for the coordinate binning.) As an
example choice for λ, one might use the number of particles
in a liquid droplet forming in supersaturated vapor.

The main goal of S-PRES is to observe a roughly con-
stant number of forward transitions from each bin i on each
interval [t, t + τ ]; where a forward transition from i at t is
defined as any shot where the microstate at time t + τ falls
within a bin j > i . In this way unlikely transitions can be ex-
plored and sampled with high statistical accuracy.

In principle, λ could be a vector instead of a scalar. The
restriction to a scalar is used here to simplify the discussion.
If using a vector-valued �λ, the concept of “forward” becomes
nonobvious. An example approach in two or more dimensions
is to define a Hamming distance as the number of bin bound-
aries which remain to be be crossed in order to reach some
target bin: “forward” then describes any shot which decreases
this Hamming distance.

B. Importance sampling for adaptivity

We carry out a variable number nt
i of shots (short dynam-

ics runs) of a fixed duration τ from the configurations in each

tim
e

2

Bin 1 Bin 2 Bin 3

λ

τ

τ

0

τ

FIG. 1. Schematic representation of path generation. Symbols indicate con-
figurations, lines represent path segments of duration τ .

bin i at each time t . (Here and in the following we use the
term “configuration” for a microstate of the system at a given
time on a given path. Two paths can, in principle, reach iden-
tical microstates at the same time. In this case the algorithm
would still hold two configurations.)

As we are considering stochastic processes, shots from
the same starting configuration can be made to diverge by
varying the random number seed used to generate the dynam-
ics. nt

i is adapted during the simulation to improve statistics.
During the course of the simulation, the number of bins which
are populated by configurations gradually increases (indicated
by the triangles and squares in Fig. 1) until transitions are
sampled at each timestep from all bins which have a nonzero
occupation probability. In order to achieve a roughly constant
number of forward transitions from each bin i , we select nt

i
based on the estimated transition probabilities at the previous
timestep. The number of shots from bin i at time t + τ is de-
fined as

nt+τ
i =

⌈
nt

i + γ

(
N

R
− 1

)
nt

i

⌉
, (1)

where N is the target number of forward transitions, γ is a
damping factor, and R is the number of shots which moved
forward from bin i to bins over higher ranges of λ on the step
t − τ to t , (or R = 1 if this number is zero). The brackets � �
indicate the ceiling function. This adaptive sampling method
makes S-PRES akin of the class of variational approaches to
steady-state importance sampling (IS) described elsewhere.15

Selection of values for the parameters N and γ is discussed
in Sec. II E.

C. Explanation of sampling for path generation

In order to enhance the exploration of rare states we
apply a version of the pruned-enriched Rosenbluth method
(PERM),16 i.e., when picking configurations from a given
bin as starting points for new shots, we do not select them
with equal probabilities, but with a variable statistical weight
which depends on the sampling history. In conventional
PERM paths at a given timepoint are either discarded, or se-
lected for exactly one or two copies to extend to the next time-
point, based on lower and upper thresholds in their weights.
The implementation presented here avoids having to set these
thresholds. The number of branches nt

i is shared out between
paths in each bin i randomly in proportion to the path weights.
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This has the same effect on average of discarding the rela-
tively unlikely paths and sharing out the weights of the rela-
tively more likely paths; such that statistics over a given bin
are not dominated by a few highly weighted paths and also
such that computational effort is not wasted on highly unlikely
paths which contribute almost nothing to the statistics.

Here we give a nonmathematical introduction to the pro-
cedure (see Fig. 1, where symbols stand for configurations
and lines indicate path segments) and then we motivate the
method further in Sec. II D.

Initially, configurations in each bin i with a nonzero num-
ber of occupying configurations are selected with equal prob-
ability as starting points for the n0

i paths from that bin (in the
example of Fig. 1 with probability 1 for the single circle in
bin 1 at time=0; and probability 1/2 for each of the two cir-
cles in bin 2 at time=0). Subsequently, we take into account
from which bin i a configuration in j originates (the number
of branches extending from the configurations in i determines
the weight of their endpoints in j .) In Fig. 1, the left trian-
gle in bin 2 stems from a path with weight 1/2 (1 state divided
by 2 branches), while the right triangle stems from a path with
weight 1 (2 states by 2 branches). Hence, when selecting start-
ing configurations for new shots, the left triangle in bin 2 is
chosen with half the probability of the right triangle.

D. Motivation of sampling strategy

We bias the sampling of trajectories towards rare events
by adapting the number of shots nt

i from a bin i at a time t
such that sufficient statistics are produced for rare transitions
[Eq. (1)]. However, we do not bias within a bin: when we
select a sample of nt

i configurations from the path endpoints
in a given bin i as starting points for new shots, we do not
apply any bias.

Selecting configurations without bias does not imply that
they are drawn with equal probabilities. On the contrary, as
the total number of shots nt

i varies betwen bins, pathways
that arrive in a bin j from different bins i, j, k · · · have dif-
ferent statistical weights (according to the respective values
of nt−τ

i , nt−τ
j , nt−τ

k , . . . ). These weights need to be taken into
account when selecting starting configurations for new shots.
We now provide a detailed explanation of the procedure to do
this.

We define Pt (i) as the proportion of configurations in bin
i at time t assuming infinitely many configurations. We call
the estimate of Pt (i) from a finite number of configurations
dt

i . Similarly, we define Pt ( j |i) as the proportion of pathways
from bin i which end in j in the case of infinitely many tra-
jectories, and its estimate as Mt

i, j .
As in the example of Fig. 1, we begin at time t = 0 by

picking configurations in bin i with equal probability as start-
ing configurations for shots. At time t = τ we count N τ

i, j path-
ways that went from i to j . Each of these pathways has an
equal weight Pτ (i, j)/N τ

i, j because they each had the same
chance to be selected for shots from bin i . For the next step,
we would like to pick configurations from bin j such that the
probability of a configuration sτ

j being picked is proportional
to the weight of its path P(select:sτ

j ) ∝ Pτ (i, j)/N τ
i, j . To con-

veniently compute this we normalize by P( j) and write:

P
(
select: sτ

j

) =
(

1

N τ
i, j

)
Pτ (i, j)/Pτ ( j),

P
(
select: sτ

j

) =
(

1

N τ
i, j

)
Pτ ( j |i)Pτ (i)

/ ∑
i ′

Pτ ( j |i ′)Pτ (i ′).

During the course of the simulation we do not know the
values of Pτ ( j |i) and Pτ (i). However, we do have the esti-
mates Mτ

i, j and dτ
i . As we sample within a bin without bias,

the errors in dτ
i (and Mτ

i, j ) relative to Pτ (i) (and Pτ ( j |i)) are
zero-mean. Therefore all products and ratios of different er-
rors are also zero-mean. And hence the laws of conditional
probability can be applied to the estimated probabilities with-
out introducing any bias. Therefore an estimate of the opti-
mal P(select: sτ

j ) can be defined as a function of Mτ
i, j and dτ

i ,
without introducing any bias:

P
(
select: sτ

j

) = Mτ
i, j d

τ
i

Ni, j
∑

i ′ Mτ
i ′, j d

τ
i ′
. (2)

Selecting configurations for shots using P(select) instead
of P(select) is perfectly acceptable: in a large number of re-
peated experiments each configuration will be selected a num-
ber of times proportional to its true P(select), and correct
average properties will be observed.

The central trick of the algorithm is that although the tra-
jectories which enter a given bin do not have an equal statisti-
cal weight; those which leave a given bin do have an equal sta-
tistical weight because their selection for shots is determined
by an unbiased estimate of P(select). For this reason, the se-
lection formula (2) can be applied at every timestep without
explicitly considering the histories of trajectories more than
one timestep into the past.

E. Algorithm parameters

The duration of path segments τ , the “damping factor”
γ [from Eq. (1)] and the target number of forward transitions
per bin N must be set by the practitioner. For the method to
be efficient, τ should be shorter than the shortest passage time
of the rare event and longer than the time scale necessary to
move from one λ-bin to another. If the dynamics can vary such
that the time required to transit between λ-bins is often longer
than τ , then a small value of γ (say between 0.01 and 0.5)
can improve stability by stopping the adaptive sampling from
attempting too many shots before it is possible that even one
of them moves forward. On the other hand, in the case that τ

should come near to the time scale over which the dynamics
can evolve globally with respect to time then γ should be set
close to 1, allowing the sampling rate to adjust rapidly.

It is possible to dynamically vary both γ and τ if needed;
for instance in a glassy material τ can be increased as the
system arrests. If the system has a complex configurational
space, with multiple substantially different reaction pathways
all projecting onto the same values of λ, then “dead-end”
states may sometimes be reached, where ni grows out of con-
trol even for small γ and large τ . In this case, if a better λ

is not available, a threshold should be defined for the largest
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acceptable ni given practical computational constraints. N
should be set large enough such that it is larger than the typi-
cal fluctuations in ni .

F. Extraction of observables and statistics

In order to compute expectation values of observables,
we consider time slices throught the set of pathways. A con-
figuration s from the set of configurations at time t is associ-
ated with a microscopic weight wt

s . All configurations at the
same timepoint in an S-PRES run have had the same history
of external control parameters. The microscopic weight wt

s of
a configuration s is given by

wt
s = P

(
select: st

j

)
dt

j ,

wt
s = Mt

i, j d
t
i

Ni, j
,

(3)

using the same reasoning as Eq. (2). wt
s is proportional to the

estimated probability of occurrence of the configuration at the
same timepoint in a repeated experiment with the same con-
trol parameter history and distribution of initial configurations
(but, obviously, with different individual trajectories due to
the stochastic nature of the dynamics).

In order to extract the expected value of some observable
xt it is required to take an average over all configurations s
at time t . The sum of the weights over all configurations is 1.
Then the time slice average is given by

xt =
∑
{st }

wt
s x(st ). (4)

This sample average will converge with a sufficiently
large number of configurations. However, estimates of fluctu-
ations require some care because the different configurations
held at a given time are likely to have some degree of mutual
information, having previously branched from a single parent
or grandparent configuration, leading to potentially dramatic
underestimates of the variance. The simplest solution to this
problem is to run two completely independent calculations
from different sets of starting configurations, calculating the
variance at t in the second run based on the estimated mean
at t from the first run (and vice-versa). Estimates of the error
(as distinct from fluctuation) either in direct observables or in
variances can then be achieved by making further independent
runs.

G. Macroscopic description of time-evolution

In order to estimate the progress of the algorithm on-
line, we consider the system dynamics in terms of the macro-
scopic coordinate λ. These dynamics will in general not be
Markovian. For the following discussion, we borrow (with
apologies) some mathematical notation from the language of
Markov processes, but we do not imply that the dynamics in
terms of λ are Markovian.

We consider a time series of “macrostate vectors” �dt of
the estimated occupation probabilities of the bins, beginning
from the initial distribution which has been chosen and pro-
gressing such that: �d (t+τ ) = ( �dt )TMt .

We can define the entries of �dt and Mt just like any other
observables, as the sum of the associated weights [(as from
Eq. (3)]:

dt
j =

∑
{st }

wt
sδ

t
j , (5)

Mt
i, j =

∑
{st }

wt
sδ

t−τ
i δt

j/dt−τ
i , (6)

where δt
i is 1 if the path occupies bin i at time t , otherwise 0.

In the case of a Markov process, a marginalization is car-
ried out over “parent” bins i such that dt

j = ∑
i dt−τ

i Mt−τ
i, j .

Because we have time-varying control parameters and be-
cause we do not make the assumption of memorylessness, this
marginalization acquires caveats. Obviously, we must bear in
mind that the estimated occupation probabilities depend on
the history of control parameters; and that they are by defini-
tion time-dependent. Less obviously, it does not hold that the
marginalization over the parent bins i can be carried out with-
out loss of information as in the case of Markov dynamics,
meaning that our Mt−τ

i, j represents an average over the con-
figurations in i , rather than having the same value for each
configuration in i . In particular, the practitioner should be
aware that nontrivial correlations of the process on a time-
scale longer than τ are not captured by the description in
terms of the matrices Mt .

The extent to which a given Mt can be transplanted to a
different timepoint t or to describe a system which was ini-
tialized with different starting conditions, or with a different
history of control parameters, must be judged by the practi-
tioner. If the series of Mt is stable for successive timepoints
then this indicates that the dynamics, at least with respect to
λ, may have converged to some stationary limit. Under the
assumption of stationarity in the dynamics, diagonalization
of Mt to find the infinite-time distribution with respect to λ

can usefully be carried out, as well as other tactics commonly
used to condense a description of the kinetics from a Markov-
like matrix of estimated transition probabilities.17

H. S-PRES algorithm pseudocode

To aid implementation a step-by-step guide to an example
program is provided.

The set of starting configurations can be prepared in any
way that is of interest. For example, one could prepare an
equilibrium set for a given control parameter and then use S-
PRES to perform a quench, i.e., change the parameter and ob-
serve the system dynamics. Or one could start out from a sin-
gle configuration and observe how trajectories diverge from
this point. If the system is intended to be set up in a stationary
state then a conventional rare event sampling method or an
initializing round of S-PRES can be run for whatever length
of time is needed to prepare a set of configurations with cor-
rect associated weights over a good range of λ.

1. Prepare a set of (one or more) configurations of the sys-
tem at time t = 0.

2. Find λ for each configuration, and associate it to the ap-
propriate discrete bin with repect to λ.
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3. Prepare a vector �d0 giving the estimated occupation
probability of each bin on λ at t = 0.

4. Prepare a vector �n0 giving the number of shots to make
from each bin at t = 0.

5. Loop for t = 0 to t = ∞:

(a) Set all transition probability estimates Mt
i, j = 0.

(b) Loop for all i s.t. dt
i �= 0:

i. Repeat nt
i times:

A. Select a configuration in the bin i . At
t > 0 use Eq. (2) (with a shift of index)
to weight the configurations according
to their previous bin. At t = 0 set all
configurations in i as equiprobable.

B. Run dynamics of duration τ .
C. Calculate λ for the evolved configura-

tion and find bin j given λ.
D. Associate the evolved configuration to

bin j for the next timestep, also record-
ing its origin as i .

E. Set Mt
i, j = Mt

i, j + 1/nt
i .

ii. Set sampling rate ni
t+1 using Eq. (1).

(c) Print the matrix Mt and the vector �dt .
(d) Print any further observables derived using Eq. (4).
(e) Set �dt+τ = Mt �dt .
(f) Set t = t + τ .

I. Boundary conditions for flux calculations

S-PRES can be used in two ways, either to calculate the
time dependent probability distribution of some static observ-
able or to calculate the time dependent reaction flux φ(t) be-
tween two specifically chosen “source” and “sink” bins on λ

(which in the following we call A and B). The latter quantity
is the nonstationary analog of that which is usually calculated
using TPS and FFS methods, and the former of that which is
usually calculated via IS techniques. Flux calculations typi-
cally require special treatment of boundary conditions, in or-
der to remove the effects of granularity in time and in order to
create a system which can remain far from equilibrium indef-
initely.

In order to achieve a definition of the forward flux which
is strictly independent of τ it is necessary that runs which en-
ter the sink region, B, are halted immediately. This may be
computationally costly if the coordinate λ is costly to calcu-
late, but cannot be avoided if an accurate flux is desired. If
paths were allowed to enter and leave B, this would not cor-
respond to the accepted definition of forward reaction flux as
the probability per unit time of a first passage from A to B.

Region B is treated as absorbing in this way: at the end of
each timestep, the probability vector entry corresponding to B
is set equal to zero and the entry corresponding to the region
A is incremented by the flux which has been deleted. No new
configurations are actually transferred to A, only some of the
“probability mass” tracked by �dt . This “short circuit” of the
matrix is equivalent to a system with an infinite reservoir of
states in A and absorbing boundary conditions at B; which is
the premise normally adopted for FFS.

A second restriction, which should not in general be used
but which was imposed on the FFS-like “flux” variant of the
method for the calculations carried out here, is to instantly ter-
minate any paths which return to A; and then reinitialize them
with a random configuration from within A. This setup de-
scribes a slightly unphysical situation, but was required here
to achieve exact correspondence of the definition of flux with
existing steady-state FFS calculations,18 such that only paths
from A to B which make the journey in a single pass without
any return to A are considered.

If it is preferred to calculate the time series of the state
vector �dt and the matrices Mt (or some other extracted ob-
servable) without specific definition of a flux then no special
bins A or B are defined.

J. Nonrequirement for Poisson statistics

The assumption of Poisson statistics, that rare events oc-
cur independently and without correlation is required by most
existing methods19. This assumption may be an unwelcome
limitation and is not required by S-PRES. [Although in the
example of (Sec. III) boundary conditions were set up so as to
force Poisson behavior.] The weighted directed acyclic graph
(WDAG) of configurations which S-PRES generates can be
used to measure the deviation from Poisson statistics. Define
P(Xt ′ |Xt ) as the estimated conditional probability of event X
at time t ′ > t given that the system also experienced X at time
t . This is measured by performing a sum over the weights
of configurations at t ′, counting only that set which are de-
scended directly from configurations which experienced X at
time t , {wi }, and a second sum over only those which experi-
enced the event at both times, {w ′

i }:

P(Xt ′ |Xt ) =
∑

i

{w ′
i }

/∑
i

{wi }. (7)

In this example use of the WDAG, the size of the set
of joint events {w ′

i } may in practice be so small as to cause
sampling errors unless the deviation from Poisson statistics
is large or a large calculation is carried out. Storage of the
entire WDAG is likely to be cumbersome for many practical
applications in which the storage capacity to describe every
configuration will quickly mount up.

III. APPLICATION TO RARE EVENTS IN THE ISING
MODEL—GLAUBER–ISING UNDER IMPOSED
SHEAR FLOW

A. Introduction to system

The example of nucleation in the two-dimensional (2D)
Ising model on a square lattice under imposed shear flow
is a case that has been studied (although only for constant
shear rate) using FFS;10, 18 allowing for direct comparison
of our results with those from an established method. This
simple model exhibits rich nonequilibrium phase behavior,20

however, in this instance it is employed only to demonstrate
the use of the sampling algorithm.

The system was set up as follows (duplicating the FFS
studies): Glauber dynamics were used to evolve the spins at
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each lattice site, meaning that at each “sweep” L × L sites
were chosen randomly to have their spins reassigned accord-
ing to a Boltzmann-weighted probability. The system was pre-
pared with all (65 × 65) spins down. A weak upward external
field was applied, rendering the prepared state metastable rel-
ative to the stable state in which all or most spins are up. Shear
flow can either accelerate or retard the formation of a nucleus
of up-spins and the transition to the stable state, depending on
the shear flow rate.10

Shear flow was applied L times at each sweep by ran-
domly selecting one of the L horizontal lines between rows of
lattice sites and applying a move with probability γ̇ such that
all sites above it are translated one space to the left, with pe-
riodic wrapping such that the spin at i = 1 becomes the spin
at i = L; this is a simple model of infinite two-dimensional
laminar Couette flow.

A subtlety enters in the treatment of the vertical peri-
odic boundaries (the interaction between sites with j = 1 and
j = L): in order to avoid shearing along this line unless it
has been explicitly selected, an offset pointer is maintained
so that even after the spins in the row with j = 1 have been
moved (after a shear at say, the boundary between j = 5 and
j = 6) they remain in contact via periodic imaging with the
same spins in the row j = N as they were before.

A long discussion of the detailed implementation of this
model system is available.18 The notation γ̇ to indicate the
rate of the imposed shear flow is used here for consistency
with this earlier work and has no relation to the γ of Eq. (1),
which is used to indicate the “damping” constant applied to
stabilise sampling rates.

In order to generalize the steady-state model having
constant shear flow to a simple and directly comparable
non-steady-state case we subjected the system to a time-
series of three different shear flow rates within the low shear
(nucleation-enhancing) regime, allowing the nucleation rate
to relax to the steady-state value after each change of shear
flow rate. In order to produce directly comparable data to
the FFS studies, the time dependent forward flux for the sys-
tem was calculated using the same system parameters de-
scribed for the steady-state calculations in Refs. 10 and 18;
which is to say size L = 65, coupling constant J = 0.65kB T
and external field strength h = 0.05kB T . At γ̇ = 0 the sys-
tem can be considered to be in a state of quasiequilibrium
where a metastable basin and stable basin are separated by a
large free energy barrier. Classical nucleation theory (CNT)
gives the size of the barrier to nucleation as ≈22kB T for this
regime,21 signifying that a rare-event technique is strongly
recommended to extract meaningful statistics by simulation.

B. Definition of coordinate bins
for shear-Ising calculation

The coordinate over configurations was defined simply
as the total number of up spins present, λ = Nup. The source
bin, A, was defined as λ < 25 and the sink bin B was defined
as λ > 2005 (as in the FFS calculation).18 The intervening
space on λ was divided into 990 equal increments. It might
have been possible to make a more sympathetic definition of
the intervening bins, such as by spacing them more closely
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FIG. 2. Example use of S-PRES: Nucleation in the 2D Ising model under
shear. Solid horizontal lines: reference steady state nucleation rates for each
value of imposed shear (Ref. 10) (dashed lines show the reported errorbars).
Fluctuating trace (red online): S-PRES time-series as the shear is changed.

together for smaller values of λ where the dynamics on λ is
expected to be slow, however this crude binning was found to
be effective.

The sampling parameters γ = 0.5, τ = 10, and N = 100
were used. Occasional dead-end configurations manifested,
where λ was large due to multiple isolated clusters of spins
rather than due to a single nucleus: a maximum ni threshold
of 2000 was therefore set, in order to prevent Eq. (1) from
diverging due to these instances.

C. Results for shear-ising calculation

It was necessary to run the calculation for 2500 MC
sweeps at the initial shear rate γ̇ = 0.04 before all bins of
the coordinate λ were populated, allowing meaningful statis-
tics to be collected. Figure 2 shows the flux against time as the
shear rates were changed (γ̇ = 0.04, 0.02, and 0.0). Horizon-
tal lines (black) indicate steady state FFS data from a separate
research group;10 the trace (red online) is the S-PRES results.
After each change of shear rate the time-dependent flux re-
laxes to the known steady state value (actually the quasiequi-
librium value in the case γ̇ = 0.0), validating the method. The
trace is an average over 100 independent runs.

IV. APPLICATION TO RARE EVENTS IN THE ISING
MODEL—KAWASAKI–ISING AFTER A QUENCH

A. Introduction to system

Phase separation in the 2D Ising model after a
quench into the temperature region between the nucleation-
dominated and spinodal decomposition dominated regimes
is a quintessential problem in nonequilbirium dynamics. Un-
der Kawasaki dynamics (sometimes called a “lattice gas”) the
total magnetization is conserved and time-evolution is con-
trolled by diffusion of spins. The base time scale of the sys-
tem is set by one MC sweep, equal to Nup attempts to move a
random up-spin. Because the diffusive and evaporative behav-
ior of spin clusters is determined by both their size and shape
it is difficult to predict their rates of collision and growth or
shrinkage and the evolution of the size distribution of clus-
ters over time. Despite these difficulties a theory based on the
iterative evolution of a population vector of clusters of differ-
ent sizes, pn(t) is available from the literature,22 which has
not until now received direct validation from simulation stud-
ies (although a closely related approach has had the benefit
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of such scrutiny23). The existence of an untested theory for
such a simple but important model system is an ideal oppor-
tunity to further demonstrate the S-PRES method while at the
same time making a small contribution to the basic study of
phase-change dynamics.

The equilibrium thermodynamics of this model are
well understood, as are the phase-change dynamics in both
the nucleation-dominated (surface-energy limited) and spin-
odal decomposition-dominated (diffusion limited) regimes.24

We carried out an instantaneous quench from T = ∞ to
T = 0.6Tc, which lies between these two regimes, for a sys-
tem of 100 × 100 spins with a 0.1 concentration of up-spins.
The coupling constant J was set to 1kB T . T = 0.6Tc was set
to 1.361 51, using the Onsager result of Tc = 2/ln(1 + √

2).25

B. Definition of coordinate bins for Kawasaki–Ising
after a quench

As the coordinate we chose λ = ∑
c(nc − 1), where nc is

the number of spins in cluster c and a cluster is defined as a
connected group of up-spins. This coordinate was chosen be-
cause it is simple to calculate and has a value of zero when all
up-spins are isolated, increasing after any collision between
spins or clusters. The lowest bin was defined as λ ≤ 9 and
the highest bin was defined as λ ≥ 91, with the intervening
integer values assigned to a single bin each.

The sampling parameters γ = 0.5, τ = 10, and N = 100
were used.

C. Results for Kawasaki–Ising calculation

In order to prepare initial states including unusually large
clusters the system was prepared in the T = ∞ regime using
some few hundreds of iterations of S-PRES in order to achieve
statistics down into the range pn = 10−12 before applying the
quench.

The probability distribution of cluster sizes �pn is not di-
rectly available from the probability distribution of reaction
coordinate bins �d; instead it was required to calculate it as
an average over all configurations generated at each timestep,
weighted according to Eq. (4). In Fig. 3 we show S-PRES
results for �pn . There is good qualitative agreement with the
theory, which is shown in Fig. 3-inset. The results shown are
averaged over ten independent calculations; error bars are the
estimated standard errors over the ten values. Brute force cal-
culation in the T = ∞ regime is very cheap due to the lack of
interactions between spins at this temperature, therefore data
at t = 0, T = ∞ from a brute force calculation separate to the
S-PRES calculation is also shown in Fig. 3 (and also the stan-
dard result pn = e−n/2).26 The existing quantitative results for
the infinite temperature case highlight a potential source of
problems caused by the error behavior of S-PRES—until con-
vergence is achieved, probabilities of rare states are reported
as zero; meaning that S-PRES will converge on the correct
values from below.

To comprehensively explore the applicability of the
Mirold–Binder theory is not the aim of this work and would
require further data over a wide range of temperatures and

FIG. 3. (a) Example use of S-PRES: Temperature quench of the 2D Ising
model with conserved order parameter. Calculated time evolution of the
domain-size distribution is compared with theory (Ref. 22) (inset). The theory
is well outside the error bars (which are invisible except for very small pn),
but does provide qualitative agreement in so far as reproducing the shapes of
the four curves. (b) Special case t = 0, T = ∞. At T = ∞ a brute-force cal-
culation is easy, so is superimposed on the S-PRES data down to pn ≈ 10−8.
The standard result p(n) = e−n/2 is also shown.

concentrations, however, to provide numerical results for sys-
tems previously accessible only to theory is an example of the
type of research into phase change dynamics which can be
carried out using S-PRES.

V. APPLICATION TO RARE EVENTS
IN A TIME-DEPENDENT ASYMMETRIC
EXCLUSION PROCESS

A. Introduction to system

An asymmetric exclusion process (ASEP) is a simple
model for driven stochastic transport. Here we discuss the
“parallel-open” (p-o) ASEP, as has been characterised by
Schütz.27 In this model, particles are introduced at the ori-
gin with a probability α at each sweep; and removed from the
right boundary with probability β. Between the two bound-
aries, a deterministic update rule allows particles to move
from left to right providing that a vacancy exists. When α =
β, the system becomes critical, with a divergent correlation
length. Particles queue up at the right boundary of the system,
forming a block with density (1 − β); and the remainder of
the system has fast-moving traffic with density α. The phase
boundary moves stochastically in the critical state according
to a random walk.

B. Simulation setup

In order to validate S-PRES against the quite tractable
time-dependent properties of the ASEP, the system was ini-
tialized without any particles; and allowed to gradually ap-
proach the steady state, in analogy to the morning traffic along
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a busy road. The length L was set as 500 sites and the pa-
rameters α and β were both set as 0.01. 12 000 brute force
calculations were run, each of duration 107 sweeps. A sin-
gle S-PRES calculation was also set up, with λ defined as the
number of particles, divided over 100 equal-sized bins. The
S-PRES parameters τ = 500 and γ = 0.5 were used.

C. Results for ASEP calculation

The rare event in this case is the full occupation of the
system, i.e., the particle number equalling the number of sites.
Statistics were collected from the S-PRES and brute force
runs on the probability of the rare event P(full). This is avail-
able in the steady-state limit from Ref. 27 as P(full)t→∞
= 2(1 − α)L/2/L. Assuming that the phase boundary moves
as a random walk starting from the origin at t = 0, and that
the density of the dense phase is constant; then the time-
dependent value of P(full) is readily available by numerically
iterating Fick’s first law, beginning with the probability den-
sity defined as 1.0 at the origin and zero elsewhere.

The S-PRES and brute force calculations converged to
the steady-state limit and the S-PRES calculation was also
able to confirm that kinetic properties were very accurately
predicted by the assumption of Fickian diffusion of the phase
boundary. This is shown in Fig. 4.

VI. EXAMPLE USE OF THE MATRICES Mt

The structure of M with respect to time can be analyzed
in order to estimate the usefulness of the coordinate projec-
tion which has been employed and to pursue insight into the
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FIG. 4. Probability that the ASEP is completely full, given that it is empty at
t = 0. The S-PRES calculation agrees with theory over 46 decades.

mechanics of the system under consideration. An example is
the extraction of committor probabilities.

The “committor probability” pB(s) or the ultimate prob-
ability that a given configuration s will complete the reaction
before returning to some initial state is a quantity generally
of interest in the analysis of rare events. In a nonstationary
system this value can change with respect to time. An easy
estimate of committor probabilities at a given time t0 can be
achieved by using the time series of M in the following pro-
cedure:

1. Create two sink bins A and B s.t. ∀t > t0: Mt
A,A = 1,

Mt
B,B = 1, Mt

A, j �=A = 0, Mt
B, j �=B = 0.

2. Repeat for each bin b /∈ {A, B}
(a) Initialize a vector �d s.t. db = 1 and di = 0 ∀i �= b.
(b) Apply the time series of modified Mt to each �d ,

beginning at t = t0 until di ≈ 0 ∀i /∈ {A, B}.
(c) dB now holds the expected value of pB(s) over the

bin b.

The procedure above gives the committor only with re-
spect to the bins on the projected coordinate λ; the main
purpose of such an analysis is to evaluate the usefulness of
the particular definition of λ. It is considered that the clos-
est possible identity between λ and the committor probability
gives the most efficiently enhanced sampling for rare event
methods.28 If λ does not determine pB or if the granularity
of the binning is large near to sharp changes in pB , then S-
PRES becomes less useful and alternative strategies might be
required. If an initial rough calculation can be made to work,
then it is possible to record online (without the assumption of
mixing) the mapping between λ and some different observ-
able using Eq. (4). In the case that large computer memory is
available then the entire WDAG of configurations connected
by path segments can be stored; allowing formal methods of
projection onto subspaces of manageable dimensionality29, 30

to be experimented with offline.
Figure 5 shows the committor probability distributions

for three timepoints in the evolution of the variable-shear sys-
tem of (Sec. III) corresponding to three different shear-rates.
The shifting of the distribution to the right for lower shears is
consistent with the smaller reaction flux observed. This effect
is due to the fact that the frequency of cluster collisions de-
creases with decreasing γ̇ more quickly than does the “cluster
evaporation” rate.
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FIG. 5. Committor probabilities for 2D-Ising under shear, assuming that the
system is initialised in bin i at each time t = 3000; 4000; 5000 (correspond-
ing to γ̇ = 0.04, 0.02, and 0.0). The committor pB (i) moves to higher bins
for later timesteps (lower shears), which is consistent with the lower nucle-
ation rates observed.
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Further statistics of interest for a typical system might
include the transmission coefficient κ or the width of the
committor distribution, as discussed for the equilibrium three-
dimentional (3D) Ising model in Ref. 31. These statistics can
be calculated with respect to λ as above; or with respect to an
arbitrary variable by using the WDAG.

VII. SCALING AND CHOICE OF BINNING

A. Scaling with relation to fineness of binning

If the S-PRES calculation is set up in order to find rare
states, then it has two phases. In the first phase (‘population’)
the goal is to achieve a state whereby one or more configura-
tions are associated with each bin, allowing rare events to be
observed. In the second phase (“observation”) the goal is to
continue the dynamics and observe the time-evolving behav-
ior. To make a loose scaling argument from equilibrium sta-
tistical mechanics, if we assume that the number of bins NB

is large enough that no significant free energy barriers exist
between adjacent bins, but that only one new bin is populated
at each iteration of the algorithm, then the total time required
for the population phase should be roughly proportional to
N 2

B/2. During the observation phase, the time required per it-
eration should continue to be linear with the number of bins.
Therefore the population phase is considered as the perfor-
mance bottleneck of the method and “speedup” is defined as
the expected number of MC sweeps needed to observe the
first rare event using brute force (equal to L2/φ for the shear-
Ising example system) divided by the expected number of MC
sweeps needed to observe the first rare event using S-PRES,
which marks the completion of the population phase.

We repeated the shear calculations of (Sec. III) at con-
stant γ̇ = 0.04, 0.02, and 0.0 and with L = 50; for various
numbers of equally spaced bins, even for small numbers of
bins where the assumption of closely spaced bins no longer
holds. Figure 6 shows speedup versus the number of bins
for calculations at the three different shear rates. At the
shear rates for which nucleation is more rare, the speedup
is proportionally greater. The speedup was robust to the use
of excessive numbers of bins. The smaller system of L = 50
was chosen for the benchmarking because it is computation-
ally less expensive; reaction fluxes were roughly equal to
those observed for the larger system, with φ = 1.5 × 10−12,

0.8 × 10−12, and 0.3 × 10−12 for the three shear rates.
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FIG. 6. Scaling of algorithm efficiency: performance is more robust to ex-
cessive numbers of phase space bins than it is to insufficient numbers of bins.
As the probability of the rare event in consideration decreases (smaller φ)
the speedup becomes proportionally more. Each trace is an average over ten
independent calculations.

B. Robustness to nonmonotonic binning

A common thought experiment used to test coordinate-
based rare event methods such as FFS, umbrella sampling or
S-PRES is to imagine a system for which the the projected
coordinate λ is nonmonotonic or sometimes orthogonal with
respect to the true reaction coordinate.19, 32 A practical ex-
ample of this is protein folding, where even simple proteins
and peptides can move through sequences of transition states
which are dissimilar to each other and to both the unfolded
and folded conformations,33, 34 making it difficult to define a
useful projection of the progress of the reaction without de-
tailed prior knowledge of the the folding mechanism.

S-PRES is robust to this situation in the sense that S-
shaped trajectories can be developed by the algorithm because
paths which move backward as well as forward in λ are gen-
erated and stored; however, it is still better to choose coordi-
nate projections which are near-monotonic with respect to the
real progress of the reaction because any bins which represent
multiple stages of the “true” reaction coordinate will require
larger populations in order to give stable sampling; which will
need to be crudely dealt with by setting a small γ and large N
in Eq. (1).

VIII. CONCLUDING REMARKS

This paper presents a method, S-PRES, to investigate rare
events in nonequilbrium and non-steady-state dynamics. S-
PRES can compute the evolution of the probabilities of rare
events or rare states in any stochastic system with respect to
time, providing that a suitable binning on the phase space can
be defined. The method is based on forward flux sampling
with modifications to permit tracking of the ages of the con-
figurations sampled. A version of the pruned-enriched Rosen-
bluth method is applied to the generation of path segments in
order to achieve efficient sampling.

To demonstrate the method we calculated phase change
kinetics in the Ising model both under shear and after a tem-
perature quench; confirming existing results from theory and
simulation. We also confirmed theoretical results for the time-
dependent critical behavior of a model of driven diffusive
transport. We anticipate that the method is useful for a very
wide range of time-evolving processes in nature. Possibilities
include the probabilities of abnormal cell differentiation dur-
ing embryogenesis, fracture nucleation in materials under im-
pact or time-varying load, and nucleation in glassy materials
approaching dynamic arrest.
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