Well Conditioned and Optimally Convergent Extended Finite Elements and Vector Level Sets for Three-Dimensional Crack Propagation

Konstantinos Agathos\(^1\)*, Giulio Ventura\(^2\), Eleni Chatzi\(^3\), Stéphane P. A. Bordas\(^{1,4,5}\)

\(^1\)Research Unit in Engineering Science, Luxembourg University
Luxembourg
agathosk@civil.auth.gr

\(^2\)Department of Structural and Geotechnical Engineering, Politecnico di Torino
Italy
giulio.ventura@polito.it

\(^3\)Institute of Structural Engineering, ETH Zürich
Switzerland
chatzi@ibk.baug.ethz.ch

\(^4\)Institute of Theoretical, Applied and Computational Mechanics, Cardiff University
Cardiff
stephane.bordas@alum.northwestern.edu

\(^5\)Adjunct Professor, Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical Engineering, The University of Western Australia
Australia
stephane.bordas@alum.northwestern.edu

ABSTRACT

A three-dimensional (3D) version of the vector level set method [1] is combined to a well conditioned and optimally convergent XFEM variant in order to deal with non-planar three dimensional crack propagation problems.

The proposed computational fracture method achieves optimal convergence rates by using tip enriched elements in a fixed volume around the crack front (geometrical enrichment) while keeping conditioning of the resulting system matrices in acceptable levels. Conditioning is controlled by using a three dimensional extension of the degree of freedom gathering technique [2]. Moreover, blending errors are minimized and conditioning is further improved by employing weight function blending and enrichment function shifting [3,4].

As far as crack representation is concerned, crack surfaces are represented by linear quadrilateral elements and the corresponding crack fronts by ordered series of linear segments. Level set values are obtained by projecting points at the crack surface and front respectively. Different criteria are employed in order to assess the quality of the crack representation.

References