Median algebra with a retraction: an example of variety closed under natural extension

Bruno Teheux
(joint work with Georges Hansoul)
The Big Picture
Claims about natural extensions

Natural extension provides

‘canonical extension’ for non lattice-based algebras;
insight about the construction of canonical extension.
Back to the roots: canonical extension

\[L = \langle L, \lor, \land, 0, 1 \rangle \] is a DL

Canonical extension \(L^\delta \) of \(L \) comes with topologies \(\iota \) and \(\delta \):

- \(L^\delta \) is doubly algebraic.
- \(L \hookrightarrow L^\delta \).
- \(L \) is dense in \(L^\delta \).
- \(L \) is dense and discrete in \(L^\delta \).
Problem. Given \(f : L \rightarrow E \), define \(f^\delta : L^\delta \rightarrow E^\delta \).

Solution.

- \(L \) is made of the isolated points of \(L^\delta \),
- \(L \) is dense in \(L^\delta \),
- \(f^\delta := \liminf_\delta f \) and \(f^\pi := \limsup_\delta f \).

Leads to canonical extension of ordered algebras:

Why canonical extension?

It provides completeness results for modal logics with respects to classes of Kripke frames:

Is it possible to generalize canonical extension to non lattice-based algebras?

Problem 1. Define the natural extension A^δ of A:

Problem 2. Extend $f : A \rightarrow B$ to $f^\delta : A^\delta \rightarrow B^\delta$.

We give a partial solution.
Natural extension of algebras
The framework of natural extension

A$^\delta$ can be defined if A belongs to some

$$\text{ISP}(\mathcal{M})$$

where \mathcal{M} is class of finite algebras of the same type.

A$^\delta$ can more easily be computed if $\text{ISP}(\mathcal{M})$ is dualisable (in the sense of natural dualities).
We adopt the setting of natural dualities

\[\mathbf{M} \equiv \text{a finite algebra} \]

A discrete alter-ego topological structure \(\overset{\sim}{\mathbf{M}} \)

\[\mathbf{A} \in \text{ISP}(\mathbf{M}) \]

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{M})</td>
<td>(\overset{\sim}{\mathbf{M}})</td>
</tr>
<tr>
<td>(\mathcal{A} = \text{ISP}(\mathbf{M}))</td>
<td>(\mathcal{X} = \text{ISP}_{c}^{+}(\overset{\sim}{\mathbf{M}}))</td>
</tr>
<tr>
<td>(\mathbf{A})</td>
<td>(\mathbf{A}^{*} = \mathcal{A}(\mathbf{A}, \mathbf{M}) \leq_{c} \mathbf{M}^{\mathbf{A}})</td>
</tr>
<tr>
<td>(\mathcal{X} \ast = \mathcal{X}(\mathcal{X}, \mathbf{M}) \leq \mathbf{M}^{\mathcal{X}})</td>
<td>(\mathcal{X})</td>
</tr>
</tbody>
</table>

Definition. \(\overset{\sim}{\mathbf{M}} \) **yields a natural duality** for \(\text{ISP}(\mathbf{M}) \) if

\[(\mathbf{A}^{*})_{\ast} \simeq \mathbf{A}, \quad \mathbf{A} \in \text{ISP}(\mathbf{M}). \]
Natural extension of an algebra can be constructed from its dual

Priestley duality is a natural duality: \(L \simeq (L^*)^* \).

Proposition (Gehrke and Jónsson)
If \(L \in DL \) then \(L^\delta \) is the algebra of order-preserving maps from \(L^* \) to \(\tilde{2} \).

Assume that \(M \) yields a duality for \(ISP(M) \).

Proposition (Davey and al.)
If \(A \in ISP(M) \), then \(A^\delta \) is the algebra of structure-preserving maps from \(A^* \) to \(\tilde{M} \).
Natural extension of median algebras
The variety of median algebras is an old friend.

The expression

$$(x \land y) \lor (x \land z) \lor (y \land z)$$

defines an operation $m_{\leq}(x, y, z)$ on a distributive lattice (L, \leq).

Definition. (Avann, 1948)

median algebra $A = (A, m) \iff$ subalgebra of some (L, m_{\leq})

Example. Set $2 := \langle \{0, 1\}, m \rangle$ where m is the majority function.

Theorem. The variety \mathcal{A}_m of median algebras is $\text{ISP}(2)$.
\[(x \land y) \lor (x \land z) \lor (y \land z)\]

Examples.

\[m(\bullet, \bullet, \bullet) = \bullet\]

Median graphs

Some metric spaces
For every $a \in A$, the relation \leq_a defined on A by

$$b \leq_a c \quad \text{if} \quad m(a, b, c) = b.$$

is a \land-semilattice order on A with $b \land_a c = m(a, b, c)$.

Semilattices obtained in this way are the *median semilattices*.

Proposition. In a median semilattice, principal ideals are distributive lattices.

There is a natural duality for median algebras

\[\mathcal{A}_m = \ISP(2) \]

\[\mathcal{Z} := \langle \{0, 1\}, \leq, \cdot, 0, 1, \iota \rangle. \]

Theorem (Isbell (1980), Werner (1981)). The structure \(\mathcal{Z} \) yields a logarithmic duality for \(\mathcal{A}_m \).

\(\mathcal{A}^\delta \) is the algebra of structure-preserving maps \(x : \mathcal{A}^* \to \mathcal{Z} \).
Natural extension completes everything it can complete

Theorem. Let \(a \in A \).

- \(\langle A^\delta, \leq_a \rangle \) a bounded-complete extension of \(\langle A, \leq_a \rangle \).
- If \(I \) is a distributive lattice in \(A \) then \(c_{I_{A^\delta}}(I) = I^\delta \)
Natural extension of maps
A can be defined topologically in A^δ

$\mathcal{X}_p(A^*, M) \equiv$ set of morphisms defined on a closed substructure of A^*.

Definition.

$$O_f := \{ x \in \mathcal{X}(A^*, M) \mid x \supseteq f \}, \quad f \in \mathcal{X}_p(A^*, M)$$

$$\Delta := \{ O_f \mid f \in \mathcal{X}_p(A^*, M) \}$$

Working assumption. M yields a full logarithmic duality for $\text{ISP}(M)$ and M is injective in $\text{ISP}^+(M)$.

Proposition.

- Δ is a basis of topology δ
- A is dense and discrete in A^δ.
- In the settings of DL, we get the known topology.
We canonically extends maps to multi-maps

Input:

\[f : A \rightarrow B \]
We canonically extend maps to multi-maps

Input:

\[f : A \rightarrow B \]

Output:

\[f^+ : A^\delta \rightarrow \Gamma(B^\delta_\iota) \]
The multi-extension of $f : A \to B$

Intermediate step: Consider

$$\bar{f} : A \to \Gamma(B^\delta_\iota) : a \mapsto \{f(a)\}.$$

Recall that A is dense in A^δ_ι and $\Gamma(B^\delta_\iota)$ is a complete lattice.

Definition. The *multi-extension* f^+ of f is defined by

$$f^+ : A^\delta_\iota \to \Gamma(B^\delta_\iota) : x \mapsto \limsup_\delta \bar{f}(x),$$

In other words,

$$f^+(x) = \bigcap \{\cl_{B^\delta_\iota}(f(A \cap V)) \mid V \in \delta_x\},$$

$$f^+(x)|_F = \bigcap \{f(A \cap V)|_F \mid V \in \delta_x\}, \quad F \in B^\delta.$$
The multi-extension is a continuous map

Definition.

We say that f is **smooth** if $\#f^+(x) = 1$ for all $x \in A^\delta$.

Let $\sigma \downarrow$ be the co-Scott topology on $\Gamma(B^\delta \iota)$.

Proposition.

- f^+ is the smallest $(\delta, \sigma \downarrow)$-continuous extension from A^δ to $\Gamma(B^\delta \iota)$.

- f is smooth if and only if it admits an (δ, ι)-continuous extension $f^\delta : A^\delta \to B^\delta$ satisfying $f^\delta(x) \in f^+(x)$.
This construction sheds light on canonical extension

Proposition. If \(f : A \to B \) is a map between DLs with lower extension \(f^\delta \) and upper extension \(f^\pi \), then for any \(x \in L^\delta \)

\[
f^\delta(x) = \bigwedge f^+(x),
\]

\[
f^\pi(x) = \bigvee f^+(x).
\]
Natural extension of median algebras with a retraction.
Natural extension of expansions of median algebras

General framework.

Let

\[A = \langle A, m, r, a \rangle \]

where \(\langle A, m \rangle \in \mathcal{A}_m \), \(a \in A \) and \(r : A \to A \)

Set

\[r^\delta(x) = \bigwedge_a r^+(x), \quad x \in \langle A, m \rangle^\delta. \]

\[A^\delta := \langle \langle A, m \rangle^\delta, r^\delta, a \rangle \]
Natural properties

Definition. A property P of algebras in \mathcal{A} is *natural* if

$$\mathbf{A} \models P \implies \mathbf{A}^\delta \models P,$$

$\mathbf{A} \in \mathcal{A}$

Example. The property ‘being a median algebra of a Boolean algebra’ is natural.
Median algebras with a retraction

Definition. An idempotent homomorphism $r : A \to A$ such that $u(A)$ is convex is called a *retraction*.

Proposition. A map $r : A \to A$ is a retraction if and only if

$$r(m(x, y, z)) = m(x, r(y), r(z)), \quad x, y, z \in A.$$

Definition. An algebra $\langle A, m, r, a \rangle$ is a *pointed retract algebra* if r is a retraction of the median algebra $\langle A, m \rangle$ and $a \in A$.
The variety of pointed retract algebras is natural

Theorem. If A is a pointed retract algebra then A^δ is a pointed retract algebra.

Sketch of the proof.
Proves equalities of the type

$$(r \circ m)^\delta = r^\delta \circ m$$

using continuity properties of the extensions.
The variety of pointed algebras with operator is natural.

Definition. An algebra $A = \langle A, m, f, a \rangle$ is a **pointed median algebra with operator** if $\langle A, m \rangle$ is a median algebra, $a \in A$ and

$$f(m(a, x, y)) = m(a, f(x), f(y)), \quad x, y \in A.$$

Theorem Let $\langle A, m, f, a \rangle$ be a pointed median algebra with operator.

- f is smooth.
- A^δ is a pointed median algebra with operator.

Sketch of the proof.

f can be dualized as a relation R on A^* and f^δ can be explicitly computed with R.

□
Questions/Problems.

- Interesting instances of natural extensions of maps (in non-ordered based algebras).
- Successful applications of the whole theory.
- Find canonical (continuous) way to pick-up some element in $f^+(x)$.
- Intrinsic definition of δ in the non-dualizable setting.