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Abstract—Despite the deleterious effect of hardware impair-
ments on communication systems, most prior works have not
investigated their impact on widely used relay systems. Most
importantly, the application of inexpensive transceivers, being
prone to hardware impairments, is the most cost-efficient way
for the implementation of massive multiple-input multiple-output
(MIMO) systems. Consequently, the direction of this paper is
towards the investigation of the impact of hardware impairments
on MIMO relay networks with large number of antennas. Specif-
ically, we obtain the general expression for the ergodic capacity
of dual-hop (DH) amplify-and-forward (AF) relay systems. Next,
given the advantages of the free probability (FP) theory with
comparison to other known techniques in the area of large
random matrix theory, we pursue a large limit analysis in terms
of number of antennas and users by shedding light to the behavior
of relay systems inflicted by hardware impairments.

I. INTRODUCTION

Since the publication of the seminal papers of Telatar and
Foschini [1], [2], showing the linear growth of the channel
capacity by increasing the number of transmit and receive
antennas, multiple-input multiple-output (MIMO) systems have
attracted a tremendous interest. Especially, the demand for a
thousand-fold higher capacity in 5G systems has brought to
the forefront a promising technique with numerous advantages,
known as massive MIMO, where the base station (BS) includes
a very large number of antennas [3]. The research on massive
MIMO has been approached mostly by applying tools from
large random matrix theory such as the Silverstein’s fixed-point
equation and the technique of deterministic equivalents [4]–[7].
However, most works in conventional and massive MIMO have
been based on the strong assumption of using perfect hardware
in the radio-frequency (RF) chains.

Indisputably, in practical systems, numerous detrimental
effects such as I/Q imbalance [8] and high-power ampli-
fier nonlinearities [9], appear and result to the degradation
of the performance of MIMO systems. Despite the effort
for mitigation of the arising impairments by application of
calibration schemes at the transmitter and/or compensation
algorithms at the receiver [10], residual distortions remain
because of several reasons. For example, imperfect parameters
estimation and inaccurate models prove to be incapable to
hinder the total infliction of the system’s performance. Not to
mention that the cost-efficiency of the suggested for 5G massive
MIMO technology rests on the application of inexpensive
hardware, which will make the deleterious effect of the residual
impairments more pronounced.

Disregarding the importance for study of the effects of

the residual transceiver impairments, the number of relevant
works is limited. For instance, experimental results modeling
the residual hardware impairments at the transmitter and the
study of their impact on certain MIMO detectors such as zero-
forcing took place in [11]. Regarding the channel capacity, [12]
elaborated on the derivation of high signal-to-noise ratio (SNR)
ceilings by considering only transmitter impairments, while
in [13] the authors extended the analysis to arbitrary SNR
values, but most importantly, by including receiver impairments
as well. Moreover, the authors in [14] considered this kind of
impairments in dual-hop (DH) amplify-and-forward (AF) relay
systems, which have attracted a lot of attention recently due
to their performance benefits in terms of coverage extension,
spatial diversity gains, etc. [15]. Unlikely, they considered only
the outage probability and some simple capacity upper bounds
in the simplistic case of single antenna systems. However, a
thorough analysis of the capacity of relay systems in the case
of multiple antennas lacks from the literature.

This work covers the arising need for the assessment of
the impact of the residual hardware impairments on the
capacity of DH AF systems, when their size becomes large
in terms of number of antennas and users. In fact, to the
best of our knowledge, this is the first paper which studies
the effect of residual impairments in relay systems with
multiple antennas. Specifically, we present a new insightful
expression for the ergodic capacity of DH AF systems under
the presence of residual hardware impairments for arbitrary
SNR values. Compared to the existing literature, we pursue
a free probability (FP) analysis [4], [16], which requires just
a polynomial solution instead of fixed-point equations, and
provide a thorough characterization of the impact of the residual
transceiver impairments on the capacity of DH AF systems in
the large system limit.

The remainder of this paper is organized as follows: Section
II presents the system model of a DH AF MIMO system
with residual hardware impairments. Section III provides the
theoretical analysis for the ergodic capacity of the considered
system, while Section IV presents asymptotic capacity expres-
sions. Subsequently, Section V evaluates the performance of the
considered system with the help of numerical results. Finally,
Section VI concludes the paper. Appendices include some
preliminaries on random matrix theory and certain proofs.

II. SYSTEM MODEL

Suppose an ideal DH AF relay channel with K single
antenna non-cooperative users, desiring to communicate with



a distant N -antennas BS by first contacting an intermediate
relay including an array of M antennas (first hop). In other
words, a single-input multiple-output multiple access channel
(SIMO MAC), i.e., users-relay, is followed by a point to point
MIMO channel (relay-BS). The BS is assumed to be aware
of the total system channel state information (CSI) and the
statistics of the distortion noises, while both the users and the
relay have no CSI knowledge during their transmission. The
received signals by the relay and the BS are expressed as

y1 = H1x1 + z1, (1)
y2 = H2

√
νy1 + z2

=
√
νH2H1x1 +

√
νH2z1 + z2, (2)

where (1) and (2) describe the users-relay and relay-BS input-
output signal models, respectively. Specifically, y1 and y2

as well as z1 ∼ CN (0, IM ) and z2 ∼ CN (0, IN ) denote
the received signals as well as the additive white Gaussian
noise (AWGN) vectors at the relay and BS, respectively. Both
channels representing the two hops assume Rayleigh fast-fading
channels, expressed by Gaussian matrices with independent
and identically distributed (i.i.d.) complex circularly symmetric
elements. Hence, H1 ∈ CM×K ∼ CN (0, IM ⊗ IK) is the
concatenated channel matrix between the K users and the relay
exhibiting flat-fading, while H2 ∈ CN×M ∼ CN (0, IN ⊗ IM )
describes the channel matrix of the second hop. In addition,
x1 ∈ CK×1 is the Gaussian vector of symbols simultaneously
transmitted by the K users with E [x1x

H
1] = Q1 = ρ

K IK , i.e.,
the individual signal-to-noise-ratio (SNR) equals to µ = ρ

K .
Note that before forwarding the received signal y1 at the relay,
we have assumed that it is amplified by ν = α

M(1+ρ) , where
we have placed a per relay-antenna fixed power constraint α

M ,
i,e., E

[
‖
√
νy1‖2

]
≤ α, where the expectation is taken over

all random variables.
Unfortunately, in practice, the transmitter, the relay, and

the BS appear certain inevitable impairments such as I/Q
imbalance [10]. Although, mitigation schemes are incorporated
in both the transmitter and the receiver, residual impairments
still emerge by means of additive distortion noises [10], [11].
Taking this into consideration, in each part of the system a
transmit and/or receive impairment exists that causes: 1) a
mismatch between the intended signal and what is actually
transmitted during the transmit processing, 2) and/or a distortion
of the received signal at the receiver side.

Introduction of the residual additive transceiver impairments
to (1) and (2) provides the more general channel models for
the respective links

y1 =H1(x1+ηt1)+ηr1 +z1, (3)
y2 =H2

(√
νy1+ηt2

)
+ηr2 + z2

=
√
νH2H1(x1+ηt1)+H2

(√
ν(ηr1+z1)+ηt2

)
+ηr2 +z2, (4)

where the additive terms ηti and ηri for i = 1, 2 are the
distortion noises coming from the residual impairments in the
transmitter and receiver of link i, respectively. Interestingly,
this model allows to quantify the impact of the additive residual
transceiver impairments, described in [10], [11], on a DH AF
system. Generally, the transmitter and the receiver distortion
noises for the ith link are modeled as Gaussian distributed,

where their average power is proportional to the average signal
power, as shown by measurement results [11]. Mathematically
speaking, we have

ηti ∼ CN (0, δ2tidiag (qi1 , . . . , qTi)), (5)

ηri ∼ CN (0, δ2ri tr (Qi) IRi
) (6)

with Ti and Ri being the numbers of transmit and receive an-
tennas of link i, i.e., T1 = K, T2 = M and R1 = M, R2 = N ,
while Qi is the transmit covariance matrix of the corresponding
link with diagonal elements qi1 , . . . , qTi . Moreover, δ2ti and δ2ti
are proportionality parameters describing the severity of the
residual impairments in the transmitter and the receiver of link
i. Especially, in practical applications, these parameters appear
as the error vector magnitudes (EVM) at each transceiver
side [17]. Obviously, as far as the first hop is concerned, the
additive transceiver impairments are expressed as

ηt1 ∼ CN (0, δ2t1
ρ

K
IK), (7)

ηr1 ∼ CN (0, δ2r1ρIM ). (8)

Given that the input signal for the second hop is
√
νy1, the

corresponding input covariance matrix is

Q2 = νE [y1y
H

1] = νK

(
µ+ δ2t1µ+ δ2r1µ+

1

K

)
IM

= µ̃νKIM , (9)

where µ̃ =
(
µ+ δ2t1µ+ δ2r1µ+ 1

K

)
. Note that now, ν = α

KMµ̃ ,
after accounting for fixed gain relaying. Thus, the additive
transceiver impairments for the second hop take the form

ηt2 ∼ CN (0, δ2t2µ̃νKIM ), (10)

ηr2 ∼ CN (0, δ2r2 µ̃νKMIN ). (11)

III. ERGODIC CAPACITY ANALYSIS

The capacity per receive antenna of this channel model is
given by the following lemma, which takes (4) into account.

Lemma 1: The capacity per receive antenna of a DH AF
system in the presence of i.i.d. Rayleigh fading with residual
additive transceiver hardware impairments under per user power
constraints [Q1]k,k ≤ µ,∀k = 1 . . .K and (9) is given by

C =
1

N
E
[
ln det

(
IN +

µν

B
H2H1H

H
1 HH

2 Φ−1
)]

(12)

=
1

N
E
[
ln det

(
Φ +

µν

B
H2H1H

H
1 HH

2

)]
︸ ︷︷ ︸

C1

− 1

N
E [ln det (Φ)]︸ ︷︷ ︸

C2

, (13)

where Φ = f2H2H1H
H
1H

H
2 + f3H2H

H
2 + IN with B =

δ2r2 µ̃νKM + 1, f1 = f2+f4
f3

, f2 = f4δ
2
t1 , f3 =

ν(δ2t2 µ̃K+δ2r1µK+1)
B , and f4 = µν

B .
Proof: Given any channel realizations H1,H2 and transmit

signal covariance matrices Q1 and Q2 at the user and relay
sides, a close observation of (4) shows that it is an instance of



the standard DH AF system model described by (2), but with
a different noise covariance given by

Φ = νδ2t1H2H1diag (q11 , . . . , qK) HH

1H
H

2

+ H2

((
νδ2r1 tr Q1 + ν

)
IN + νδ2t2diag (q11 , . . . , qM )

)
HH

2

+
(
δ2r2 tr Q2 + 1

)
IN . (14)

Taking into account for the optimality of the input signal
x1 because it is Gaussian distributed with covariance matrix
Q1 = ρ

K IK , the proof is concluded.
Based on Lemma 1, we are able to investigate the impact

of the additive transceiver impairments on DH AF systems in
the case of infinitely large system dimensions.

Remark 1: Despite the resemblance of the ergodic capacity
with transceiver impairments, given by (12), with the conven-
tional ergodic capacity of a DH AF system [18, Eq. 2], this
paper shows the fundamental differences that arise because the
noise covariance matrix now depends on the combination of
the channel matrices H1,H2.

Employing the property det(I+AB) = det(I+BA), C1,C2

can be alternatively written as

C1 =
1

N
E[ln det (IM+f3H

H

2H2 (IM+f1H1H
H

1))] (15)

C2 =
1

N
E
[
ln det

(
IM+f3H

H
2 H2

(
IM+

f2
f3

H1H
H
1

))]
. (16)

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

This section presents the main results regarding the system
performance in the large-antenna regime. Nevertheless, we
account also for the scenario, where the number of users
increases infinitely. Given that our interest is focused on
channel matrices with dimensions tending to infinity, we employ
tools from large RMT. Among the advantages of the ensuing
analysis, we mention the achievement of deterministic results
that make Monte Carlo simulations unnecessary. Moreover, the
asymptotic analysis can be quite accurate even for realistic
system dimensions, while its convergence is rather fast as the
channel matrices grow large. Thus, after defining β , K

M and
γ , N

M , the channel capacity of the system under study is
given by the following theorem.

Theorem 1: The capacity of a DH AF MIMO system in
the presence of i.i.d. Rayleigh fading channels with additive
transceiver impairments, when the number of transmit users K
as well as relay and BS antennas (M and N ) tend to infinity
with a given ratio, is given by

C→ 1

γ

∫ ∞
0

ln (1+f3Mx)

(
f∞Kf1/M

(x)−f∞Kf2
f3

/M (x)

)
dx, (17)

where the asymptotic eigenvalue probability density functions
(a.e.p.d.f.) f∞Kf1

/M and f∞Kf2/f3
/M are obtained by the imagi-

nary part of the corresponding Stieltjes transform S for real
arguments.

Proof: See Appendix B.

V. NUMERICAL RESULTS

In order to validate our theoretical analysis, Fig. 1 provides
the a.e.p.d.f. of Kα/M given by (30). In particular, the
histogram represents the p.d.f. of the matrix Kα/M calculated

numerically based on Mote Carlo (MC) simulations. Further,
the solid line denotes the a.e.p.d.f. obtained by solving the
polymonial (39) for Stieltjes transform, and then applying
Lemma 4. From the result, we can observe a perfect agreement
between the results obtained from theoretical analysis and MC
simulations.
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Fig. 1. A.e.p.d.f. of Kα/M (µ = ν = 20 dB, β = 5, γ = 10, N = 100,
M = 10, K = 50)

In Fig. 2, we plot the theoretical and simulated per-antenna
ergodic capacities versus the transmit SNR, i.e., µ for the
following two cases: (i) without impairments, and (ii) with
impairments on transmitter and receiver of both links. From
the figure, it can be noted that theoretical and simulated
capacity curves for both the considered cases match perfectly.
Furthermore, the per-antenna capacity increases with the
increase in the value of µ in the absence of impairments, i.e.,
δt1 = δt2 = δr1 = δr2 = 0 as expected. Moreover, the most
important observation is that the per-antenna capacity saturates
after a certain value of µ in the presence of impairments. The
trend of per-antenna capacity decrease with respect to µ in Fig.
2 is well aligned with the result obtained in [13] for the case
of MIMO systems. However, for the considered scenario in
this paper, an early saturation of the capacity in the presence
of impairments is noted due to the introduction of the relay
node impairments. Nevertheless, in Fig. 2, we also illustrate
the effect of different values of impairments on the capacity
considering the values of δt1 = δt2 = δr1 = δr2 = δ as
0.01, 0.08 and 0.15. Specifically, it can be observed that with
the increase in the value of impairments, the saturation point
appears earlier, i.e., at lower values of µ.

Figures 3(a) and 3(b) present the per-antenna capacity
versus SNR levels µ, ν in the presence and the absence of
impairments, respectively. It can be observed that in the absence
of impairments, the capacity increases monotonically with both
µ and ν, with the slope being steeper for the case of µ. However,
in the presence of impairments, clear saturation points can be
noted with the increase in the values of µ and ν after certain
values.

As far as Figs. 4(a) and 4(b) are concerned, we plot the per-
antenna capacity versus the channel dimensions γ and β in the
absence and the presence of channel impairments, respectively.
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Fig. 3. Per-antenna ergodic capacity versus SNR levels µ, ν (β = 5, γ = 10,
N = 100, M = 10, K = 50, (a) δt1 = δt2 = δr1 = δr2 = 0, (b)
δt1 = δt2 = δr1 = δr2 = 0.08)

In both cases, the capacity increases monotonically with both
β and 1

γ , however, the slope with respect to 1
γ is steeper as

compared to the slope with β. This trend remains almost the
same in the presence of impairments, but the slope of the
capacity curve with respect to 1

γ in Fig. 4(b) is observed to be
less steeper than in Fig. 4(a) at higher values of 1

γ .
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Fig. 4. Per-antenna ergodic capacity versus channel dimensions β, γ (µ = ν =
20 dB, (a) δt1 = δt2 = δr1 = δr2 = 0, (b) δt1 = δt2 = δr1 = δr2 = 0.08)

VI. CONCLUSIONS

This paper presented a thorough investigation of the impact
of residual additive hardware impairment on the ergodic
capacity of DH AF MIMO relay channels by considering a large
system analysis. Specifically, we derived the ergodic capacity by
employing the theory of FP. Moreover, we proceeded with the
study of the effects of hardware impairments, when the number
of antennas becomes large as massive MIMO architecture
demands. Notably, we demonstrated the quantification of the
degradation due to the additive RF impairments on the ergodic
capacity by varying the system parameters such as the SNR,
the number of antennas, and the quality of the RF equipment.
Nevertheless, the validation of the analytical results was shown
by means of simulations. In particular, simulations depicted that
the asymptotic results can be applicable even for contemporary
system dimensions.

APPENDIX A
USEFUL LEMMAS

Herein, given the eigenvalue probability distribution function
fX(x) of a matrix X, we provide useful definitions and lemmas,
found in [19], that are considered during our analysis. In the
following definitions, δ is a nonnegative real number.

Definition 1 (Shannon transform [19, Definition 2.12]): The
Shannon transform of a positive semidefinite matrix X is



defined as

VX (δ) =

∫ ∞
0

ln (1 + δx) fX(x)dx. (18)

Definition 2 (η-transform [19, Definition 2.11]): The η-
transform of a positive semidefinite matrix X is defined as

ηX (δ) =

∫ ∞
0

1

1 + δx
fX(x)dx. (19)

Definition 3: [S-transform [19, Definition 2.15]] The S-
transform of a positive semidefinite matrix X is defined as

ΣX(x) = −x+ 1

x
η−1X (x+ 1). (20)

Definition 4 (The Marčenko-Pastur law density function
[20]): Given a Gaussian K × M channel matrix H ∼
CN (0, I), the a.e.p.d.f. of 1

KHHH converges almost surely
(a.s.) to the non-random limiting eigenvalue distribution of the
Marčenko-Pastur law given by

f∞1
KHHH (x) = (1− β)

+
(x) +

√
(x− a)

+
(b− x)

+

2πx
, (21)

where a = (1−
√
β)2, b = (1 +

√
β)2, β = K

M , and δ (x) is
Dirac’s delta function.

Lemma 2 ( [19, Eqs. 2.87, 2.88]): The S-transform of the
matrix 1

KHHH is expressed as

Σ 1
KHHH (x, β) =

1

1 + βx
, (22)

while the S-transform of the matrix 1
KHHH is obtained as

Σ 1
KHHH (x, β) =

1

β + x
., (23)

Lemma 3 ( [19, Eq. 2.48]): The Stieltjes-transform of a
positive semidefinite matrix X can be derived by its η-transform
according to

SX(x) = −ηX(−1/x)

x
. (24)

Lemma 4 ( [19, Eq. 2.45]): The a.e.p.d.f. of X is obtained
by the imaginary part of the Stieltjes transform S for real
arguments as

f∞X (x) = lim
y→0+

1

π
I {SX(x+ jy)} . (25)

APPENDIX B
PROOF OF THEOREM 1

The asymptotic limits of the capacity terms (15) and (16),
when the channel dimensions tend to infinity, while keeping
their ratios β and γ fixed, are expressed by means of principles
of FP theory in terms of a generic expression as

Ci=
1

N
lim

K,M,N→∞
E
[
ln det

(
IM+f3H

H
2 H2

(
IM+αH1H

H
1

))]
=
M

N
lim

K,M,N→∞
E

[
1

M

M∑
i=1

ln

(
1+f3Mλi

(
1

M
Kα

))]

→ 1

γ

∫ ∞
0

ln(1+f3Mx) f∞Kα/M
(x) dx, (26)

where Ci corresponds to C1 or C2 depending on the value of i,
i.e., if α = f1 or if α = f2/f3, respectively. In addition, λi (X)
is the ith ordered eigenvalue of matrix X, and f∞X denotes the
asymptotic eigenvalue probability density function (a.e.p.d.f.)
of X. Moreover, for the sake of simplification of our analysis,
we have made use of the following variable definitions similar
to [21]

M̃α = IM + αH1H
H
1 (27)

Ñ1 = H1H
H

1 (28)

Ñ2 = HH

2H2 (29)

Kα = HH

2H2

(
IM + αH1H

H
1

)
= Ñ2M̃α. (30)

The a.e.p.d.f. of Kα/M can be obtained by means of
Lemma 4, which demands its Stieltjes transform. In the
following, we describe the steps leading to the derivation of
the desired Stieltjes transform of Kα/M . First, we employ
Lemma 3, and take the inverse of η-transform of Kα/M as

xη−1Kα/M

(
−xSKα/M (x)

)
+ 1 = 0. (31)

Thus, we now focus on the derivation of η−1Kα/M
(x).

Proposition 1: The inverse η-transform of Kα/M is given
by

η−1Kα/M
(x) = ΣÑ2/M

(x− 1)η−1
M̃α/M

(x). (32)

Proof: The inverse of the η-transform of Kα/M is given
by means of the free convolution

ΣKα/M (x)=ΣÑ2/M
(x)ΣM̃α/M

(x)⇐⇒ (33)(
−x+1

x

)
η−1Kα/M

(x+1)=ΣÑ2/M
(x)

(
−x+1

x

)
η−1
M̃α/M

(x+1),

where we have taken into advantage the asymptotic freeness
between the deterministic matrix with bounded eigenvalues
Ñ2/M and the unitarily invariant matrix M̃α/M . Note that
in (33), we have applied Definition 3. Appropriate change of
variables, i.e., y = x+ 1 provides eq. (32).
In order to obtain η−1

M̃α/M
(x), we first need its a.e.p.d.f., given

by the next proposition.
Proposition 2: The a.e.p.d.f. of M̃α/M converges almost

surely to (34) with ᾱ = Mα.
Proof: By denoting z and x the eigenvalues of M̃α/M and

1
M Ñ1, respectively, the a.e.p.d.f. of M̃α/M can be obtained
after making the transformation z(x) = (1 +Mαx) as

f∞
M̃α/M

(z) =

∣∣∣∣ 1

z′(z−1(x))

∣∣∣∣·f∞1
M Ñ1

(
z−1(x)

)
=

1

ᾱ
f∞1
M Ñ1

(
z − 1

ᾱ

)
. (35)

Consequently, we are ready to obtain η−1
M̃α/M

(x) by us-
ing (19).

Proposition 3: The inverse η-transform of M̃α/M is given
by (37).

Proof: Having obtained the a.e.p.d.f. of M̃α, use of
Definition 2 allows to derive its η-transform as

ηM̃α/M
(ψ)=

∫ +∞

0

1

1 + ψx
f∞
M̃α/M

(x)dx.



f∞
M̃α/M

(x, β, ᾱ)→

√(
x− 1− ᾱ+ 2ᾱ

√
β − ᾱβ

) (
ᾱ+ 2ᾱ

√
β + ᾱβ − x+ 1

)
2ᾱπ (x− 1)

. (34)

ηM̃α/M
(ψ)=

ᾱ

4iπ

∮
|ζ|=1

(ζ2 − 1)2

ζ((1 + β)ζ+
√
β(ζ2 + 1))(ζ(1 + ψ(1 + ᾱ+ ᾱβ))+

√
βψᾱ(ζ2 + 1))

dζ. (36)

η−1
M̃α/M

(x)=
−xᾱ−βᾱ+ᾱ−1+

√
x2ᾱ2+2xᾱ2β−2xᾱ2−2xᾱ+β2ᾱ2−2βᾱ2+2βᾱ+ᾱ2+2ᾱ+1

2xᾱ
. (37)

If we make the necessary substitution, ηM̃α/M
(ψ) is written

as in (36). Following a similar procedure as in [22], we
perform certain substitutions. Specifically, we set x = wᾱ+ 1,
dx = ᾱdw, followed by w = 1 + β + 2

√
β cosω, dw =

2
√
β(− sinω)dω, and finally ζ = eiω, dζ = iζdω. Hence,

initially we calculate the poles ζi and residues ρi of Eq. (36).
Then, we perform an appropriate Cauchy integration by
including the residues located within the unit disk. More
concretely, we have

ηM̃α/M
(ψ) = −β

2
(ρ0 + ρ2 + ρ4),

which after inversion results to Eq. (37).
As far as ΣÑ2/M

(x) is concerned, it is given by (23) as

ΣÑ2/M
(x) =

1

γ + x
. (38)

In the last step, having calculated η−1Kα
(x) from (32) after

substituting (37) and (38), we employ (31), and after tedious
algebraic manipulations we obtain the following quartic poly-
nomial

ᾱ2x2S4Kα/M

+(2ᾱ2(1− γ)x+ ᾱ2x2)S3
Kα/M

+(ᾱ2(2− β − γ)x+ ᾱ2(γ − 1)2 − ᾱx)S2
Kα/M

+(ᾱ2(β(γ − 1)− γ) + ᾱ(γ + ᾱ− x− 1)SKα/M − ᾱ. (39)
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