Tablet-based visuo-spatial training tool for preschoolers

Véronique Cornu, Tahereh Pazouki and Romain Martin
Luxembourg Centre for Educational Testing (LUCET), University of Luxembourg, Esch-sur-Alzette (Luxembourg)

In the context of numerical development, visuo-spatial skills are assumed to provide an early foundation for mathematics learning [1,2,3]. Recently, the importance of these abilities in preschool years has been stressed out [e.g. 7]. Nevertheless, rarely any specific visuo-spatial training tools are available for the preschool setting. We have developed a tablet-based visuo-spatial intervention tool for preschoolers and implemented it in 5 Luxembourgish kindergarten classrooms.

METHOD

- **Participants & Design**
 10 kindergarten classrooms from two schools in Luxembourg were recruited. Half of the classrooms were assigned to a “teaching as usual” control condition, whereas the other five classrooms received 20 sessions (two sessions per week) of visuo-spatial training (20 minutes per session). A total of \(N = 125 \) children (61 girls) participated in the study with a mean age of \(M = 5.49 \) years (SD = .63).

 - **Intervention group (IG):** \(n = 68 \)
 - **Control group (CG):** \(n = 57 \)

- **Assessment**
 A specific assessment battery targeting visuo-spatial, symbolic and non-symbolic early numerical abilities has been compiled. All tests, besides the non-symbolic magnitude comparison task, were administered in paper-pencil version. Tests were administered during the three weeks before and after the intervention.

RESULTS

Significant near transfer effects could be observed in the intervention group compared to the control group. Measures of verbal and non-verbal intelligence were entered as covariates into the model.

If we remove children scoring very high on tests of visuo-spatial abilities at pretest (> 4th quartile) from our sample, time x group interaction reaches statistical significance for both measures (\(N = 101; n_{IG} = 52, n_{CG} = 49 \)).

No intermediate and no far transfer effects could be observed at this stage.

Near transfer effects on trained visuo-spatial abilities could be observed, but no gains on measures of mental transformation skills and early mathematical abilities could be observed.

Possible explanation: transfer to mathematical skills might only occur when formal math instruction has begun as visuo-spatial abilities are thought to provide an early foundation for later mathematics performance.

DISCUSSION

BIBLIOGRAPHY

3. Véronique Cornu, Tahereh Pazouki, and Romain Martin (2022). Tablet workspace is conceptualized as an electronic blackboard that can be used in combination with external material such as booklets.