SMALL CIRCULANT COMPLEX HADAMARD MATRICES OF BUTSON TYPE

Gaurush Hiranandani and Jean-Marc Schlenker

Abstract. We study the circulant complex Hadamard matrices of order \(n\) whose entries are \(l\)-th roots of unity. For \(n = l\) prime we prove that the only such matrix, up to equivalence, is the Fourier matrix, while for \(n = p + q, l = pq\) with \(p, q\) distinct primes there is no such matrix. We then provide a list of equivalence classes of such matrices, for small values of \(n, l\).

1. Introduction and results

A complex Hadamard matrix of order \(n\) is a matrix \(H\) having as entries complex numbers of modulus 1, such that \(H/\sqrt{n}\) is unitary. Among complex Hadamard matrices, those with all entries roots of unity are said to be of Butson type. The basic example here is the Fourier matrix, \(F_n = (w^{ij})_{ij}\) with \(w = e^{2\pi i/n}\):

\[
F_n = \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & w & w^2 & \cdots & w^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^2}
\end{pmatrix}.
\]

We denote by \(C_n(l)\) the set of complex Hadamard matrices of order \(n\), with all entries being \(l\)-th roots of unity. As a first example here, observe that we have \(F_n \in C_n(n)\).

In general, the complex Hadamard matrices are known to have applications to a wide array of questions, ranging from electrical engineering to von Neumann algebras and quantum physics, and the Butson ones are known to be at the “core” of the theory. For further details here, we recommend the excellent survey article by Tadej and Życzkowski [TZ06], and the subsequent website, made and maintained in collaboration with Bruzda[1].

We are more specifically interested in understanding the complex Hadamard matrices of Butson type which are circulant, that is, of the form \((H_{ij})_{i,j=1,\ldots,n}\) with \(H_{ij}\) depending only on \(i - j\). We denote by \(C_n^{\text{circ}}(l)\) the set of circulant matrices in \(C_n(l)\), and by \(C_n^{\text{circ},1}(l)\) the set of matrices from \(C_n^{\text{circ}}(l)\) with 1 on the diagonal.

Regarding the motivations for the study of such matrices, let us mention: (1) their key importance for the construction of complex Hadamard matrices, see [TZ06], (2) their relation with cyclic \(n\)-roots and their applications, see [Bjö90], and (3) their relation with the Circulant Hadamard Conjecture, a beautiful mathematical problem, to be explained now.

In the real case – that is, for \(l = 2\) – only one example is known, at \(n = 4\), namely the \(4 \times 4\) matrix with \(-1\) on the diagonal and 1 elsewhere. For larger values of \(n\) it is conjectured that there is no example:

Conjecture 1.1 (Circulant Hadamard Conjecture). \(C_n^{\text{circ}}(2) = \emptyset\) for all \(n > 4\).

2000 Mathematics Subject Classification. 05B20.
Key words and phrases. Circulant Hadamard matrix.

For larger values of l, however, things are different and, to a large extent, mysterious. Our main goal here is to make some progress on the understanding of the values of n, l which allow the existence of circulant Hadamard matrices of Butson type.

It is known since [Bac89], [Fau01] that F_n is equivalent to a circulant matrix, and it follows that $C_n^{circ}(n) \neq \emptyset$. We will prove below that when n is prime, the Fourier matrix (in circulant form) is the only example, that is, any matrix in $C_n^{circ}(n)$ is equivalent to the Fourier matrix.

Theorem 1.2. Any matrix in $C_p^{circ}(p)$ is equivalent to the Fourier matrix F_p.

Here, as in the rest of the paper, the equivalence relation which is considered among circulant matrices is the cyclic permutation of rows and columns, and multiplication of all entries by a constant. However, since the Fourier matrix is not circulant, we need a wider notion of equivalence in the statement of this theorem. More precisely, we use the standard notion of equivalence for (non-circulant) complex Hadamard matrices, that is, permutation of the rows and columns, and multiplication of each row and each column by a constant.

Our second result is a non-existence statement for circulant Butson matrices based on two different prime numbers:

Theorem 1.3. Let $p, q \geq 5$ be two distinct primes. Then $C_{p+q}^{circ}(pq) = \emptyset$.

A large part of the proof is actually valid for non-circulant matrices. To put this result in perspective, recall the following result [BBS09, Theorem 7.9]. Assume $C_n(l) \neq \emptyset$.

1. If $n = p + 2$ with $p \geq 3$ prime, then $l \neq 2p^b$.
2. If $n = 2q$ with $p > q \geq 3$ primes, then $l \neq 2^ap^b$.

It follows from the first result that for $p \geq 3$ prime, $C_{p+2}(2p) = \emptyset$, so $C_{p+2}^{circ}(2p) = \emptyset$. However it remains unclear whether $C_{p+3}(3p) = \emptyset$ for $p \geq 5$ prime. It also seems natural to ask whether, for p, q be two distinct primes, $C_{p+q}(pq) = \emptyset$.

The last main contribution of the present paper is an “experimental” study of the set of equivalence classes of matrices in $C_n^{circ}(l)$, for small values of n, l. See Section 5. This study was done using a computer program, designed to find all possible equivalence classes of circulant matrices which can contain a matrix of Butson type. At the counting level, the main results are presented in Table 1.

The classification results obtained by this experimental approach lead to a number of quite natural questions, for instance the following ones:

- What are the obstructions to the existence of a matrix in $C_n^{circ}(l)$ for various values of n, l? In the non-circulant case, there are a few obstructions known, which explain quite well, for small n, l, when $C_n(l) = \emptyset$. In the circulant case, however, few obstructions are known beyond those known for general (non-circulant) Butson matrices.
- For p prime and $k \in \mathbb{N}$, does $C_p^{circ}(kp)$ contain any matrix other than those obtained from the Fourier matrix F_p?
- What is the number of elements of $C_4^{circ}(l)$, $C_8^{circ}(l)$, $C_9^{circ}(l)$, with $l \in \mathbb{N}$ arbitrary? For instance, what are the next terms in the sequence defined as the number of equivalence classes in $C_9^{circ}(3k)$, with first terms 6, 24, 62, 108, 172?

Finding answers to these questions might ultimately lead to progress on Conjecture 1.1.

Acknowledgements.

The authors are particularly grateful to Teo Banica and Ion Nechita, who participated in earlier parts of this project and made valuable contributions to the results presented here.

Theorem 3.1 was obtained thanks to the website MathOverflow. Shortly after we posted a question, which is a more elementary but equivalent statement of Theorem 3.1, Noam Elkies posted an answer.

http://mathoverflow.net/questions/135949
to this question which is basically a proof of Theorem 3.1. Peter Müller then posted another answer pointing to the papers by Gluck, by Rónyai and Szőnyi, and by Hiramine, containing the “original” proofs of this result. We are grateful to Noam Elkies and Peter Müller for their contributions.

The authors are also grateful to two anonymous referees for helpful suggestions on an earlier version of this work.

2. Circulant Butson matrices

We consider in this paper various $n \times n$ matrices over the real or complex numbers. The matrix indices will range in $\{0,1,\ldots,n-1\}$, and will be taken modulo n.

Definition 2.1. A complex Hadamard matrix is a square matrix $H \in M_n(\mathbb{C})$, all whose entries are on the unit circle, $|H_{ij}| = 1$, and whose rows are pairwise orthogonal.

It follows from basic linear algebra that the columns are pairwise orthogonal as well. In fact, the $n \times n$ complex Hadamard matrices form a real algebraic manifold, given by:

$$C_n(\infty) = M_n(\mathbb{T}) \cap \sqrt{n}U(n)$$

Here, and in what follows, we denote by \mathbb{T} the unit circle in the complex plane.

The basic example is the Fourier matrix, $F_n = (w^{ij})_{ij}$ with $w = e^{2\pi i/n}$. There are many other interesting examples, see [TZ06]. These examples are often constructed by using roots of unity, and we have the following definition, going back to Butson’s work [But62]:

Definition 2.2. The Butson class $C_n(l)$ with $l \in \{2,3,\ldots,\infty\}$ consists of the $n \times n$ complex Hadamard matrices having as entries the l-th roots of unity. In particular:

1. $C_n(2)$ is the set of usual (real) $n \times n$ Hadamard matrices.
2. $C_n(3)$ is the set of $n \times n$ Turyn matrices, over $\{\pm1,\pm i\}$.
3. $C_n(\infty)$ is the set of all $n \times n$ complex Hadamard matrices.

As explained in the introduction, we will be mostly interested in the circulant case, with the Circulant Hadamard Conjecture (CHC) in mind. Observe that the CHC states that, for $n > 4$:

$$C_n^{\text{circ}}(2) = \emptyset.$$

3. Circulant matrices of prime order

We fix a prime number p, and we let $\omega = e^{2\pi i/p}$. The proof of Theorem 1.2 is based on:

Theorem 3.1. Let $M = (m_{ij})_{i,j=1}^n \in M_p(\mathbb{Z}/p\mathbb{Z})$ be a circulant matrix. Then $U = (\omega^{m_{ij}})_{i,j=0}^{n-1}$ is a circulant complex Hadamard matrix if and only if its first row is given by a polynomial of degree 2, that is, if and only if there are $a,b,c \in \mathbb{Z}/p\mathbb{Z}$ with $a \neq 0$ such that, for all $j \in \mathbb{Z}/p\mathbb{Z}$,

$$m_{0j} = aj^2 + bj + c.$$

We first reformulate this theorem in a more combinatorial but clearly equivalent form:

Theorem 3.2. Let $p \geq 3$ be a prime number, and let $u : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ be a map such that, for all $l \in \mathbb{Z}/p\mathbb{Z}, l \neq 0$, the map $k \mapsto u(k + l) - u(k)$ is a permutation. Then u is a polynomial of degree 2.

Under this form, the statement is well-known to specialists of finite geometry, who call the above functions “planar”. The fact that any planar function on a field of prime order is a quadratic polynomial was proved independently by Gluck [Glu90], by Rónyai and Szőnyi [RS89] and by Hiramine [Hir89]. See the introduction/acknowledgements.

Theorem 3.3. Let $M = (m_{ij})_{i,j=0}^{n-1} \in M_p(\mathbb{Z}/p\mathbb{Z})$ be a circulant matrix. If the first row of M is given by a polynomial of degree 2 then $U = (\omega^{m_{ij}})_{i,j=0}^{n-1}$ is equivalent to the Fourier matrix.
Proof. Suppose first that the first row of M is given by a polynomial of degree 2. This means that there are elements $a, b, c \in \mathbb{Z}/p\mathbb{Z}$ with $a \neq 0$ such that
\[
\forall j \in \mathbb{Z}/p\mathbb{Z}, \quad m_{0j} = aj^2 + bj + c .
\]
Since M is circulant, this means that
\[
\forall i, j \in \mathbb{Z}/p\mathbb{Z}, \quad m_{ij} = a(j - i)^2 + b(j - i) + c .
\]
First, we remove from each entry of the first row of M the first entry of the same column. We get a new matrix M' equivalent to M, with entries given by
\[
m'_{ij} = m_{ij} - m_{0j} = a((j - i)^2 - j^2) - bi = ai^2 - 2aij - bi .
\]
Second, we remove from each entry of this matrix M' the first entry of its row. We obtain a new matrix M'' which is equivalent to M' and therefore to M, with entries
\[
m''_{ij} = m'_{ij} - m'_{i0} = -2aij .
\]
Third, we permute the rows by sending row i to row $-2ai$. We finally obtain a matrix M''', still equivalent to M, with entries
\[
m'''_{ij} = ij .
\]
Clearly this is the Fourier matrix, so M is equivalent to F_p.

\[
\square
\]

4. Matrices based on two prime numbers

We now turn to the proof of Theorem 1.3. Note that most of the proof deals with non-circulant complex Hadamard matrices of Butson type.

In what follows, p and q denote two distinct primes. We consider a matrix in $C_{p+q}(pq)$, and use additive notations, so that $M \in M_{p+q}(\mathbb{Z}/pq\mathbb{Z})$. We call $L_i, i = 0, \ldots, p+q-1$ the rows of M, and for $i, j \in \mathbb{Z}/(p+q)\mathbb{Z}$ we set $L_{ij} = L_i - L_j$.

The fact that M corresponds to a Hadamard matrix translates as the following basic property.

Lemma 4.1. For all distinct $i, j \in \mathbb{Z}/(p+q)\mathbb{Z}$, there exists a partition $\mathbb{Z}/(p+q)\mathbb{Z} = P_{ij} \cup Q_{ij} \cup R_{ij}$ and an element $r \in \mathbb{Z}/pq\mathbb{Z}$ such that:

- $\#R_{ij} = 2$, and $L_{ij}(k) = r$ for all $k \in R_{ij}$,
- $\#P_{ij} = p - 1$, and $\{L_{ij}(k), k \in P_{ij}\} = \{r + q(\mathbb{Z}/pq\mathbb{Z})\} \setminus \{r\}$,
- $\#Q_{ij} = q - 1$, and $\{L_{ij}(k), k \in Q_{ij}\} = \{r + p(\mathbb{Z}/pq\mathbb{Z})\} \setminus \{r\}$.

Proof. This follows from the Chinese Remainder Theorem. \square

Thus, the values of L_{ij} on P_{ij} go through all elements of a p-cycle in $\mathbb{Z}/pq\mathbb{Z}$ with the exception of r, the values of L_{ij} on the elements of Q_{ij} go through all elements of a q-cycle in $\mathbb{Z}/pq\mathbb{Z}$ with the exception of r, and the value r is taken twice, exactly at the two elements of R_{ij}.

To simplify a little the notations, we set $P_{ij}^+ = P_{ij} \cup R_{ij}$ and $Q_{ij}^+ = Q_{ij} \cup R_{ij}$. Note that the lemma above, as other statements below, also hold if we swap P and Q.

Lemma 4.2. Suppose that $i, j \in \mathbb{Z}/(p+q)\mathbb{Z}$ are distinct and that $a, b \in \mathbb{Z}/(p+q)\mathbb{Z}$ are distinct. Then $L_{ij}(b) - L_{ij}(a) \in q(\mathbb{Z}/pq\mathbb{Z})$ if and only if $a, b \in P_{ij}^+$.

\[
\square
\]
Proof. If \(a, b \in Q_{ij} \), then \(L_{ij}(b) - L_{ij}(a) \in p(\mathbb{Z}/pq\mathbb{Z}) \). But \(p(\mathbb{Z}/pq\mathbb{Z}) \cap q(\mathbb{Z}/pq\mathbb{Z}) = \{0\} \) since \(p, q \) are prime. So \(L_{ij}(b) - L_{ij}(a) = 0 \), which is not possible if \(a, b \in Q_{ij} \) are distinct. So either \(a \) or \(b \) is in \(P_{ij}^+ \). But then it follows from the definition of \(P_{ij}^+ \), and from the fact that \(L_{ij}(b) - L_{ij}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) \), that the other is in \(P_{ij}^+ \), too. \(\square \)

Lemma 4.3. Let \(i, j, k \in \mathbb{Z}/(p + q)\mathbb{Z} \) be distinct. Then \(\#(P_{ij} \cap Q_{jk}^+) \leq 2 \).

Proof. Suppose by contradiction that \(P_{ij} \cap Q_{jk}^+ \) contains three distinct elements \(a, b, c \). But then either two of them are in \(P_{ij} \cap Q_{jk}^+ \cap P_{ki}^+ \) or two of them are in \(P_{ij} \cap Q_{jk}^+ \cap Q_{ki}^+ \). We suppose for instance that \(a, b \in P_{ij} \cap Q_{jk}^+ \cap P_{ki}^+ \), the same argument applies in the other cases.

Since \(a, b \in P_{ij}, L_{ij}(b) - L_{ij}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) \). Similarly, since \(a, b \in P_{ki}^+, L_{ki}(b) - L_{ki}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) \), so that \(L_{jk}(b) - L_{jk}(a) = -(L_{ij}(b) - L_{ij}(a)) - (L_{ki}(b) - L_{ki}(a)) \in q(\mathbb{Z}/pq\mathbb{Z}) \). However we also know that \(a, b \in Q_{jk}^+ \), so that \(L_{jk}(b) - L_{jk}(a) \in p(\mathbb{Z}/pq\mathbb{Z}) \), and therefore \(L_{jk}(b) - L_{jk}(a) = 0 \), which contradicts the fact that \(a, b \in P_{ij} \) and \(a \neq b \). \(\square \)

Lemma 4.4. Suppose that \(p \geq 5 \). Then for \(i, j, k \in \mathbb{Z}/(p + q)\mathbb{Z} \) distinct, \(\#(P_{ij} \cap P_{jk}) \geq 2 \).

Proof. By definition,

\[
P_{ij} = P_{ij} \cap (P_{jk} \cup Q_{jk}^+) = (P_{ij} \cap P_{jk}) \cup (P_{ij} \cap Q_{jk}^+) .
\]

However \(\#P_{ij} = p - 1 \), while \(\#(P_{ij} \cap Q_{jk}^+) \leq 2 \) by Lemma 4.3. The result follows. \(\square \)

Corollary 4.5. If \(p \geq 5 \) then for \(i, j, k \in \mathbb{Z}/(p + q)\mathbb{Z} \) distinct, \(P_{ij}^+ \cap P_{jk}^+ \subset P_{ik}^+ \).

Proof. According to Lemma 4.3 \(\#(P_{ij}^+ \cap P_{jk}^+) \geq 2 \). Moreover if \(a, b \in P_{ij}^+ \cap P_{jk}^+ \) are distinct, then \(L_{ij}(b) - L_{ij}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) \) and \(L_{jk}(b) - L_{jk}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) \). It follows that \(L_{ik}(b) - L_{ik}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) \) and therefore, from Lemma 4.2, that \(a \) and \(b \) are in \(P_{ik}^+ \). \(\square \)

Lemma 4.6. Suppose that \(p, q \geq 5 \), and let \(i, j, k \in \mathbb{Z}/(p + q)\mathbb{Z} \) be distinct. Then \(P_{ij} \cap Q_{jk} = \emptyset \). As a consequence, \(P_{ij} \subset P_{jk}^+ \) and \(Q_{ij} \subset Q_{jk}^+ \).

Proof. Let \(a \in P_{ij} \cap P_{jk} \) and let \(b \in Q_{ij} \cap Q_{jk} \) — such elements exist by Lemma 4.4. We know that \(a \in P_{ik}^+, b \in Q_{jk}^+ \) by Corollary 4.5.

Suppose now by contradiction that \(c \in P_{ij} \cap Q_{jk} \). Then \(a, c \in P_{ij} \) so that

\[
L_{ij}(c) - L_{ij}(a) \in q(\mathbb{Z}/pq\mathbb{Z}) ,
\]

and \(a \in P_{jk}, c \in Q_{jk}, \) so that

\[
L_{jk}(c) - L_{jk}(a) \notin q(\mathbb{Z}/pq\mathbb{Z}) .
\]

So

\[
L_{ik}(c) - L_{ik}(a) = (L_{ik}(c) - L_{jk}(a)) + (L_{ij}(c) - L_{ij}(a)) \notin q(\mathbb{Z}/pq\mathbb{Z}) .
\]

Since \(a \in P_{ik}^+ \), it follows that \(c \notin P_{ik}^+ \).

The same argument with \(b \) instead of \(a \) shows that \(c \notin Q_{ik}^+ \), which is a contradiction.

This shows that \(P_{ij} \subset P_{jk}^+ \). It follows that \(P_{ij} \subset P_{ij}^+ \cap P_{jk}^+ \), and therefore that \(P_{ij} \subset P_{jk}^+ \) by \(P_{ik}^+ \) by Corollary 4.5. The same argument works for \(Q_{ij} \). \(\square \)

Corollary 4.7. Suppose that \(p, q \geq 5 \). Then for all \(i, j, k, l \in \mathbb{Z}/(p + q)\mathbb{Z} \) such that \(i \neq j \) and \(k \neq l \), \(\#(P_{ij} \cap P_{kl}) \geq p - 3 \) and \(\#(Q_{ij} \cap Q_{kl}) \geq q - 3 \).

Proof. We have \(P_{ij} \subset P_{jk}^+ \) and \(P_{kl} \subset P_{jk}^+ \) by Lemma 4.6. The first result follows because \(\#P_{ij} = \#P_{kl} = p - 1 \) while \(\#P_{jk}^+ = p + 1 \). The same argument used with \(Q_{ij} \) gives the second result. \(\square \)
We now prove a result about sets having large intersections with all their circular rotations.

Proposition 4.8. Let \(A \subset \mathbb{Z}/n\mathbb{Z} \) be a set with \(\#A = a \) such that, for all \(y \in \mathbb{Z}/n\mathbb{Z} \), \(\#(A \cap (y+A)) \geq b \), for some fixed integer \(b \). Then, we have that \(a \geq b\sqrt{n} \).

Proof. Let \(\pi : \mathbb{Z}/n\mathbb{Z} \to \{0,1\} \) be the indicator function of \(A \), \(\pi(x) = 1 \) if \(x \in A \), \(\pi(x) = 0 \) otherwise. Let \(\pi' : \mathbb{Z}/n\mathbb{Z} \to \{0,1\} \) be the indicator function of \(-A \), \(\pi'(x) = \pi(-x) \).

In terms of indicator functions, the hypothesis about the cardinality of intersections reads

\[
\forall y \in \mathbb{Z}/n\mathbb{Z}, \quad \sum_{x \in \mathbb{Z}/n\mathbb{Z}} \pi(x)\pi(x+y) \geq b ,
\]

or in other terms \((\pi \ast \pi')(-y) \geq b \). Taking the value at 0 of the Fourier transform and using the fact that \(\hat{\pi'} = \hat{\pi} \), we find that

\[
|\hat{\pi}(0)|^2 \geq b\sqrt{n} .
\]

However, we also know that

\[
\|\hat{\pi}\|^2 = \|\pi\|^2 = \sum_{x \in \mathbb{Z}/n\mathbb{Z}} \pi(x)^2 = a .
\]

The conclusion \(b\sqrt{n} \leq a \) follows from the previous two relations. \(\square \)

We now have all the elements needed to prove Theorem 1.3.

Proof of Theorem 1.3. Consider a matrix \(C_{p+q}^{\text{circ}}(pq) \), written in additive notation as \(M \) with coefficients in \(\mathbb{Z}/pq\mathbb{Z} \), and put, with the notations of Lemma 4.1, \(A = P_{01} \subset \mathbb{Z}/(p+q)\mathbb{Z} \). Note that, for all \(i \in \mathbb{Z}/(p+q)\mathbb{Z} \), the sets \(P_{i,i+1} \) are exactly the circular rotations of \(A \): \(P_{i,i+1} = i + A \), and, by Corollary 4.7, we have \(\#(P_{01} \cap P_{i,i+1}) \geq p - 3 \).

From Proposition 4.8 with \(a = \#A = p - 1 \), \(b = p - 3 \) and \(n = p + q \), it follows that

\[
p - 1 \geq \sqrt{p+q(p-3)} ,
\]

and, since \(q \geq 5 \), that

\[
(p - 1)^2 \geq (p - 3)^2(p + 5) .
\]

However a direct examination shows that

\[
(x - 3)^2(x + 5) - (x - 1)^2
\]

is strictly positive for \(x \geq 5 \), and a contradiction follows. \(\square \)

5. **Counting and classification results for small matrices**

There are a number of known obstructions to the existence of a matrix in \(C_n(l) \):

Theorem 5.1. We have the following results:

1. Lam-Leung: If \(C_n(l) \neq \emptyset \) and \(l = p_1^{a_1} \cdots p_k^{a_k} \) then \(n \in p_1 \mathbb{N} + \cdots + p_k \mathbb{N} \).
2. de Launey: If \(C_n(l) \neq \emptyset \) then there is \(d \in \mathbb{Z}[e^{2\pi i/l}] \) such that \(|d|^2 = n^2 \).
3. Sylvester: If \(C_n(2) \neq \emptyset \) then \(n = 2 \) or \(4|n \).
4. Sylvester’: If \(C_n(l) \neq \emptyset \) and \(n = p+2 \) with \(p \geq 3 \) prime, then \(l \neq 2p^b \).
5. Sylvester”: If \(C_n(l) \neq \emptyset \) and \(n = 2q \) with \(p > q \geq 3 \) primes, then \(l \neq 2p^b \).
6. Haagerup: If \(C_5(l) \neq \emptyset \) then \(5|l \).

Proof. See respectively [LL00], [Lau94], [Syl867], [BBS09], [BBS09], [Haa97]. \(\square \)

In addition, there is a less explicit generalized Turyn obstruction, see [BNS12, Prop. 2.4].
Theorem 5.2. If \(C_5(l) \neq \emptyset \) then there exists \((a_1, a_2, \cdots, a_l) \in \mathbb{N}^l\) such that \(\sum_i a_i = n \) and that
\[
\sum_{i,k} a_ia_{i+k}w^k = n ,
\]
where \(w = e^{2\pi i/l} \).

Table 1 above describes for each \(n, l \) either an obstruction to the existence of matrices in \(\mathcal{C}_n^{circ}(l) \), or “0” if no obstruction is known but there is no such matrix, or the number of equivalence classes of those matrices. The blank cells indicate that we have no results. Note that for many cells several different obstructions exist, in which case we chose one of the possible obstructions.

The symbol “\(F_p \)” is used when \(n = l \) is prime, so that Theorem 1.2 indicates that the only circulant Hadamard matrix is the Fourier matrix or one of its multiples (up to equivalence). The symbol “\((F_p)\)” was used to indicate that the same uniqueness result applies but when \(n \) is prime and \(l \) is a multiple of \(n \), so that Theorem 1.2 does not apply directly. In those cases the uniqueness which is claimed results from computations.

A list, for small values of \(n, l \) for which no obstruction is known, of the first rows of matrices in \(\mathcal{C}_n^{circ}(l) \), is available in an online appendix to the paper \(^3\).

The classification results were obtained by using a computer program, which is also available in the online appendix. We stress that the search for matrices in \(\mathcal{C}_n^{circ}(l) \) cannot be done, except for very small values of \(n, l \), by a brutal search algorithm. The program used here, and presented in the companion webpage of the article, works for larger values of \(n, l \) because it takes into account in a relatively efficient way both the structure of those matrices and the action of the symmetry group leaving those matrices invariant. We do not provide a detailed analysis of the way the algorithm works here, since the program should be relatively easy to understand for specialists of complex Hadamard matrices.

\(^3\)http://math.uni.lu/schlenker/programs/circbut/circbut.html
References

[Sy867] J.J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tesselated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers, Phil. Mag. 34 (1867), 461–475.

GH: Senior Undergraduate, Department of Mathematics and Statistics, IIT Kanpur, Kanpur, Uttar Pradesh, India - 208016. gaurushh@iitk.ac.in

JMS: University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, BLG, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg. jean-marc.schlenker@math.uni.lu