Generalizations and variants of associativity for variadic functions: a survey

53rd ISFE

Jean-Luc Marichal

in collaboration with Bruno Teheux

University of Luxembourg
Let X be a nonempty set

$F : X^2 \rightarrow X$ is \textit{associative} if

\[
F(F(x, y), z) = F(x, F(y, z))
\]

\textbf{Example:} $F(x, y) = x + y$ on $X = \mathbb{R}$
Associative binary operations

Extension to a function with an indefinite arity

\[F: \bigcup_{n \geq 2} X^n \to X \]

\[F(x_1, \ldots, x_n) = F(F(x_1, \ldots, x_{n-1}), x_n) \quad n \geq 3 \]

Example

\[F(x_1, x_2) = x_1 + x_2 \]
\[F(x_1, x_2, x_3) = F(F(x_1, x_2), x_3) = x_1 + x_2 + x_3 \]

etc.
Notation

- $X = \textit{alphabet}$

- Elements of X: \textit{letters} \hspace{1cm} (x, y, z, \ldots \in X)

- The set

$$X^* = \bigcup_{n \geq 0} X^n$$

is the set of all tuples on X, called \textit{strings over} X

(x, y, z, \ldots \in X^*)

\textbf{Convention:} $X^0 = \{\varepsilon\}$, where $\varepsilon = \textit{the empty string}$
Notation

- X^* is endowed with concatenation ($\varepsilon = \text{neutral element}$)

 $x \in X^n$ and $y \in X \Rightarrow xy\varepsilon = xy \in X^{n+1}$

- Repeated strings

 \[x^n = \underbrace{x \cdots x}_{n}, \quad x^0 = \varepsilon \]

- Length of a string

 \[|x| = n \iff x \in X^n \]
 \[|\varepsilon| = 0, \quad |x| = 1 \]
Notation

Let Y be a nonempty set

- **n-ary function**
 \[F : X^n \to Y \]

- **$*$-ary function or variadic function**
 \[F : X^* \to Y \]

n-ary part of F

\[F_n = F|_{X^n} \]

Default value of F

\[F(\varepsilon) = F_0(\varepsilon) \]
Associativity

For any map \(F: \bigcup_{n \geq 2} X^n \to X \)

- Binary associativity: \(F(F(xy)z) = F(xF(yz)) \)
- Induction formula: \(F(xz) = F(F(x)z) \) \(|xz| \geq 3 \)

Proposition

Binary associativity + induction formula

\[F(xyz) = F(xF(y)z) \quad |y| \geq 2, \quad |xz| \geq 1 \]

\[\implies \]

Extension to functions \(F \) defined on \(X^* = \bigcup_{n \geq 0} X^n \) ?
Associativity

Definitions

- A variadic operation on X is a map $F : X^* \rightarrow X \cup \{\varepsilon\}$
- A variadic operation $F : X^* \rightarrow X \cup \{\varepsilon\}$ is said to be associative if

$$F(xyz) = F(xF(y)z), \quad x, y, z \in X^*$$

We say that F is ε-standard if

$$F(x) = \varepsilon \iff x = \varepsilon$$
Associativity

\[F(xyz) = F(xF(y)z), \quad x, y, z \in X^* \]

Theorem

An \(\varepsilon \)-standard operation \(F : X^* \to X \cup \{\varepsilon\} \) is associative iff

(i) Binary associativity + induction formula

(ii) \(F_1 \circ F_1 = F_1 \)

(iii) \(F_1 \circ F_2 = F_2 \)

(iv) \(F_2(xy) = F_2(F_1(x)y) = F_2(xF_1(y)) \)

Observation: \(F_1 = \text{id}_X \) can always be considered
Associativity

Example

\[F : \mathbb{R}^* \rightarrow \mathbb{R} \cup \{\varepsilon\} \]

\[F_n(x_1 \cdots x_n) = \|x\|_2 = \sqrt{x_1^2 + \cdots + x_n^2} \quad n \geq 2 \]

\[F_0(\varepsilon) = \varepsilon \]

\[F_1(x) = x \text{ or } F_1(x) = \sqrt{x^2} \text{ or } \cdots \]
Definition. A *string function* over X is a function $F : X^* \rightarrow X^*$

Examples (data processing tasks)

- $F(x) =$ sorting the letters of x in alphabetic order
- $F(x) =$ transforming a string x into upper case
- $F(x) =$ removing from x all occurrences of a given letter
- $F(x) =$ removing from x all repeated occurrences of letters

 $F($associativity$) = $asociativity$ = asocitvy$

Each of these tasks satisfies

$$F(xyz) = F(xF(y)z)$$
Definition. A string function $F : X^* \rightarrow X^*$ is said to be *associative* if

$$F(xyz) = F(xF(y)z), \quad x, y, z \in X^*$$

→ generalizes associativity for operations $F : X^* \rightarrow X \cup \{\varepsilon\}$
Note. Setting $x = z = \varepsilon$ in the identity

$$F(xyz) = F(xF(y)z)$$

we obtain $F(y) = F(F(y))$

$$F = F \circ F$$
Preassociativity

Let Y be a nonempty set

Definition. We say that $F : X^* \to Y$ is *preassociative* if

\[
F(y) = F(y') \implies F(xyz) = F(xy'z)
\]

Examples. $F : \mathbb{R}^* \to \mathbb{R} \cup \{\varepsilon\}$

- $F_0 = \varepsilon, \ F_n(x) = x_1 + \cdots + x_n$
- $F_0 = \varepsilon, \ F_n(x) = x_1^2 + \cdots + x_n^2 = \|x\|_2^2$
- $F_0 = \varepsilon, \ F_n(x) = g(x_1 + \cdots + x_n), \ g$ one-to-one
Preassociativity

\[
F(y) = F(y') \implies F(xyz) = F(xy'z)
\]

Proposition

Let \(F : X^* \rightarrow X^* \) be a string function

\[
F \text{ associative } \iff \begin{cases}
F \circ F = F \\
F \text{ preassociative}
\end{cases}
\]
Preassociativity

\[F(y) = F(y') \implies F(xyz) = F(xy'z) \]

Various codomains can be considered

Examples \(F : X^* \to \mathbb{Z} \)
- \(F(x) = |x| \) (number of letters in \(x \))
- \(F(x) = \) number of occurrences in \(x \) of a given letter, say ‘\(z \)’
- \(F(x) = \) number of letters distinct from \(z \) minus the number of occurrences of \(z \)

Note. The function that outputs the number of distinct letters in \(x \) is not preassociative:

If \(a, b \in X \) are distinct, then \(F(a) = F(b) = 1 \) but \(1 = F(aa) \neq F(ab) = 2 \)
Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

(i) F is preassociative

(ii) F can be factorized into

\[F = f \circ H \]

where $H: X^* \to X^*$ is associative

$f: \text{ran}(H) \to Y$ is one-to-one
Preassociativity

Preassociative functions

Associative string functions
Barycentric associativity

Definition. A variadic operation $F : X^* \rightarrow X \cup \{\varepsilon\}$ is said to be **barycentrically associative** (or **B-associative**) if

$$F(xyz) = F(xF(y)|y|z)$$

$$F(abcd) = F(F(ab)^2cd) = F(F(ab)F(ab)cd)$$

Notes.
- ...first considered for symmetric functions on $\bigcup_{n \geq 1} \mathbb{R}^n$ (Schimmack 1909, Kolmogoroff 1930, Nagumo 1930)
- ...can be considered also for string functions $F : X^* \rightarrow X^*$
 $F(x) =$ removing from x all repeated occurrences of letters
Barycentric associativity

\[F(xyz) = F(xF(y)\mid y\mid z) \]

Suppose \(F : X^* \rightarrow X \cup \{\varepsilon\} \) is B-associative and \(\varepsilon \)-standard. Then \(F \) remains B-associative if we modify \(F(\varepsilon) \).

\[\Rightarrow \quad \text{The value } F(\varepsilon) \text{ is unimportant and we can assume } \text{ran}(F) \subseteq X \]
Barycentric associativity

\[F(xyz) = F(xF(y)|y|z) \]

Example. Arithmetic mean \(F : \mathbb{R}^* \to \mathbb{R} \)

\[
F(x_1 \cdots x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

\[
F(x_1 \, F(x_2x_3)^2) = F\left(x_1 \, \frac{x_2+x_3}{2} \, \frac{x_2+x_3}{2} \right)
\]
\[
= \frac{1}{3} \left(x_1 + \frac{x_2+x_3}{2} + \frac{x_2+x_3}{2} \right)
\]
\[
= \frac{1}{3} \left(x_1 + x_2 + x_3 \right)
\]
\[
= F(x_1 \, x_2 \, x_3)
\]
Definition. *Quasi-arithmetic means*

$I = \text{non-trivial real interval, possibly unbounded}$

$f: I \to \mathbb{R}$ continuous and strictly monotonic

$F: I^* \to I$

\[
F(x_1 \cdots x_n) = f^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} f(x_i)\right)
\]

Note. F is B-associative
Theorem (Kolmogoroff-Nagumo, 1930)

\[I = \text{non-trivial real interval, possibly unbounded} \]

Let \(F: I^* \rightarrow I \)

The following assertions are equivalent:

(i)
- \(F \) is B-associative
- \(F_n \) symmetric
- \(F_n \) continuous
- \(F_n \) strictly increasing in each argument
- \(F_n \) reflexive, i.e., \(F_n(x \cdots x) = x \)

(ii) \(F \) is a quasi-arithmetic mean

Note. One can show that reflexivity is redundant
Barycentric associativity

Further examples of real B-associative functions

- \(F_n(x) = \min(x_1, \ldots, x_n) \)
- \(F_n(x) = \max(x_1, \ldots, x_n) \)
- \(F_n(x) = x_1 \)
- \(F_n(x) = x_n \)
- \(F_n(x) = \sum_{i=1}^{n} \frac{2^{i-1}}{2^n-1} x_i \)

\[
F_n^\alpha(x) = \frac{\sum_{i=1}^{n} \alpha^{n-i}(1-\alpha)^{i-1} x_i}{\sum_{i=1}^{n} \alpha^{n-i}(1-\alpha)^{i-1}}, \quad \alpha \in \mathbb{R}
\]

Take \(\alpha = 1, \alpha = 0, \alpha = 1/3, \) etc.
Barycentric preassociativity

Definition. We say that $F : X^* \to Y$ is *barycentrically preassociative* (or *B-preassociative*) if

$$F(y) = F(y') \quad |y| = |y'| \quad \Rightarrow \quad F(xyz) = F(xy'z)$$

Notes

- ...inspired from the following property by de Finetti (1931)

$$F(y) = F(u|y|) \quad \Rightarrow \quad F(xyz) = F(xu|y|z) \quad (|y|, |xz| \geq 1)$$

- Preassociativity \Rightarrow B-preassociativity
- The value $F(\varepsilon)$ is unimportant
Barycentric preassociativity

B-preassociative functions

Preassociative functions

Associative string functions
Barycentric preassociativity

\[
\begin{align*}
F(y) &= F(y') \\
|y| &= |y'| \\
\end{align*}
\Rightarrow
F(xyz) &= F(xy'z)
\]

Interpretations

- **Decision making**: if we express an indifference when comparing two profiles, then this indifference is preserved when adding identical pieces of information to these profiles.

- **Aggregation function theory**: the aggregated value of a series of numerical values remains unchanged when modifying a bundle of these values without changing their partial aggregation.
Barycentric preassociativity

\[
F(y) = F(y') \quad |y| = |y'| \quad \Rightarrow \quad F(xyz) = F(xy'z)
\]

Let \(F : X^* \to X^* \)

\[
F \text{ associative} \iff \begin{cases}
F(x) = F(F(x)) \\
F \text{ preassociative}
\end{cases}
\]

Proposition

Let \(F : X^* \to X \cup \{\varepsilon\} \)

\[
F \text{ B-associative} \quad \Rightarrow \quad \begin{cases}
F(x) = F(F(x)|x|) \\
F \text{ B-preassociative}
\end{cases}
\]

The converse holds whenever \(F(x) \in X \) for all \(x \neq \varepsilon \)
Barycentric preassociativity

B-preassociative functions

B-associative variadic operations
Definition. Quasi-arithmetic pre-means

\(f : \mathbb{I} \to \mathbb{R} \) and \(f_n : \mathbb{R} \to \mathbb{R} \) continuous and strictly increasing \((n \geq 1)\)

\[
F : \mathbb{I}^* \to \mathbb{R} \\
F(x_1 \cdots x_n) = f_n\left(\frac{1}{n} \sum_{i=1}^{n} f(x_i)\right)
\]

Note. \(F \) is B-preassociative
Barycentric preassociativity

Quasi-arithmetic pre-means

\[F(x_1 \cdots x_n) = f_n \left(\frac{1}{n} \sum_{i=1}^{n} f(x_i) \right) \]

\(F \) quasi-arithmetic pre-mean
\(F_n \) reflexive \(\forall n \)

\(\iff \)

\(F \) quasi-arithmetic mean

Non-reflexive examples

\(f_n(x) = nx \) and \(f(x) = x \) \(\Rightarrow \) \(F(x) = \sum_{i=1}^{n} x_i \)

\(f_n(x) = e^{nx} \) and \(f(x) = \ln x \) \(\Rightarrow \) \(F(x) = \prod_{i=1}^{n} x_i \)
Barycentric preassociativity

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{I} =$ non-trivial real interval, possibly unbounded</td>
</tr>
<tr>
<td>Let $F : \mathbb{I}^* \rightarrow \mathbb{R}$</td>
</tr>
<tr>
<td>The following assertions are equivalent:</td>
</tr>
<tr>
<td>(i) F is B-preassociative</td>
</tr>
<tr>
<td>F_n symmetric</td>
</tr>
<tr>
<td>F_n continuous</td>
</tr>
<tr>
<td>F_n strictly increasing in each argument</td>
</tr>
<tr>
<td>(ii) F is a quasi-arithmetic pre-mean function</td>
</tr>
</tbody>
</table>
Selected references

