The splitting problem for complex homogeneous supermanifolds

E.G. Vishnyakova

Abstract

It is a classical result that any complex analytic Lie supergroup \(\mathcal{G} \) is split [5], that is its structure sheaf is isomorphic to the structure sheaf of a certain vector bundle. However, there do exist non-split complex analytic homogeneous supermanifolds.

We study the question how to find out whether a complex analytic homogeneous supermanifold is split or non-split. Our main result is a description of left invariant gradings on a complex analytic homogeneous supermanifold \(\mathcal{G}/\mathcal{H} \) in the terms of \(\mathcal{H} \)-invariants. As a corollary to our investigations we get some simple sufficient conditions for a complex analytic homogeneous supermanifold to be split in terms of Lie algebras.

1 Introduction

A supermanifold is called split if its structure sheaf is isomorphic to the exterior power of a certain vector bundle. By Batchelor’s Theorem any real supermanifold is non-canonically split. However, this is false in the complex analytic case. The property of a supermanifold to be split is very important for several reasons. For instance, in [2] it was shown that the moduli space of super Riemann surfaces is not projected (and in particular is not split) for genus \(g \geq 5 \). The physical meaning of this result is that [2]: ”certain approaches to superstring perturbation theory that are very powerful in low orders have no close analog in higher orders”. Another problem, when the property of a supermanifold to be split is very important, is the calculation of the cohomology group with values in a vector bundle over a supermanifold. In the split case we may use the well understood tools of complex analytic geometry. In the general case, several methods were suggested by Onishchik’s school: spectral sequences, see e.g. [12]. All these methods connect the cohomology group with values in a vector bundle with the cohomology group with values in the corresponding split vector bundle.

\footnote{Supported by Max Planck Institute for Mathematics Bonn and AFR-grant, University of Luxembourg.}
How do we determine whether a complex analytic supermanifold is split or non-split? Let me describe here some results in this direction that were obtained by Green, Koszul, Onishchik and Serov. In [3] Green described a moduli space with a marked point such that any non-marked point corresponds to a non-split supermanifold while the marked point corresponds to a split one. His idea was used for instance in [2]. The calculation of the Green moduli space is a difficult problem itself, and in many cases the method is difficult to apply. Furthermore, Onishchik and Serov [9, 10, 11] considered grading derivations, which correspond to \(\mathbb{Z} \)-gradings of the structure sheaf of a supermanifold. For example, it was shown that almost all supergrassmannians do not possess such derivations, i.e. their structure sheaves do not possess any \(\mathbb{Z} \)-gradings. Hence, in particular, they are non-split. The idea of grading derivations was independently used by Koszul. In [4] the following statement was proved: if the tangent bundle of a supermanifold \(\mathcal{M} \) possesses a (holomorphic) connection then \(\mathcal{M} \) is split. (Koszul’s proof works in real and complex analytic cases.) In fact, it was shown that we can assign a grading derivation to any supermanifold with a connection and that this grading derivation is induced by a \(\mathbb{Z} \)-grading of a vector bundle.

Assume that a complex analytic supermanifold \(\mathcal{M} = (\mathcal{M}_0, \mathcal{O}_\mathcal{M}) \) is split. By definition this means that its structure sheaf \(\mathcal{O}_\mathcal{M} \) is isomorphic to \(\wedge E \), where \(E \) is a locally free sheaf on the complex analytic manifold \(\mathcal{M}_0 \). The sheaf \(\wedge E \) is naturally \(\mathbb{Z} \)-graded and the isomorphism \(\mathcal{O}_\mathcal{M} \cong \wedge E \) induces the \(\mathbb{Z} \)-grading in \(\mathcal{O}_\mathcal{M} \). We call such gradings split. The main result of our paper is a description of those left invariant split gradings on a homogeneous superspace \(\mathcal{G}/\mathcal{H} \) which are compatible with split gradings on \(\mathcal{G} \). We also give sufficient conditions for pairs \((\mathfrak{g}, \mathfrak{h}) \), where \(\mathfrak{g} = \text{Lie} \mathcal{G} \) and \(\mathfrak{h} = \text{Lie} \mathcal{H} \), such that \(\mathcal{G}/\mathcal{H} \) is split.

Acknowledgment. The author is grateful to A. Onishchik, V. Serganova, P. Teichner and R. Donagi for their attention to this work and anonymous referee for useful comments.

2 Complex analytic supermanifolds. Main definitions.

We will use the word ”supermanifold” in the sense of Berezin and Leites, see [1], [7] and [8] for details. Throughout, we will be interested in the complex analytic version of the theory. Recall that a complex analytic superdomain
of dimension \(n|m\) is a \(\mathbb{Z}_2\)-graded ringed space

\[
U = \left(U, F_U \otimes \bigwedge (m)\right),
\]

where \(F_U\) is the sheaf of holomorphic functions on an open set \(U \subset \mathbb{C}^n\) and \(\bigwedge (m)\) is the exterior (or Grassmann) algebra with \(m\) generators. A complex analytic supermanifold of dimension \(n|m\) is a \(\mathbb{Z}_2\)-graded ringed space that is locally isomorphic to a complex superdomain of dimension \(n|m\).

Let \(\mathcal{M} = (\mathcal{M}_0, \mathcal{O}_M)\) be a complex analytic supermanifold and

\[
\mathcal{J}_\mathcal{M} = (\mathcal{O}_M)_{\bar{1}} + (\mathcal{O}_M)_{\bar{2}}^2
\]

be the subsheaf of ideals generated by odd elements in \(\mathcal{O}_M\). We put \(\mathcal{F}_\mathcal{M} := \mathcal{O}_M/\mathcal{J}_\mathcal{M}\). Then \((\mathcal{M}_0, \mathcal{F}_\mathcal{M})\) is a usual complex analytic manifold. It is called the reduction or underlying space of \(\mathcal{M}\). We will write \(\mathcal{M}_0\) instead of \((\mathcal{M}_0, \mathcal{F}_\mathcal{M})\) for simplicity of notation. Morphisms of supermanifolds are just morphisms of the corresponding \(\mathbb{Z}_2\)-graded ringed spaces. If \(f : \mathcal{M} \to \mathcal{N}\) is a morphism of supermanifolds, then we denote by \(f_0\) the morphism of the underlying spaces \(\mathcal{M}_0 \to \mathcal{N}_0\) and by \(f^*\) the morphism of the structure sheaves \(\mathcal{O}_N \to (f_0)_*(\mathcal{O}_M)\). If \(x \in \mathcal{M}_0\) and \(m_x\) is the maximal ideal of the local superalgebra \((\mathcal{O}_M)_x\), then the vector superspace \(T_x(\mathcal{M}) := (m_x/m_x^2)^*\) is the tangent space of \(\mathcal{M}\) at \(x \in \mathcal{M}_0\).

Denote by \(\mathcal{T}_\mathcal{M}\) the tangent sheaf or the sheaf of vector fields of \(\mathcal{M}\). In other words, \(\mathcal{T}_\mathcal{M}\) is the sheaf of derivations of the structure sheaf \(\mathcal{O}_M\). Since the sheaf \(\mathcal{O}_M\) is \(\mathbb{Z}_2\)-graded, the tangent sheaf \(\mathcal{T}_\mathcal{M}\) is also \(\mathbb{Z}_2\)-graded, i.e. there is the natural decomposition \(\mathcal{T}_\mathcal{M} = (\mathcal{T}_\mathcal{M})_{\bar{0}} \oplus (\mathcal{T}_\mathcal{M})_{\bar{1}}\), where

\[
(\mathcal{T}_\mathcal{M})_{\bar{i}} := \left\{ v \in \mathcal{T}_\mathcal{M} \mid v((\mathcal{O}_M)_j) \subset (\mathcal{O}_M)_{j+i} \right\}.
\]

Let \(\mathcal{M}_0\) be a complex analytic manifold and let \(\mathcal{E}\) be the sheaf of holomorphic sections of a vector bundle over \(\mathcal{M}_0\). Then the ringed space \((\mathcal{M}_0, \bigwedge \mathcal{E})\) is a supermanifold. In this case \(\dim \mathcal{M} = n|m\), where \(n = \dim \mathcal{M}_0\) and \(m\) is the rank of the locally free sheaf \(\mathcal{E}\).

Definition 1. A supermanifold \((\mathcal{M}_0, \mathcal{O}_M)\) is called split if \(\mathcal{O}_M \simeq \bigwedge \mathcal{E}\) for a locally free sheaf \(\mathcal{E}\) on \(\mathcal{M}_0\). The grading of \(\mathcal{O}_M\) induces by an isomorphism \(\mathcal{O}_M \simeq \bigwedge \mathcal{E}\) and the natural \(\mathbb{Z}\)-grading of \(\bigwedge \mathcal{E} = \bigoplus_p \bigwedge^p \mathcal{E}\) is called split grading.

For example, all smooth supermanifolds are split by Batchelor’s Theorem. In [4] it was shown that all complex analytic Lie supergroups are split too. In this paper we study the splitting problem for complex analytic homogeneous supermanifolds.
3 Lie supergroups and their homogeneous spaces

3.1 Lie supergroups and super Harish-Chandra pairs.

A Lie supergroup is a group object in the category of supermanifolds, i.e., it is a supermanifold \(\mathcal{G} \) with three morphisms: the multiplication morphism, the inversion morphism and the identity morphism, which satisfy the usual conditions, modeling the group axioms. In this case the underlying space \(\mathcal{G}_0 \) is a Lie group. The structure sheaf of a (complex analytic) Lie supergroup can be explicitly described in terms of the corresponding Lie superalgebra and underlying Lie group using super Harish-Chandra pairs (see [5] and [14] for more details). Let us describe this construction briefly.

Definition 2. A super Harish-Chandra pair is a pair \((\mathcal{G}_0, \mathfrak{g})\) that consists of a Lie group \(\mathcal{G}_0\) and a Lie superalgebra \(\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1\) such that \(\mathfrak{g}_0 = \text{Lie} \mathcal{G}_0\) provided with a representation \(\text{Ad} : \mathcal{G}_0 \rightarrow \text{Aut} \mathfrak{g}\) of \(\mathcal{G}_0\) in \(\mathfrak{g}\) such that:

- \(\text{Ad}\) preserves the parity and induces the adjoint representation of \(\mathcal{G}_0\) on \(\mathfrak{g}_0\);
- the differential \((d \text{Ad})_e\) at the identity \(e \in \mathcal{G}_0\) coincides with the adjoint representation \(\text{ad}\) of \(\mathfrak{g}_0\) on \(\mathfrak{g}_0\).

If a super Harish-Chandra pair \((\mathcal{G}_0, \mathfrak{g})\) is given, it determines the Lie supergroup \(\mathcal{G}\) in the following way, see [5]. Let \(\mathfrak{U}(\mathfrak{g})\) be the universal enveloping superalgebra of \(\mathfrak{g}\). It is clear that \(\mathfrak{U}(\mathfrak{g})\) is a \(\mathfrak{U}(\mathfrak{g}_0)\)-module, where \(\mathfrak{U}(\mathfrak{g}_0)\) is the universal enveloping algebra of \(\mathfrak{g}_0\). Recall that we denote by \(\mathcal{F}_{\mathcal{G}_0}\) the structure sheaf of the manifold \(\mathcal{G}_0\). The natural action of \(\mathfrak{g}_0\) on the sheaf \(\mathcal{F}_{\mathcal{G}_0}\) gives rise to a structure of \(\mathfrak{U}(\mathfrak{g}_0)\)-module on \(\mathcal{F}_{\mathcal{G}_0}(U)\) for any open set \(U \subset \mathcal{G}_0\).

Putting\[O_\mathcal{G}(U) = \text{Hom}_{\mathfrak{U}(\mathfrak{g}_0)}(\mathfrak{U}(\mathfrak{g}), \mathcal{F}_{\mathcal{G}_0}(U)) \]
for every open \(U \subset \mathcal{G}_0\), we get a sheaf \(O_\mathcal{G}\) of \(\mathbb{Z}_2\)-graded vector spaces. (Here we assume that the functions in \(\mathcal{F}_{\mathcal{G}_0}(U)\) are even.) The enveloping superalgebra \(\mathfrak{U}(\mathfrak{g})\) has a Hopf superalgebra structure. Using this structure we can define the product of elements from \(O_\mathcal{G}\) such that \(O_\mathcal{G}\) becomes a sheaf of superalgebras, see [5] and [14] for details. A supermanifold structure on \(O_\mathcal{G}\) is determined by the isomorphism \(\Phi_\mathcal{G} : O_\mathcal{G} \rightarrow \text{Hom} \left(\bigwedge (\mathfrak{g}_1), \mathcal{F}_{\mathcal{G}_0} \right), f \mapsto f \circ \gamma_\mathfrak{g} \), where

\[\gamma_\mathfrak{g} : \bigwedge (\mathfrak{g}_1) \rightarrow \mathfrak{U}(\mathfrak{g}), \quad X_1 \wedge \cdots \wedge X_r \mapsto \frac{1}{r!} \sum_{\sigma \in S_r} (-1)^{\left| \sigma \right|} X_{\sigma(1)} \cdots X_{\sigma(r)} \quad (1) \]
The following formulas define the multiplication morphism, the inversion
morphism and the identity morphism respectively:

\[\mu^*(f)(X \otimes Y)(g, h) = f \left(\text{Ad}(h^{-1})(X) \cdot Y \right)(gh); \]
\[\iota^*(f)(X)(g) = f \left(\text{Ad}(g)(S(X)) \right)(g^{-1}); \]
\[\varepsilon^*(f) = f(1(e)). \]

(2)

Here \(X, Y \in \mathfrak{U}(g) \), \(f \in \mathcal{O}_G \), \(g, h \in G_0 \) and \(S \) is the antipode map of the Hopf
superalgebra \(\mathfrak{U}(g) \). Here we identify the enveloping superalgebra
\(\mathfrak{U}(g \oplus g) \) with the tensor product \(\mathfrak{U}(g) \otimes \mathfrak{U}(g) \).

Sometimes we will identify the Lie superalgebra \(g \) of a Lie supergroup \(G \)
with the tangent space \(T_e(G) \) at \(e \in G_0 \). The corresponding to \(T \in T_e(G) \) left
invariant vector field on \(G \) is given by

\[(\text{id} \otimes T) \circ \mu^*, \]

(3)

where \(\mu \) is the multiplication morphism of \(G \). (Recall that a vector field \(Y \)
on \(G \) is called left invariant if \((\text{id} \otimes Y) \circ \mu^* = \mu^* \circ Y \).) Denote by \(l_g \) and by
\(r_g \) the left and right translations with respect to \(g \in G_0 \), respectively. The
morphisms \(l_g \) and \(r_g \) are given by the following formulas:

\[l_g^*(f)(X)(h) = f(X)(gh); \quad r_g^*(f)(X)(h) = f \left(\text{Ad}(g^{-1})X \right)(hg), \]

(4)

where \(f \in \mathcal{O}_G \), \(X \in \mathfrak{U}(g) \) and \(g, h \in G_0 \).

3.2 Homogeneous supermanifolds.

An action of a Lie supergroup \(G \) on a supermanifold \(M \) is a morphism \(\nu : \)
\(G \times M \rightarrow M \) such that the usual conditions modeling group action axioms
hold. Any vector \(X \in T_e(G) \) defines the vector field on \(M \) by the following
formula:

\[X \mapsto (X \otimes \text{id}) \circ \nu^*. \]

(5)

Definition 3. An action \(\nu \) is called transitive if \(\nu_0 \) is a transitive action of
the Lie group \(G_0 \) on \(M_0 \) and the vector fields (5) generates the tangent space
\(T_x(M) \) at any point \(x \in M_0 \). In this case the supermanifold \(M \) is called
\(G \)-homogeneous. A supermanifold \(M \) is called homogeneous, if it possesses a
transitive action of a Lie supergroup.

If a supermanifold \(M \) is \(G \)-homogeneous and \(\nu : G \times M \rightarrow M \) is the
corresponding transitive action, then \(M \) is isomorphic to the supermanifold
\(G/H \), where \(H \) is the isotropy subsupergroup of a certain point (see [16] for
details). Recall that the underlying space of \mathcal{G}/\mathcal{H} is the complex analytic manifold $\mathcal{G}_0/\mathcal{H}_0$ and the structure sheaf $\mathcal{O}_{\mathcal{G}/\mathcal{H}}$ of \mathcal{G}/\mathcal{H} is given by

$$
\mathcal{O}_{\mathcal{G}/\mathcal{H}} = \left\{ f \in (\pi_0)_*(\mathcal{O}_\mathcal{G}) \mid \mu_{\mathcal{G} \times \mathcal{H}}^*(f) = \text{pr}^*(f) \right\},
$$

where $\pi_0 : \mathcal{G}_0 \to \mathcal{G}_0/\mathcal{H}_0$ is the natural map, $\mu_{\mathcal{G} \times \mathcal{H}}$ is the restriction of the multiplication map on $\mathcal{G} \times \mathcal{H}$ and $\text{pr} : \mathcal{G} \times \mathcal{H} \to \mathcal{G}$ is the natural projection. Using (2) we can rewrite the condition $\mu_{\mathcal{G} \times \mathcal{H}}^*(f) = \text{pr}^*(f)$ in the following way:

$$
f\left(\text{Ad} (h^{-1}) (X)Y\right)(gh) = \begin{cases}
 f(X)(g), & Y \in \mathbb{C}; \\
 0, & Y \notin \mathbb{C};
\end{cases}
$$

where $X \in \mathfrak{U}(\mathfrak{g})$, $Y \in \mathfrak{U}(\mathfrak{h})$, $\mathfrak{h} = \text{Lie} \mathcal{H}$, $g \in \mathcal{G}_0$ and $h \in \mathcal{H}_0$.

Let $Y \in \mathfrak{g}$ and $f \in \mathcal{O}_\mathcal{G}$. Then the operator defined by the formula

$$
Y(f)(X) = (-1)^{p(Y)} f(XY),
$$

where $p(Y)$ is the parity of Y, is a left invariant vector field on \mathcal{G}. From (4), (7) and (8) it follows that

$f \in \mathcal{O}_{\mathcal{G}/\mathcal{H}}$ if and only if f is \mathcal{H}_0-right invariant, i.e. $r_h^*(f) = f$ for any $h \in \mathcal{H}_0$, and $Y(f) = 0$ for all $Y \in \mathfrak{h}_1$.

Sometimes we will consider also the left action $\mathcal{H} \times \mathcal{G} \to \mathcal{G}$ of a subsupergroup \mathcal{H} on a Lie supergroup \mathcal{G}. The corresponding quotient supermanifold we will denote by $\mathcal{H}\mathcal{G}$.

3.3 More about split supermanifolds.

Recall that a supermanifold \mathcal{M} is called split if its structure sheaf $\mathcal{O}_{\mathcal{M}}$ is isomorphic to $\bigwedge \mathcal{E}$, where \mathcal{E} is a locally free sheaf on \mathcal{M}_0. In this case, $\mathcal{O}_{\mathcal{M}}$ possesses the \mathbb{Z}-grading induced by the natural \mathbb{Z}-grading of $\bigwedge \mathcal{E} = \bigoplus_p \bigwedge^p \mathcal{E}$ and by isomorphism $\mathcal{O}_{\mathcal{M}} \simeq \bigwedge \mathcal{E}$. Such gradings of $\mathcal{O}_{\mathcal{M}}$ we call split.

Proposition 1. Any Lie supergroup \mathcal{G} is split.

This statement follows from the fact that any Lie supergroup is determined by its super Harish-Chandra pair. A different proof of this result (probably the first one) was given in [4]. For completeness we give here another proof.

Proof. The underlying space \mathcal{G}_0 is a closed Lie subsupergroup of \mathcal{G}. Hence, there exists the homogeneous space $\mathcal{G}/\mathcal{G}_0$, which is isomorphic to the supermanifold \mathcal{N} such that \mathcal{N}_0 is a point $\mathcal{N}_0 = \mathcal{G}_0/\mathcal{G}_0$ and $\mathcal{O}_{\mathcal{N}} \simeq \bigwedge (m)$, where $m = \text{dim} \mathfrak{g}_1$. By definition, the structure sheaf $\mathcal{O}_{\mathcal{N}}$ consists of all
r_g-invariant functions, $g \in G_0$. We have the natural map $\varphi : G \to G/G_0$, where $\varphi_0 : G_0 \to \ast$ and $\varphi^* : \mathcal{O}_N \to (\varphi_0)_*(\mathcal{O}_G)$ is the inclusion. It is known that $\varphi : G \to G/G_0$ is a principal bundle (see [16]). Using the fact that the underlying space of G/G_0 is a point we get $G \simeq N \times G_0$. Note that this is an isomorphism of supermanifolds but not of Lie supergroups. □

Example 1. As an example of a homogeneous non-split supermanifold we can cite the super-grassmannian $\text{Gr}_{m|n,r|s}$ for $0 < r < m$ and $0 < s < n$. Super-grassmannians of other types are split (see Example 3).

Denote by SSM the category of split supermanifolds. Objects $\text{Ob} \text{SSM}$ in this category are all split supermanifolds M with fixed split gradings. Further if $X, Y \in \text{Ob} \text{SSM}$, we put

$$\text{Hom}(X, Y) = \{ \text{morphisms from } X \text{ to } Y \text{ preserving the split gradings} \}$$

As in the category of supermanifolds, we can define in SSM a group object (split Lie supergroup), an action of a split Lie supergroup on a split supermanifold (split action) and a split homogeneous supermanifold.

There is a functor gr from the category of supermanifolds to the category of split supermanifolds. Let us briefly describe this construction. Let M be a supermanifold. Denote by $\mathcal{J}_M \subset \mathcal{O}_M$ the subsheaf of ideals generated by odd elements of \mathcal{O}_M. Then by definition $\text{gr} M = (M_0, \text{gr} \mathcal{O}_M)$ is the split supermanifold with the structure sheaf

$$\text{gr} \mathcal{O}_M = \bigoplus_{p \geq 0} (\text{gr} \mathcal{O}_M)_p, \quad \mathcal{J}_M^0 := \mathcal{O}_M, \quad (\text{gr} \mathcal{O}_M)_p := \mathcal{J}_M^p/\mathcal{J}_M^{p+1}.$$

In this case $(\text{gr} \mathcal{O}_M)_1$ is a locally free sheaf and there is a natural isomorphism of $\text{gr} \mathcal{O}_M$ onto $\bigwedge (\text{gr} \mathcal{O}_M)_1$. If $\psi = (\psi_0, \psi^*) : M \to N$ is a morphism, then $\text{gr}(\psi) = (\psi_0, \text{gr}(\psi^*)) : \text{gr} M \to \text{gr} N$ is defined by

$$\text{gr}(\psi^*)(f + \mathcal{J}_N^p) := \psi^*(f) + \mathcal{J}_M^p \text{ for } f \in (\mathcal{J}_N)^{p-1}.$$

Recall that by definition every morphism of supermanifolds is even and as a consequence sends \mathcal{J}_N^p into \mathcal{J}_M^p.

3.4 Split Lie supergroups.

Let G be a Lie supergroup with the supergroup morphisms μ, ι and ε: the multiplication, the inversion and the identity morphism, respectively. In this section we assign three split Lie supergroups G^1, G^2 and G^3 to G and we show that these split Lie supergroups are pairwise isomorphic.
(1) The construction of G^1 is very simple: we just apply functor gr to G. Clearly, $G^1 := \text{gr} G$ is a split Lie supergroup with the supergroup morphisms $\text{gr}(\mu)$, $\text{gr}(\iota)$ and $\text{gr}(\varepsilon)$.

(2) Consider the super Harish-Chandra pair (G_0, g^2), where g^2 is the following Lie superalgebra: g^2 and g are isomorphic as vector superspaces and the Lie bracket in g^2 is defined by the following formula:

$$[X,Y]_{g^2} = \begin{cases} [X,Y]_g, & \text{if } X,Y \in g_0 \text{ or } X \in g_0 \text{ and } Y \in g_1; \\ 0, & \text{if } X,Y \in g_1. \end{cases}$$

(9)

Denote by G^2 the Lie supergroup corresponding to (G_0, g^2).

(3) Consider the sheaf $O_{G^3} := \text{Hom}_C(\bigwedge g_1, F_{G_0})$. For the ringed space $G^3 := (G_0, O_{G^3})$ we can repeat the construction from Section 3.1. Indeed, this ringed space is clearly a supermanifold. Furthermore, the exterior algebra $\bigwedge g_1$ is also a Hopf algebra. Therefore, we can define on G^3 the multiplication, the inversion and the identity morphisms respectively by the following formulas:

$$(\mu^3)^*(f)(X \wedge Y)(g,h) = f(\text{Ad}(h^{-1})(X \wedge Y)(gh));$$

$$(\iota^3)^*(f)(X)(g) = f(\text{Ad}(g)(S'(X)))(g^{-1});$$

$$(\varepsilon^3)^*(f) = f(1)(e).$$

(10)

Here $X,Y \in \bigwedge g_1$, $f \in \text{Hom}_C(\bigwedge g_1, F_{G_0})$, $g, h \in G_0$ and S' is the antipode map of the Hopf superalgebra $\bigwedge g_1$. Hence, $G^3 := (G_0, O_{G^3})$ is a Lie supergroup. Since

$$\text{Hom}_C(\bigwedge g_1, F_{G_0}) = \bigoplus_{p \geq 0} \text{Hom}_C(\bigwedge g_1, F_{G_0})$$

is \mathbb{Z}-graded and the morphisms (10) preserve this \mathbb{Z}-grading, we see that G^3 is a split Lie supergroup.

Later on we will need the explicit expression of left and right translations l_g^r and r_g^r in G^3:

$$(l_g^r)^*(f)(X)(h) = f(X)(gh); \quad (r_g^r)^*(f)(X)(h) = f(\text{Ad}(g^{-1})X)(hg),$$

(11)

where $f \in \text{Hom}_C(\bigwedge g_1, F_{G_0})$, $X \in \bigwedge g_1$ and $g, h \in G_0$.

In fact, all these split Lie supergroups are isomorphic. To show this we need the following lemma:

Lemma 1. Let \mathfrak{k} be a Lie superalgebra and $X_i, Y_j \in \mathfrak{k}_1$, $i = 1, \ldots, r$, $j = 1, \ldots, s$ be any elements. Assume that $[X_i, Y_j] = 0$ for any i, j. Then we have

$$\gamma_\mathfrak{k}(X_1 \wedge \cdots \wedge X_r \wedge Y_1 \wedge \cdots \wedge Y_s) = \gamma_\mathfrak{k}(X_1 \wedge \cdots \wedge X_r) \cdot \gamma_\mathfrak{k}(Y_1 \wedge \cdots \wedge Y_s),$$

8
where γ_k is given by (1).

Proof. A direct calculation. □

Proposition 2. We have $G^1 \simeq G^2 \simeq G^3$ in the category of Lie supergroups.

Proof. (a) The statement $G^1 \simeq G^2$ was proven in [15], Theorem 3.

(b) Let us show that $G^2 \simeq G^3$. Applying Lemma 1 to g_2 and to any elements $X_i, Y_j \in g_1$, we see that in this case γ_{g_2} is not only isomorphism of super coalgebras but of Hopf superalgebras. In other words, the isomorphism

$$\Phi_{g_2} : \text{Hom}_{U(g_2)}(U(g^2), F_{g_2}) \to \text{Hom}_C(\bigwedge g_1, F_{g_2})$$

is an isomorphism of Lie supergroups. □

4 Split grading operators

Let again M be a supermanifold, $\text{gr} M$ be the corresponding split supermanifold and J be the sheaf of ideals generated by odd elements of O_M. We denote by $T = \text{Der} O_M$ and by $\text{gr} T = \text{Der}(\text{gr} O_M)$ the tangent sheaf of M and of $\text{gr} M$, respectively. The sheaf T is naturally \mathbb{Z}_2-graded and the sheaf $\text{gr} T$ is naturally \mathbb{Z}-graded: the gradings are induced by the \mathbb{Z}_2 and \mathbb{Z}-grading of O_M and of $\text{gr} O_M$, respectively. In other words, we have the decomposition:

$$T = T_0 \oplus T_1, \quad \text{gr} T = \bigoplus_{p \geq -1} (\text{gr} T)_p.$$

The sheaves T and $\text{gr} T$ are related: this relation can be expressed by the following exact sequence:

$$0 \longrightarrow T_{(2)0} \longrightarrow T_0 \overset{\alpha}{\longrightarrow} (\text{gr} T)_0 \longrightarrow 0,$$

where

$$T_{(2)0} = \{v \in T_0 \mid v(O_M) \subset J^2\}.$$

The morphism α in (12) is the composition of the natural morphism $T_0 \to T_0/T_{(2)0}$ and the isomorphism $T_0/T_{(2)0} \to (\text{gr} T)_0$ that is given by

$$[w] \mapsto \tilde{w}, \quad \tilde{w}(f + J^{p+1}) := w(f) + J^{p+1},$$

where $w \in T_0$, $[w]$ is the image of w in $T_0/T_{(2)0}$ and $f \in J^p$.

Assume that the sheaf O_M is \mathbb{Z}-graded, i.e. $O_M = \bigoplus_{p} (O_M)_p$. Then we have the map $w : O_M \to O_M$ defined by $w(f) = pf$, where $f \in (O_M)_p$. Such maps are called grading operators on M.

9
Definition 4. We call a grading operator w on \mathcal{M} a split grading operator if it corresponds to a split grading of \mathcal{O}_M, see Definition 1. In fact any split grading operator w on \mathcal{M} is an even vector field on \mathcal{M}. Indeed, w is linear, it preserves the parity in \mathcal{O}_M and for $f \in (\mathcal{O}_M)_p$ and $g \in (\mathcal{O}_M)_q$ we have:

$$w(fg) = (p+q)fg = (pf)g + f(qg) = w(f)g + fw(g).$$

Note that $fg \in (\mathcal{O}_M)_{p+q}$.

By definition the sheaf $\text{gr} \mathcal{O}_M$ is \mathbb{Z}-graded. Denote by a the corresponding split grading operator.

Lemma 2. 1. A supermanifold \mathcal{M} is split if and only if the vector field a is contained in $\text{Im} \ H^0(\alpha)$, where

$$H^0(\alpha) : H^0(M_0, \mathcal{T}_0) \to H^0(M_0, (\text{gr} \mathcal{T})_0).$$

(We applied the functor $H^0(M_0, -)$ to the sequence (12). We write $H^0(\alpha)$ instead of $H^0(M_0, \alpha)$ for notational simplicity.)

2. If w is a split grading operator on \mathcal{M}, then any other split grading operator on \mathcal{M} has the form $w + \chi$, where $\chi \in H^0(M_0, \mathcal{T}(2))$.

Proof. 1. The statement of the lemma can be deduced from the following observation made by Koszul in [4, Lemma 1.1 and Section 3]. Let A be a commutative superalgebra over \mathbb{C} and \mathfrak{m} be a nilpotent ideal in A. An even derivation w of A is called adapted to the filtration

$$A \supset \mathfrak{m} \supset \mathfrak{m}^2 \ldots$$

if

$$(w - r \text{id})(\mathfrak{m}^r) \subset \mathfrak{m}^{r+1} \text{ for any } r \geq 0.$$

Denote by $D^\text{ad}_\mathfrak{m}$ the set of all derivations adapted to \mathfrak{m}. In [4, Lemma 1.1] it was shown that $D^\text{ad}_\mathfrak{m}$ is not empty if and only if the filtration of A is splittable. Moreover, if $w \in D^\text{ad}_\mathfrak{m}$, then the corresponding splitting of A is given by eigenspaces of the derivation w: $A = \bigoplus_i A_i$, where A_i is the eigenspace of w with the eigenvalue i, and $\mathfrak{m}^r = A_r \oplus \mathfrak{m}^{r+1}$ for all $r \geq 0$.

We apply Koszul’s observation to the sheaf of superalgebras \mathcal{O}_M and its subsheaf of ideals \mathcal{J}. The set $D^\text{ad}_\mathcal{J}$ is in this case the set of global derivations of \mathcal{O}_M adapted to the filtration

$$\mathcal{O}_M \supset \mathcal{J} \supset \mathcal{J}^2 \supset \ldots.$$

Clearly, $D^\text{ad}_\mathcal{J}$ is not empty if and only if a is contained in $\text{Im} \ H^0(\alpha)$. (Actually, $H^0(\alpha)(D^\text{ad}_\mathcal{J}) = a$.) Furthermore, if the supermanifold \mathcal{M} is split, i.e.
we have a split grading $\mathcal{O}_M = \bigoplus_{p \geq 0} (\mathcal{O}_M)_p$, then $\mathcal{F}^q = \bigoplus_{p \geq q} (\mathcal{O}_M)_p$ and $\mathcal{F}^q = (\mathcal{O}_M)_q \oplus \mathcal{F}^{q+1}$. Hence, the split grading determines the splitting of the filtration (13) and the corresponding split grading operator belongs to $D^{ad}_{\mathcal{F}}$.

Conversely, if there exists $w \in D^{ad}_{\mathcal{F}}$, then we can decompose the sheaf \mathcal{O}_M into eigenspaces $(\mathcal{O}_M)_q := \{ f \in \mathcal{O}_M | w(f) = qf \}$.

In this case the sheaves $\bigoplus_p (\mathcal{O}_M)_p$ and $\text{gr} \mathcal{O}_M$ are isomorphic as \mathbb{Z}-graded sheaves of superalgebras since $\mathcal{F}^q = (\mathcal{O}_M)_q \oplus \mathcal{F}^{q+1}$. Hence, the supermanifold is split.

2. Applying the left-exact functor $H^0(\mathcal{M}_0, -)$ to (12), we get the following exact sequence:

$$0 \rightarrow H^0(\mathcal{M}_0, \mathcal{T}(2)\bar{0}) \rightarrow H^0(\mathcal{M}_0, \mathcal{T}_0) \rightarrow H^0(\mathcal{M}_0, \text{gr} \mathcal{T}_0).$$

If w_1, w_2 are two split grading operators on \mathcal{M}, then

$$H^0(\alpha)(w_1) = H^0(\alpha)(w_2) = a,$$

according to the part 1. Therefore, $w_1 - w_2 \in H^0(\mathcal{M}_0, \mathcal{T}(2)\bar{0})$. The result follows.

Example 2. Consider the supermanifold $G_0 \backslash G$. Its structure sheaf is isomorphic to $\bigwedge (g_1)$ (compare with Example 1). Denote by (ε_i) the system of odd (global) coordinates on $G_0 \backslash G$. An example of a split grading operator on the Lie supergroup G is $\sum \varepsilon^i X_i$. Here (X_i) is a basis of odd left invariant vector fields on G such that $X_i(\varepsilon^j)(e) = \delta_i^j$. We may produce other examples if we use right invariant vector fields or odd (global) coordinates on $G_0 \backslash G_0$.

By Lemma 2, any split grading operator on a Lie supergroup G is given by $\sum \varepsilon^i X_i + \chi$, where $\chi \in H^0(G_0, \mathcal{T}(2)\bar{0})$ is any vector field on G.

5 Compatible split gradings on $G \backslash H$

5.1 Compatible gradings on $G \backslash H$.

Let G be a Lie supergroup and $\mathcal{M} = G \backslash H$ be a homogeneous supermanifold. As above we denote by $\pi : G \rightarrow G \backslash H$ the natural projection.

Definition 5. A split grading of the sheaf $\mathcal{O}_G = \bigoplus_p (\mathcal{O}_G)_p$ is called compatible with the inclusion $\mathcal{O}_M \subset (\pi_0)_*(\mathcal{O}_G)$ if the following holds:

$$f \in \mathcal{O}_M \Rightarrow f_p \in \mathcal{O}_M$$

for all p.

11
where \(f = \sum f_p \) and \(f_p \in (\pi_0)_*((\mathcal{O}_G)_p) \).

Let us take any split grading operator \(w \) on \(G \). Clearly, the corresponding split grading of \(\mathcal{O}_G \) is compatible with \(\mathcal{O}_M \) if and only if \(w(\mathcal{O}_M) \subset \mathcal{O}_M \). It is not clear from Definition 5 that the compatible grading

\[
(\mathcal{O}_M)_p = \mathcal{O}_M \cap (\pi_0)_*((\mathcal{O}_G)_p) \tag{14}
\]

of \(\mathcal{O}_M \), if it exists, is a split grading of \(\mathcal{O}_M \). However, the following proposition holds:

Proposition 3. Assume that we have the \(\mathbb{Z} \)-grading:

\[
\mathcal{O}_M = \bigoplus_{p \geq 0} (\mathcal{O}_M)_p,
\]

where \((\mathcal{O}_M)_p \) are as in (14). Then this grading is a split grading.

Proof. The idea of the proof is to apply Lemma 2 to the grading operator \(w' := w|_{\mathcal{O}_M} \) on \(M \). Denote by \(J_M \) and by \(J_G \) the sheaves of ideals generated by odd elements of \(\mathcal{O}_M \) and \(\mathcal{O}_G \), respectively. Our aim is to show that

\[
w'(f) + J_{p+1}^M = pf + J_{p+1}^G;
\]

where \(f \in J^p_M \). In other words, we want to show that \(H^0(\alpha)(w') \) is a split grading operator for the grading of \(\text{gr} \mathcal{O}_M \). (We use notations of Lemma 2.) We have:

\[
(\text{gr} \pi)^*(w'(f) + J_{p+1}^M) = w(f) + J_{p+1}^G = pf + J_{p+1}^G;
\]

\[
(\text{gr} \pi)^*(pf + J_{p+1}^M) = pf + J_{p+1}^G.
\]

Since the map \((\text{gr} \pi)^* \) is injective, we get, \(w'(f) + J_{p+1}^M = pf + J_{p+1}^M \). \(\square \)

5.2 \(\mathcal{H} \)-invariant split grading operators.

First of all let us consider the situation when a split grading operator \(w \) on \(G \) is invariant with respect to a Lie subsupergroup \(\mathcal{H} \). In terms of super Harish-Chandra pairs this means:

\[
\begin{align*}
 r_h^* \circ w &= w \circ r_h^*, \quad \text{for all} \quad h \in \mathcal{H}_0; \\
 [Y, w] &= 0, \quad \text{for all} \quad Y \in \mathfrak{h}_1.
\end{align*}
\tag{15}
\]

Here \((\mathcal{H}_0, \mathfrak{h})\) is the super Harish-Chandra pair of \(\mathcal{H} \), \(r_h \) is the right translation and \(Y \) is an odd left invariant vector field.
Proposition 4. Assume that \(w \) is an \(\mathcal{H} \)-invariant split grading operator on \(G \), i.e. equations (15) hold. Then \(\mathcal{H} \) is an ordinary Lie group.

Proof. The idea of the proof is to show that the Lie superalgebra \(\mathfrak{h} \) of \(\mathcal{H} \) has the trivial odd part: \(\mathfrak{h}_{\overline{1}} = \{0\} \).

In Example 2 we saw that any split grading operator on \(G \) is given by \(w = \sum \varepsilon^i X_i + \chi \). If \(Z \) is a vector field on \(G \), denote by \(Z_e \in T_e(G) \) the corresponding tangent vector at the identity \(e \in G_0 \). Consider the second equation in (15). At the point \(e \), we have

\[
[Y, w]_e = \left(\sum_i Y(\varepsilon^i)X_i - \sum_i \varepsilon^i Y \circ X_i - \sum_i \varepsilon^i X_i \circ Y + [Y, \chi] \right)_e = 0
\]

for any \(Y \in \mathfrak{h}_{\overline{1}} \). Furthermore,

\[
\left(\sum_i \varepsilon^i Y \circ X_i - \sum_i \varepsilon^i X_i \circ Y \right)_e = 0 \quad \text{and} \quad [Y, \chi]_e = 0,
\]

because \(\varepsilon^i(e) = 0 \) and because \(\chi \in H^0(M_0, T(2)_{\overline{0}}) \). Therefore,

\[
[Y, w]_e = \sum_i Y(\varepsilon^i)(e)(X_i)_e = 0
\]

The tangent vectors \((X_i)_e \) form a basis in \(T_e(G)_{\overline{1}} \), hence \(Y(\varepsilon^i)(e) = 0 \) for all \(i \). The last statement is equivalent to \(Y_e = 0 \). Since \(Y \) is a left invariant vector field, we get \(Y = 0 \). The proof is complete. □

Remark. It is well known that the supermanifold \(G/\mathcal{H} \), where \(\mathcal{H} \) is an ordinary Lie group, is split (see [5] or [14]). Therefore, the case of \(\mathcal{H} \)-invariant split grading operators does not lead to new examples of homogeneous split supermanifolds.

5.3 \(G_0 \)-left invariant split grading operators.

Consider now a more general situation, when a split grading operator \(w \) leaves \(\mathcal{O}_M \) invariant. Let \(f \in \mathcal{O}_M \). Then \(w(f) \in \mathcal{O}_M \) if and only if

\[
r_h^*(w(f)) = w(f) \quad \text{and} \quad Y(w(f)) = 0
\]

for \(h \in \mathcal{H}_0 \) and \(Y \in \mathfrak{h}_{\overline{1}} \). These conditions are equivalent to the following ones:

\[
(r_h^* \circ w \circ (r_h^{-1})^* - w)|_{\mathcal{O}_M} = 0; \quad [Y, w]|_{\mathcal{O}_M} = 0. \quad (16)
\]

Recall that \(r_h^{-1} = r_{h^{-1}} \).
It seems to us that the system (16) is hard to solve in general. Consider now a special type of split grading operators, called G_0-left invariant grading operators.

Definition 6. A split grading of O_G is called G_0-left invariant if it is invariant with respect to left translations. In other words, from $f \in (O_G)_p$ it follows that $l_g^*(f) \in (O_G)_p$ for all $g \in G_0$.

It is easy to see that a split grading of O_G is G_0-left invariant if and only if the corresponding split grading operator w is invariant with respect to left translations: $l_g^* \circ w = w \circ l_g^*$, $g \in G_0$. For example, the split grading operator $\sum \epsilon_i X_i$ constructed in Example 2 is a G_0-left invariant split grading operator, because ϵ_i are G_0-left invariant functions and X_i are left invariant vector fields. In this section we will describe all such operators.

In Section 3.4 we have seen that the supermanifold $(G_0, \text{Hom}_C(\bigwedge \bar{g}_1, F_G))$ is a Lie supergroup isomorphic to $gr G$. We need the following lemma:

Lemma 3. The map

$$\Phi_g : O_G \rightarrow \text{Hom}_C(\bigwedge \bar{g}_1, F_G),$$

$$f \mapsto f \circ \gamma_g$$

from Section 3.1 is invariant with respect to left and right translations.

Proof. For any $h \in G_0$, denote by r'_h and l'_h the right and the left translation in the Lie supergroup $G^3 = (G_0, \text{Hom}_C(\bigwedge \bar{g}_1, F_G))$, respectively. (See, (11)) Let us show that

$$(r'_h)^* \circ \Phi_g = \Phi_g \circ r^*_h. \quad (17)$$

Let us take $Z \in \bigwedge \bar{g}_1$ and $g, h \in G_0$. Using (4) we have

$$[(r'_h)^* \circ \Phi_g](f)(Z)(g) = \Phi_g(f)(\text{Ad}(h^{-1})(Z))(gh) =$$

$$f(\gamma_g(\text{Ad}(h^{-1})(Z)))(gh) = f(\text{Ad}(h^{-1})(\gamma_g(Z)))(gh) =$$

$$r^*_h(f)(\gamma_g(Z))(g) = [\Phi_g \circ r^*_h](f)(Z)(g).$$

Similarly, we get

$$(l'_h)^* \circ \Phi_g = \Phi_g \circ l^*_h.$$

□

The following observation is known to experts, but we cannot find it in the literature:

Lemma 4. The space of G_0-left invariant vector fields $H^0(G_0, T)^{G_0}$ on a Lie supergroup G is isomorphic to $H^0(\text{pt}, O_{G_0/G}) \otimes \mathfrak{g}$. The isomorphism is given by:

$$f \otimes Z \mapsto fZ,$$
where \(f \in H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \) and \(Z \in \mathfrak{g} \).

Proof. Clearly, the map \(F \) is injective and its image is contained in the vector space \(H^0(\mathcal{G}_0, \mathcal{T})^\mathcal{G}_0 \). Let us show that any vector field \(v \) in \(H^0(\mathcal{G}_0, \mathcal{T})^\mathcal{G}_0 \) is contained in \(\text{Im}(F) \).

Let \((X_i) \) and \((Z_j) \) be a basis of odd and even left invariant (with respect to the supergroup \(\mathcal{G} \)) vector fields on \(\mathcal{G} \), respectively. Assume that

\[
v = \sum f^i X_i + \sum g^j Z_j,
\]

where \(f^i, g^j \in H^0(\mathcal{G}_0, \mathcal{O}_\mathcal{G}) \), be the decomposition of \(v \) with respect to this basis. We have:

\[
l^*_g \circ v = \sum l^*_g(f^i)l^*_g \circ X_i + \sum l^*_g(g^j)l^*_g \circ Z_j = \sum l^*_g(f^i)X_i \circ l^*_g + \sum l^*_g(g^j)Z_j \circ l^*_g = v \circ l^*_g.
\]

Therefore, \(l^*_g(f^i) = f^i \) and \(l^*_g(g^j) = g^j \) for all \(g \in \mathcal{G}_0 \). In other words, \(f^i, g^j \in H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \). The proof is complete. \(\square \)

The Lie supergroup \(\mathcal{G} \) acts on the vector superspace \(H^0(\mathcal{G}_0, \mathcal{T})^\mathcal{G}_0 \). This action we can describe in terms of the corresponding super Harish-Chandra pair \((\mathcal{G}_0, \mathfrak{g}) \) in the following way:

\[
g \mapsto (X \mapsto r^*_g \circ X \circ (r^{-1}_g)^*), \quad Y \mapsto (X \mapsto [Y, X]), \quad (18)
\]

where \(g \in \mathcal{G}_0 \), \(X \in H^0(\mathcal{G}_0, \mathcal{T})^\mathcal{G}_0 \) and \(Y \in \mathfrak{g} \). Note that this action is well-defined because \(\mathcal{G} \)-left and right actions on \(H^0(\mathcal{G}_0, \mathcal{T}) \) commute. The Lie supergroup \(\mathcal{G} \) acts also on the vector superspace \(H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{g} \). This action is given by right translations \(r^*_g \) on \(H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \) and by the formulas (18) on \(\mathfrak{g} \) if we assume that \(X \in \mathfrak{g} \). Clearly, the isomorphism \(F \) from Lemma 4 is equivariant. From now on we will identify \(H^0(\mathcal{G}_0, \mathcal{T})^\mathcal{G}_0 \) and \(H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{g} \) via isomorphism \(F \) from Lemma 4.

If \(\mathcal{H} \) is a Lie subsupergroup of \(\mathcal{G} \) and \(\mathfrak{h} = \text{Lie} \mathcal{H} \) then \(\mathfrak{g}/\mathfrak{h} \) is an \(\mathcal{H} \)-module.

Lemma 5. Let us take a \(\mathcal{G}_0 \)-left invariant split grading operator \(w \). The vector field \(w \) satisfies (16) if and only if

\[
\bar{w} \in (H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{g}/\mathfrak{h})^{\mathcal{H}}, \quad (19)
\]

where \(\bar{w} \) is the image of \(w \) by the natural mapping

\[
H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{g} \to H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{g}/\mathfrak{h}.
\]

Proof. Let \(\bar{w} \in (H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{g}/\mathfrak{h})^{\mathcal{H}} \). It follows that

\[
r^*_h \circ w \circ (r^{-1}_h)^* - w \in H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0/\mathcal{G}}) \otimes \mathfrak{h}, \quad h \in \mathcal{H}_0,
\]

15
and

\[[Y, w] \in H^0(\text{pt}, \mathcal{O}_{\mathcal{G}}) \otimes \mathfrak{h}, \ Y \in \mathfrak{h}. \]

Hence, the conditions (16) are satisfied.

On the other hand, if the conditions (16) are satisfied, then the vector fields \(r^*_h \circ w \circ (r^{-1}_h)^* - w \) and \([Y, w]\) are vertical with respect to the projection \(\pi : \mathcal{G} \to \mathcal{G}/\mathcal{H} \). Therefore, \(r^*_h \circ w \circ (r^{-1}_h)^* - w \) and \([Y, w]\) belong to the superspace \(H^0(\text{pt}, \mathcal{O}_{\mathcal{G}}) \otimes \mathfrak{h} \). It is equivalent to conditions (19). □

Now our aim is to describe the space \((H^0(\text{pt}, \mathcal{O}_{\mathcal{G}}) \otimes \mathfrak{g}/\mathfrak{h})^{\mathcal{H}_0} \). We have seen in Proposition 1 that the superspace \(H^0(\text{pt}, \mathcal{O}_{\mathcal{G}}) \) is isomorphic to \(\bigwedge (\mathfrak{g}_1) \otimes \mathfrak{g} \) as \(\mathcal{G}_0 \)-modules.

Proposition 5. a. We have

\[
H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0}) \otimes \mathfrak{g} \simeq \bigwedge (\mathfrak{g}_1) \otimes \mathfrak{g} \quad \text{as } \mathcal{G}_0 \text{-modules,}
\]
\[
H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0}) \otimes \mathfrak{g}/\mathfrak{h} \simeq \bigwedge (\mathfrak{g}_1) \otimes \mathfrak{g}/\mathfrak{h} \quad \text{as } \mathcal{H}_0 \text{-modules,}
\]

where the action of \(\mathcal{G}_0 \) on \(\bigwedge (\mathfrak{g}_1) \) is standard.

b. There exists a \(\mathcal{G}_0 \)-left and right invariant split grading operator on \(\mathcal{G} \).

Proof. a. We have to show that there exists an \(\mathcal{G}_0 \)-equivariant isomorphism

\[
H^0(\text{pt}, \mathcal{O}_{\mathcal{G}_0}) \xrightarrow{\beta} \bigwedge \mathfrak{g}_1.
\]

Then the map \(\beta \otimes \text{id} \) will provide the required isomorphism of \(\mathcal{G}_0 \)-modules. Consider the Lie supergroup

\[
\mathcal{G}^3 = (\mathcal{G}_0, \text{Hom}_\mathbb{C}(\bigwedge \mathfrak{g}_1, \mathcal{F}_{\mathcal{G}_0}))
\]

from Section 3.4. It follows from (4) that

\[
H^0(\mathcal{G}_0, \mathcal{O}_{\mathcal{G}_0}) = \text{Hom}_\mathbb{C}(\bigwedge \mathfrak{g}_1, \mathbb{C}) = (\bigwedge \mathfrak{g}_1)^*.
\]

Note that the action of \(\mathcal{G}_0 \) on \((\bigwedge \mathfrak{g}_1)^* \) by right translations in \(\mathcal{G}^3 \), denoted by \((r'_g)^* \), coincides with the standard action of \(\mathcal{G}_0 \) on \((\bigwedge \mathfrak{g}_1)^* \). Indeed, let us take

\[
f \in H^0(\mathcal{G}_0, \mathcal{O}_{\mathcal{G}^3})^{\mathcal{G}_0} = (\bigwedge \mathfrak{g}_1)^*.
\]

By (11), we have:

\[
(r'_g)^*(f)(X)(e) = (r'_g)^*(f)(X)(h) = f(\text{Ad}(g^{-1})X)(hg) = f(\text{Ad}(g^{-1})X)(e).
\]
Here $g, h \in G_0$, $X \in \bigwedge g_1$ and $e \in G_0$ is the identity. It remains to note that by Lemma 3, the map Φ_g induces the equivariant isomorphism between the superspaces of left invariants $H^0(\text{pt}, O_{G_0 \backslash G})$ and $(\bigwedge g_1)^*$.

b. We need to show that in the vector space

$$(\bigwedge (g_1^* \otimes g))^{G_0} = (\bigwedge (g_1^* \otimes g_0))^{G_0} \oplus (\bigwedge (g_1^* \otimes g_1))^{G_0}$$

there exists points corresponding to split grading operators. This space always possesses a G_0-invariant, precisely, the identity operator $\text{id} \in g_1^* \otimes g_1$. The pre-image of $\beta^{-1}(\text{id}) \in H^0(\text{pt}, O_{G_0 \backslash G}) \otimes g$ has the form $\sum \varepsilon^i X_i$ for some choice of local coordinates such that $X_i(\varepsilon^j)(e) = \delta_i^j$, see Example 2. We have seen that such vector fields correspond to G_0-left invariant split grading operators on G. □

Denote by T_G the tangent sheaf of a Lie group G and by \overline{v} is the image of v by the natural mapping $H^0(\text{pt}, O_{G_0 \backslash G}) \otimes g \to H^0(\text{pt}, O_{G_0 \backslash G}) \otimes g/h$.

The result of our study is:

Theorem 1. The following conditions are equivalent:

a. A homogeneous supermanifold $M = G/H$ admits a G_0-left invariant split grading that is induced by a grading of O_G and the inclusion $O_M \subset (\pi_0)_*(O_G)$.

b. There exists a G_0-left invariant vector field $\chi \in H^0(G_0, (T_G)(2g))$ such that

$$\overline{\chi} \in \left(\bigwedge (g_1^* \otimes g/h)\right)^{G_0}$$

and such that for $w = \beta^{-1}(\text{id}) + \chi$, where $\beta^{-1}(\text{id}) = \sum \varepsilon^i X_i$ is from the proof of Proposition 5.b, we have

$$[Y, w] \in H^0(\text{pt}, O_{G_0 \backslash G}) \otimes h, \ Y \in h_1.$$ (21)

6 An application

As above let G be a Lie supergroup and H be a Lie subsupergroup, g and h be the Lie superalgebras of G and H, respectively, and $M := G/H$. Consider the map

$$\rho : g_0 \to H^0(\text{pt}, T_{G_0 \backslash G})$$
induced by the action of G_0 on M. (Here $T_{G_0\backslash G}$ is the sheaf of vector fields on $G_0\backslash G$.) Let us describe its kernel. For $X \in \mathfrak{g}_0$ and $f \in H^0(pt, \mathcal{O}_{G_0\backslash G})$, we have:

$$X(f)(Y)(e) = \left. \frac{d}{dt} \right|_{t=0} f(\text{Ad}(\exp(-tX))Y)(\exp(tX)) = \left. \frac{d}{dt} \right|_{t=0} f(\text{Ad}(\exp(-tX))Y)(e),$$

where $Y = Y_1 \cdots Y_r$, $Y_i \in \mathfrak{g}_i$ and t is an even parameter. A vector field X is in $\text{Ker} \rho$ if and only if $X(f)(Y)(e) = 0$ for all f and Y. Hence,

$$\text{Ker} \rho = \text{Ker}(\text{ad} \mid \mathfrak{g}_1),$$

where ad is the adjoint representation of \mathfrak{g}_0 in \mathfrak{g}.

Furthermore, denote

$$A := \text{Ker} \left(G_0 \ni g \mapsto \text{Ad}(g) : G/H \to G/H \right);$$
$$a := \text{Ker} \left(\mathfrak{g} \ni X \mapsto H^0(G_0/H_0, T_{G/H} G_0) \right).$$

Here $\text{Ad}(g)$ is the automorphism of G/H induced by the left translation l_g. The pair (A, a) is a super Harish-Chandra pair. An action of G on M is called effective if the corresponding to (A, a) Lie supergroup is trivial. As in the case of Lie groups any action of a Lie supergroup can be factored to be effective.

Theorem 2. Assume that the action of G on M is effective. If

$$[\mathfrak{g}_1, \mathfrak{h}_1] \subset \mathfrak{h}_0 \cap \text{Ker}(\text{ad} \mid \mathfrak{g}_1),$$

then M is split.

Proof. Let us show that in this case the vector field $w = \sum \varepsilon^i X_i + 0 = \sum \varepsilon^i X_i$ from Proposition 5.b is a (left invariant) split grading operator on M using Theorem 1.

The condition (20) is satisfied trivially, because $\chi = 0$. Let us check the condition (21). We have:

$$[Y, v] = \sum Y(\varepsilon^i)X_i - \sum \varepsilon^i[Y, X_i].$$

Since $[\mathfrak{g}_1, \mathfrak{h}_1] \subset \mathfrak{h}_0$, we get

$$\sum \varepsilon^i[Y, X_i] \in H^0(pt, \mathcal{O}_{G_0\backslash G}) \otimes \mathfrak{h}. $$

Hence, we have to show that

$$\sum Y(\varepsilon^i)X_i \in H^0(pt, \mathcal{O}_{G_0\backslash G}) \otimes \mathfrak{h}. $$

18
Assume that X_1, \ldots, X_k is a basis of \mathfrak{h}, $X_1, \ldots, X_k, X_{k+1}, \ldots, X_m$ is a basis of \mathfrak{g}, and (ε^i) is the system of global odd G_0-left invariant coordinates corresponding to this basis such that $\sum \varepsilon^i X_i$ is as in Proposition 5.b. In particular, $\varepsilon^i(\gamma(X_j)) = \delta^i_j$, because $\sum (\varepsilon^i \circ \gamma) \otimes X_i$ is the identity operator in $\mathfrak{g}_1 \otimes \mathfrak{g}$. Let us take $Z \in \text{Ker} \rho$. Clearly, $Z(\varepsilon^i) = 0$ and $X_j(\varepsilon^i)$ is again a G_0-left invariant function on G. By (8), we also have:

$$\varepsilon^i(X_{i_1} \cdots Z \cdots X_{i_k}) = 0.$$

Furthermore, by definition of ε^i, we get that $\varepsilon^i \circ \gamma \in \mathfrak{g}_1^*$. Hence,

$$\varepsilon^i(\gamma(X_{i_1} \wedge \cdots \wedge X_{i_k})) = 0,$$

if $k > 1$. Summing up all these observations we see that

$$\varepsilon^i(\gamma(X) \cdot Y) = \varepsilon^i(\gamma(X \wedge Y)) + 0,$$

where $Y \in \mathfrak{h}$ and $X \in \bigwedge \mathfrak{g}$. Now we can conclude that

$$\sum Y(\varepsilon^i)X_i = -Y \in \mathfrak{h} \subset H^0(\text{pt}, \mathcal{O}_{G_0}G) \otimes \mathfrak{h}.$$

The proof is complete. \square

Example 3. Consider the super-grassmannian $\text{Gr}_{m|n,k|m,l}$. It is a $\text{GL}_{m|n}$-homogeneous space, see [9] for more details. Hence, $\text{Gr}_{m|n,k|m,l} \simeq \text{GL}_{m|n}/\mathcal{H}$ for a certain \mathcal{H}. (See, for example, [15].) It the case $k = 0$ or $k = m$, the following holds $[[\mathfrak{g}_{m|n}], \mathfrak{h}] = 0$. Therefore, by Theorem 2, the super-grassmannian is split.

In [9] it was shown that the super-grassmannian $\text{GL}_{m|n,k|m,l}$ is not split if and only if $0 < k < m$ and $0 < l < n$. (This fact also follows from results in [6] and [13] about non-projectivity of super-grassmannian.)

Finally, let us recall a result proved in [14]:

Theorem 3. If a complex homogeneous supermanifold \mathcal{M} is split, then there is a Lie supergroup G with $[\mathfrak{g}, \mathfrak{g}] = 0$, where $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 = \text{Lie} G$, such that G acts on \mathcal{M} transitively.

References

Elizaveta Vishnyakova
Max Planck Institute for Mathematics Bonn and
University of Luxembourg
E-mail address: VishnyakovaE@googlemail.com