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Abstract. Models@run.time provides semantically rich reflection lay-
ers enabling intelligent systems to reason about themselves and their
surrounding context. Most reasoning processes require not only to ex-
plore the current state, but also the past history to take sustainable
decisions e.g. to avoid oscillating between states. Models@run.time and
model-driven engineering in general lack native mechanisms to efficiently
support the notion of history, and current approaches usually generate
redundant data when versioning models, which reasoners need to nav-
igate. Because of this limitation, models fail in providing suitable and
sustainable abstractions to deal with domains relying on history-aware
reasoning. This paper tackles this issue by considering history as a na-
tive concept for modeling foundations. Integrated, in conjunction with
lazy load/storage techniques, into the Kevoree Modeling Framework, we
demonstrate onto a smart grid case study, that this mechanisms enable
a sustainable reasoning about massive historized models.

Keywords: Models@run.time, Model-driven engineering, Model version-
ing, Historized models

1 Introduction

The paradigm of Models@run.time [8], [26] empowers intelligent systems with
a model-based abstraction causally connected to their own current state. This
abstract self-representation can be used by reasoning processes at runtime. For
instance, this enables systems to (i) dynamically explore several adaptation op-
tions (models) in order to optimize their state, (ii) select the most appropriate
one, and (iii) run a set of verifications of viability on new configurations before
finally asking for an actual application. This capability enables the develop-
ment of safer and more intelligent software systems. However, reasoning on the
current state of the system is sometimes not sufficient. Indeed, if the system
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only reacts to the current state, it may become unstable, oscillating between
two configurations as conflicting events are continuously detected. To avoid this
state flapping, it is necessary to consider historical information to compare past
versions, detect correlations and take more sustainable and stable adaptation
decisions. This scenario and the associated challenges are also illustrated in an
industrial context. Creos Luxembourg S.A. is the main energy grid operator in
Luxembourg. Our partnership with them is geared at making their electricity
grid able to self adapt to evolving contexts (heavy wind or rain, consumption
increase) to better manage energy production and consumption. This requires
to make predictions on the basis of current and historical data. Here, a linear
regression of the average electric load values of the meters in a region, over a
certain period of time, has to be computed in order to predict the electric load
for this region. This obviously requires access to the model history.

Usually, dynamic modifications operated by intelligent systems at runtime
react to small changes in the state (parameter changes; unavailability of a com-
ponent). These adaptations often enact only few changes to make the system fit
better to its new context. Being a slight change in the execution context, or on
the system’s state, all these changes create successive versions. These changes
have to be tracked to keep the history and help reasoners in making decisions.

Unfortunately, Models@run.time in particular and model-driven engineering
in general lack native mechanisms to efficiently support the notion of model ver-
sioning. Instead, current modeling approaches consider model versioning mainly
as an infrastructural topic supporting model management in the sense of version
control systems commonly used for textual artefacts like source code [6], [22].
Moreover, current approaches focus more on versioning of meta-models, with a
lesser emphasis on runtime/execution model instances. In contrast to this, our
versioning approach regards the evolution of models from an application point of
view allowing to keep track and use this evolution of domain models (at runtime)
at an application level (like e.g. Bigtable [12] or temporal databases [25]).

The approach presented in this paper is a general concept to enable version-
ing of models (as runtime structures) and is not restricted to Models@run.time
paradigm, although our approach is very well suited for this paradigm. An ef-
ficient support would include (1) an appropriate storage mechanism to store
deltas between two model versions, and (2) methods to navigate in the modeling
space (as usual), but also to navigate in history (i.e. in versions). To overcome
this limitation, current implementations usually create their own ad-hoc histor-
ization solutions that usually come with at least two major drawbacks. First,
ad-hoc mechanisms make the maintenance complicated and sometimes less effi-
cient than native mechanisms. Secondly, the realization of the models storage is
often a simple list of complete models for each change (or periodically), creating
either a linear explosion of the memory needed for storage, or a strong limit
in the history depth. Moreover, the combination of these two drawbacks makes
the navigation in space and versions (models and history) a real nightmare for
developers in terms of algorithmic complexity, performance and maintenance.
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This paper tackles this issue by including versioning as a native concept di-
rectly managed within each model element. This inclusion comes with native
mechanisms to browse the versions of model elements to enable the navigation
in space (model) and history (versions). The paper is structured as follows. Sec-
tion 2 describes the fundamental ideas and mechanisms of our contribution.
Section 3 gives details on how we implemented this idea into the Kevoree Mod-
eling Framework. Based on this implementation, we evaluate our approach in
section 4 on a smart grid case study and compare it to classical approaches.
Finally, we discuss the related work in section 5 before section 6 concludes.

2 Native Versioning for Models at Runtime

This section describes the concepts and mechanisms, which are necessary to
enable (1) the versioning of model elements and (2) the navigation in space
(model) and history (versions).

2.1 A Path to Reach Elements in the Modeling Space

There are different ways to identify an element within a model: static identity-
based matching (unique identifiers), signature-based matching [30], similarity-
based matching, and custom language-specific matching [10], [23]. This is needed,
for example, to detect changes in a model, and to merge and compare models. To
allow model elements to evolve independently and enable an efficient versioning
of these elements, we rely in our approach on unique identifiers (UID). We use
the path of a model element as its unique identifier within a model. Directly
inspired by the select operator of relational databases and by XPath [14], the
path defines a query syntax aligned with the MOF [29] concepts. The naviga-
tion through a relationship can be achieved with the following expression: re-
lationName[IDAttributeValue]. The IDAttribute is one attribute tagged
as ID in the meta-model. This expression defines the PATH of an element in
a MOF relationship. Several expressions can be chained to recursively navigate
the nested model elements. Expressions are delimited by a /. It is thus possible
to build a unique path to a model element, by chaining all sub-path expres-
sions needed to navigate to it from the root model element, via the contain-
ment relationships. For instance, let us consider a model that has a collection
vehicles of Vehicle, identified by a plate number. Further, each vehicle has a
collection wheels of Wheels identified by their location (FL:Front Left, etc.). In
this case, the path to access the front left wheel of the vehicle “KG673JU” is:
vehicles[KG673JU]/wheels[FL]. Our definition of UID only relies on domain el-
ements (relationships and attributes) and thus does not require an additional
technical identifier. It is important to note that the IDAttribute alone does
not define uniqueness. Uniqueness is only defined in combination with the refer-
ence. Therefore, in the example two wheels named FL can exist but only in two
different vehicles.



4 Hartmann, Fouquet, Nain, Morin, Klein, Barais, Le Traon

2.2 Reaching Elements in the Versioning Space

The mechanism of path allows to uniquely identify and efficiently access model
elements in the modeling space, but does not consider the notion of version.
Since elements in a model usually evolve at different paces, versions shouldn’t
be considered at the model level but on a model element level. For example,
the rim of the front left wheel of vehicle ”KG673JU” could have been changed
after an accident. Therefore, we could have two versions of the front left wheel,
one with the old rim and one with the new one. Using only the path vehi-
cles[KG673JU]/wheels[FL] to identify the wheel is not sufficient. To address
this new requirement, we introduce a version identifier (VI) in conjunction with
the path. This makes it possible to retrieve a model element in a specific version
and enables the base navigation in history (space of versions). A timestamp,
a number, or a string are examples for valid VIs. A model element version is
therefore uniquely identified by its path together with a version identifier. This
is shown in figure 1. This concept allows to create an arbitrary number of ver-

unique version 
identifier

version 
identifier path

Fig. 1. Model element version identifier

sions during the lifetime of an element. Figure 2 shows an exemplary lifecycle of
a model element e. The first version (with version identifier v1) of model element
e is created at time t1 and added to the model. Then e evolves over time and
two additional versions (with version identifiers v2 respectively v3) are created
at t2 respectively t3. Finally, at t4 e is removed from the model and its lifecycle
ends. The extension of the concept of path with a version identifier enables basic

e(v1)

t1 t2
time

e(v2)

t3

e(v3)

t0

start of lifetime end of lifetime

t4

Fig. 2. Lifecycle of a model element

navigation in modeling space and versions, without any impact on the business
modeling API. To support this non intrusiveness, and allow for more complex
navigation in space and versions, we use the notion of navigation context.

2.3 Enhancing Navigation Capabilities with Navigation Context

To ease the navigation in versions, we enrich the modeling API with three basic
operations to navigate in versions. These can be called on each model element:



A Native Versioning Concept to Support Historized Models at Runtime 5

The shift operation switches the modeling space to another version. The previous
operation is a shortcut to retrieve the direct predecessor (in terms of version) of
the current model element. The next method is similar to the previous operation,
but retrieves the direct successor of the current model element.

These operations allow to independently select model element versions. Even
if this mechanism is powerful, the navigation in such models can rapidly become
very complicated. Indeed, a relationship r from an element e1 to an element e2
is no longer uniquely defined because of the versioning. Thus, the navigation
between model elements can no more rely on relations (in space) only. Figure 3
shows two model elements, e1 with only one version and e2 with three versions.
The version of e2, which has to be returned when navigating the relationship r

r

version v1

model element e1 model element e2

path

version v1

path

version v2

version v3 navigation 
context

Fig. 3. Different versions of a model element and their relations

is ambiguous. Since each model element can have several versions, a selection
policy has to be defined to navigate from one model element to a related. This
navigation is thus along two dimensions (space and version). To cope with this
problem, we define a navigation context.

This navigation context can be either set globally for all model elements, e.g.
to always return the latest or first version, or can be set individually for each
model element. The navigation context for a model element can also be set to a
specific version. For example, for the scenario of figure 3 the navigation context
for model element e2 could be set to version v2. When the model is traversed
from e1 to e2 using relationship r, version v2 of e2 will be returned.

This resolution is transparent and hidden behind methods to navigate in
the model. Unlike in previous approaches (e.g. relationships in MOF [29]), the
navigation function is no longer constant but yields different results depending
on the navigation context.

2.4 Leveraging Traces to Store Versions

The storage of model element versions relies on the possibility to get a serialized
representation of all attributes and relationships of a model element. For this
purpose we use so called traces. A trace defines the sequence of atomic actions
necessary to construct a model element (or a complete model). Each model
element can be transformed into a trace and vice versa [9]. A trace includes all
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attribute and relationship information of the model element. Listing 1.1 shows
a trace for one model element.

Listing 1.1. Trace of a model element
{
"type":"SET","src":"meters[m3]","refname":"consumption","content":"100kWh"
"type":"ADD","src":"meters[m3]","refname":"reachable","content":"hubs[hub2]"
}

The listing shows a trace of a model element with an attribute consumption and
a relationship reachable. The value hubs[hub2] of relation reachable shows how
we leverage the path concept in our traces to uniquely identify a model element
within a model. We use the JSON [15] format for a lightweight representation
and storage of traces.

The version identifier in conjunction with the path (extended path) can be
used as key and the trace as value. This is shown in figure 4. The data can then

extended path
 = 

key
version 

identifier path trace value

Fig. 4. Storage concept for versioned model elements

be stored using arbitrary back ends e.g. key/value stores, relational databases,
in RAM (as cache), or even in common version control systems like Git [2].

This section described the foundation of our contribution. To assess its suit-
ability in real cases, we implemented this idea into the KMF project [17].

3 Implementation in KMF

This section presents the implementation of the proposed approach into the
Kevoree Modeling Framework. The source is available on the project web page4.

3.1 The Kevoree Modeling Framework

KMF [17], [18] is an alternative to EMF [11], specifically designed to support the
Models@run.time paradigm in terms of memory usage and runtime performance.
The code generator of KMF generates a modeling API from an Ecore meta-
model and offers several features, e.g. (1) event-based listeners, (2) management
of persistence, (3) different serialization formats (XMI [28] and JSON [15]), and
more recently, (4) the option to compile for Java [19] and JavaScript [16].

3.2 Unique IDs and Model Elements Paths in KMF

As described in section 2, our contribution assumes the availability of an at-
tribute, which is able to uniquely identify model elements within relationships.
To enforce this, KMF generates a method getID(). If one or several attributes are

4 http://kevoree.org/kmf
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tagged as IDs in the meta-model, the getID() method returns a concatenation of
the ID attributes’ values, ordered alphabetically on the attributes’ names. If no
ID attribute is specified, KMF adds one and the generated API automatically
injects a UID value at creation, though developers are strongly encouraged to
provide a more readable, domain-specific value.

In addition, we also assume the uniqueness of the container for any model
element. This property is actually ensured by EMF, and KMF also complies to
this convention: apart from the root element that is not contained, every model
element has to be present once in a containment collection within the entire
model [29]. Then, the unique identifier ensures the uniqueness of model elements
in the containment collection. By chaining these pieces of information from the
root, KMF can create a path that uniquely identifies each model element in the
scope of the model. This defines the semantics to navigate in the model along
the space dimension.

As presented in the contribution section, the activation of the versioning
of model elements implies an extension of this path mechanism to enable the
localization of a model element in both version and modeling dimensions. If
the conjunction of the version identifier (VI) to the path is a simple idea, its
interpretation to resolve a real model element is more intricate. Moreover, it is
important to not pollute the modeling space navigation with versioning concerns.
Therefore, we introduce a navigation context that is used to precisely drive both
the navigation in versions and support the resolution mechanisms of modeling
elements (used by the path resolver). This navigation context is implemented by
a special object given to the factory of the generated API. This object seamlessly
determines which version should be resolved while the model is traversed.

3.3 Traces and Load/Save Mechanisms

Loading and saving model versions can be efficiently managed by big data-like
tools, such as key-value stores. The extended path (path and version ID) of a
model element is used as key, and the serialized trace of this elements as value.
We provide an expandable datastore interface and several implementations of
NoSQL storages. Google LevelDB [5] is used by default. It is optimized for an
efficient handling of big data, can be easily embedded into applications, and
most importantly, it has proved to be very fast for our purpose (see section
4). The data storage implementation itself is not part of our contribution, in-
stead we intend to provide an efficient layer for versioning of model elements
on top of already existing storage technologies. As history data can quickly be-
come very big (millions of elements), they may no longer fit completely into
memory. We thus implement a lazy loading [1] mechanism, which leverages our
serialization strategy and our notion of path. Attributes and relationships are
now only loaded when they are accessed (read or written). Until this happens,
we use proxies [1] containing only the path and version identifier, to minimize
memory usage. This has been achieved by extending KMF so that relationships
are dynamically resolved when the model is traversed. It is important to note
that our proxy mechanism works at the model element level rather than at the
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model level. It first must be determined which version of a related model element
must be retrieved. This depends on the navigation context. After this, the actual
model element version can be loaded from storage. Load (get) and save (put)
operations are very efficient using extended paths as keys to uniquely identify
model element versions. Lazy loading a model element in a specific version re-
quires just one get operation from the datastore. This allows to manage models,
including histories of arbitrary size, efficiently and it hides the complexity of
resolving and navigating versioned data behind a modeling API.

3.4 Navigation Mechanisms

Modeling approaches use meta-model definitions to derive domain specific APIs.
Following this idea, our implementation generates an extended API that in ad-
dition provides operations to manipulate and navigate the history of model el-
ements. It is illustrated here on a simplified smart grid meta-model definition
that consists of a smart meter with an attribute for electric load and a rela-
tionship to the reachable surrounding meters. The API provides functions to
create, delete, store, load, and navigate model element versions. In addition the
API can be used to specify the navigation context on which elements should be
resolved while navigating the model. Listing 1.2 shows Java code that uses a
Context ctx (abstraction to manipulate model element versions) demonstrating
some of these operations. In the first part of the listing below, the modeling API
is used to create and manipulate a version v1 of a smart meter element e1. In
the second, the navigation context is defined so that element e1 is resolved to
version v1 and e2 to v2.

Listing 1.2. Usage of the modeling API
// creating and manipulating model element versions
e1_1 = ctx.createSmartMeter ("e1","v1");
e1_1.setElectricLoad (712.99);
e1_1.addReachables(ctx.load("e2"));
e1_2 = m1.shift ("v2");
e1_2.setElectricLoad (1024.4);

// definition of the navigation context
ctx.navDef ("e1","v1);
ctx.navDef ("e2","v2");
r_e1 = ctx.load("e1");
assert(r_e1.getElectricLoad ()==712.99);
r_e2 = r_e1.getReachables ().get (0);
assert(r_e2.getVersion ()==" v2")

4 Evaluation

The native support of versioning at the level of model elements enables the
construction of domain specific models, aware of history that, for instance, can
empower reasoning processes. To evaluate this claim, this section analyses the
impact of using our approach on an industrial case study, which is provided by
Creos Luxembourg. In a nutshell, with this case study we evaluate the perfor-
mance of a model-based reasoning engine that aggregates and navigates smart
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grid state information to take corrective actions, like shutting down a windmill
in case of overproduction. This reasoning is based on a domain model, which is
periodically filled with live data from smart meters and sensors. In this context,
our approach is used to store and track the history of the smart grid sate and
smart-grid elements’ values. A new version of a model element is created each
time this model element is updated.

The validation is based on three key performance indicators (KPI): (1) evo-
lution of time and memory required to update a value in the model, (2) gain
on time for standard navigation operations in the model (e.g. for a reasoning
process), and (3) impact on the size required for the persistence of history-aware
models. For each KPI, we compare our approach with the classic model sam-
pling strategy taking a snapshot of the entire model for each modification (or
periodically). The measured memory value for KPI-1 is main memory (RAM),
for KPI-2 disk space. The time measured is the time required to complete the
process (depending on the KPI). All experiments are conducted on an Intel core
i7 CPU with 16GB RAM and an SSD disk. The full sampling approach and our
approach both use a Google LevelDB database for storage and run on the Java
Virtual Machine 8. We start our evaluation with a description of the meta-model
used in the case study.

4.1 Smart Grid Meta-Model

The smart grid is an emerging infrastructure leveraging modern information and
communication technology (ICT) to modernize today’s electricity grid. Figure 5
shows an excerpt of the smart gird meta-model that we designed together with
our industrial partner Creos Luxembourg. It describes the concepts required
to model and store an abstraction of the smart grid infrastructure currently
deployed in Luxembourg. We use this meta-model to evaluate all KPIs. This
meta-model is of central importance for the following evaluation. Smart meters,
concentrators, and their topology allow to reason about communication systems
and messages exchanged, while electric segments and measured consumption
data are used to reason about consumption/production. Smart meters installed
at customers sites continuously measure consumption information and propagate
it through network communication links. Concentrators then push these data
into the smart grid domain model.

4.2 KPI-1: Impact on Model Updates (CRUD)

To evaluate the impact of our approach on model update operations, we analyse
modifications of two magnitudes: (1) a large update (LU) that consists in the
creation of a new concentrator and a smart meter subtree (1000 units) and (2) a
minor update (MU) that consists in updating the consumption value measured
for a specific smart meter already present in the domain model. The size of
each update is constant and we vary the size of the domain model and the
history (number of versions) of measured values, by repeating the addition of
model elements. We grow the domain model from 0 to 100.000 elements, which
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Fig. 5. Smart grid meta-model [4]

approximately corresponds to the actual size of our Luxembourg smart grid
model. The results of KPI-1, in term of heap memory and time, are depicted
in figure 6 and figure 7. The full sampling strategy is presented on the left, our
approach on the right.
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Fig. 6. Memory impact of model manipulation with full and lazy sampling strategies

Let us first consider memory. The full sampling strategy depends on the
size of the model, as reflected by the linear progression of the heap memory size
required to insert fixed size updates. In contrary, our approach results in two
flat curves for LU and MU updates, showing that the memory required depends
only on the size of the update, not on the model size. This is verified by the
fact that minor modifications (MU) require less memory than LU and both are
constant and under 2.5MB while the full sampling requires up to 100MB.

Let us now consider time. Again, the time to insert new elements with full
sampling is related to the size of the model, but nearly constant with our solution.
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Fig. 7. Time and memory impact of model manipulation with full sampling strategy

Also, the time reduction is more important for MU than LU, confirming that our
approach reduces the necessary time to modify elements. KPI-1 demonstrates
that even in the worst case scenario, where all elements evolve at the same pace,
our approach offers a major improvement for CRUD operations (factor of 33 for
time and between 50 to 100 for memory).

Finally, let us consider batch insertions. To validate this result, we addi-
tionally performed a batch insert operation in full sampling and with our solu-
tion. This batch consists of 10.000 historical values for each meter, resulting in
a model of 1 million elements. We obtain as result 267s to insert with the full
sampling strategy and 16s for our approach. Even in this worst case, we still
have an improvement of a factor 17 for the insertion time.

4.3 KPI-2: Impact on Time Required for Exploration in Versions
and Reasoning Process

For this evaluation, we consider an already existing smart grid model containing
measurement values. The goal is to measure the gain (or loss) of time needed
to execute a complex computation on this history. We run several prediction
algorithms on the model, which correlate historical data to evaluate the current
state of the grid and, for example, throw an alert in case of an overconsumption.

We define two kind of predictions for the smart grid, at two different scales,
resulting in 4 different reasoning strategies: (1) small deep prediction (SDP),
(2) small wide prediction (SWP), (3) large deep prediction (LDP), and (4)
large wide prediction (LWP). Wide prediction means that the strategy uses
a correlation of data from neighbour meters, to predict the future consump-
tion. In a deep prediction, the strategy leverages the history of the customer
to predict its consumption habits. Both approaches perform a linear regres-
sion to predict the future consumption using two scales: large (100 meters)
and small (10). Results and time reduction factors are presented in the ta-
ble 1. The gain factor of our approach, compared to full sampling, is defined
as Factor = (Full Sampling time / Native V ersioning time). The gain factor
is between 557 and 1330, reducing the processing time from minutes to seconds.
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Table 1. Reasoning time in ms for consumption predictions

Type SDP SWP LDP LWP

Full 1147.75 ms 1131.13 ms 192271.19 ms 188985.69 ms

Lazy 2.06 ms 0.85 ms 189.03 ms 160.03 ms

Factor 557 1330 1017 1180

Although, we perform the computation for only one point of the grid, it has to
be multiplied by the number of smart meters to evaluate in a district. Now, the
gain highlighted here has already allowed to drop the time required to analyse
the entire grid, from hours of computation to seconds. Beyond Models@run.time
usage, this enables reasoning processes to react in near real-time (milliseconds
to seconds), which is required for smart grid protection reactions.

4.4 KPI-3: Versioning Storage Strategy Overhead Evaluation

In this section, we study and evaluate the overhead induced by our approach,
compared to the classic full model sampling strategy. Our goal is to detect the
percentage of modifications of a model, in a single version, above which the full
sampling approach creates less overhead. In other words, which percentage of
modifications makes the overhead of our solution a disadvantage in terms of
storage, despite its navigation gains are still valid.

For this evaluation, we load an existing model (containing 100 smart meters),
update the consumption value of several meters, serialize it again and store the
size. By varying the percentage of meters updated per version (period), we can
compare the size of the storage required for the diff with our approach, and the
full sampling. To ensure a fair comparison we use a compact JSON serialisation
format for both strategies. Results are depicted in Figure 8. The full sampling
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Fig. 8. Impact on the storage required to save versions

mechanism implies 39.1Kb of storage per model, regardless of the percentage of
modifications. This is a serious overhead for small modifications. Our strategy
requires a variable amount of memory, from 393 bytes for 1% of change to 39.8Kb
for 100% (complete change of the model). Also, linear augmentation of changes
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in the model with our approach creates a linear augmentation of the storage.
This confirms that our independent storage strategy for each model element has
no hidden side effect.

Our storage offers a reduction of 99.5% for 1% of change, but an increase
of only 1.02% for 100% of modifications. This means that, up to 98.5% of
modifications of a model, our approach needs less memory than full sampling.
Also, the overhead of 1.02% for full model change storage has to be related to the
features enabled by this overhead (navigation, insertion time gains, comparison
time gains). In this context, we consider the overhead acceptable.

Beside runtime usage improvements, this validation proves that we can offer
nearly constant memory and time consumption for model-based contexts, which
allows to face potentially massive history. These improvements are mainly due
to lazy-load and efficient path mechanisms, which by construction reduce the
floating memory window to read and write model elements. Similarly to how
NoSQL databases scale, we carefully reuse the modeling hierarchy concept to
fit with the datastore organization that offers the best performance, which ex-
plains this very considerable gain. Finally, this validation demonstrates that our
approach is suitable for the manipulation of massive historical model.

5 Related Work

Considering versioning (or time) as a crosscutting concern of data modeling has
been discussed for a long time, especially in database communities. In [13] Clif-
ford et al. provide a formal semantic for historical databases and an intentional
logic. Rose and Segev [31] incorporate temporal structures in the data model
itself, rather than at the application level, by extending the entity-relationship
data model into a temporal, object-oriented one. In addition they introduce a
temporal query language for the model. Ariav [7] also introduces a temporally-
oriented data model (as a restricted superset of the relational model) and pro-
vides a SQL-like query language for storing and retrieving temporal data. The
works of Mahmood et al. [25] and Segev and Shoshani [33] go into a similar
direction. The later also investigate the semantics of temporal data and corre-
sponding operators independently from a specific data model in [32]. In a newer
work [12], Google embeds versioning at the core of their BigTable implementa-
tion by allowing each cell in a BigTable to contain multiple versions of the same
data (at different timestamps).

The necessity to store and reason about versioned data has also been dis-
cussed in the area of the Semantic Web and its languages, like RDF [24] and
OWL [35]. For example, Motik [27] presents a logic-based approach for repre-
senting versions in RDF and OWL.

Recently, the need to efficiently version models has been explored in the do-
main of model-driven engineering. However, model versioning has been mainly
considered so far as an infrastructural issue in the sense that models are artifacts
that can evolve and must be managed in a similar manner to textual artifacts
like source code. Kerstin Altmanninger et al. [6] analyze the challenges coming
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along with model merging and derive a categorization of typical changes and
resulting conflicts. Building on this, they provide a set of test cases which they
apply on state-of-the-art versioning systems. Koegel and Helming [22] take a
similar direction with their EMFStore model repository. Their work focuses on
how to commit and update changes and how to perform a merge on a model.
Brosch et al. [10] also consider model versioning as a way to enable efficient team-
based development of models. They provide an introduction to the foundations
of model versioning, the underlying technologies for processing models and their
evolution, as well as the state of the art. Taentzer et al. [34] present an approach
that, in contrast to text-based versioning systems, takes model structures and
their changes over time into account. In their approach, they consider models
as graphs and focus on two different kinds of conflict detection, operation-based
conflicts between different graph modifications and the check for state-based
conflicts’ on merged graph modifications. These works consider versioning at a
model level rather than at a model element level. Moreover, these approaches
focus on versioning of meta-models whereas our work focuses on versioning of
runtime/execution models. Our approach enables not only to version a complete
model, but considers versioning and history as native mechanisms for any model
element. Moreover, versioning in the modeling domain is usually considered from
a design / architecture / infrastructural point of view, and models are versioned
as source code files would be. In contrast to this, our versioning approach re-
gards the evolution of model elements from an application point of view (e.g.
Bigtable [12] or temporal databases [25]). It allows to keep track of the evolution
of domain model elements —their history— and use this history efficiently on
an application level.

Most of the above mentioned work address storing and querying of versioned
data but largely ignores the handling of versioning at an application level. How-
ever, many reasoning processes require to explore simultaneously the current
state and past history to detect situations like a system state flapping. Our ap-
proach proposes to consider model versioning and history as native mechanisms
for modeling foundations. We not only efficiently store historical data (what is
done in other works before), but we propose a way to seamlessly use and navi-
gate in historized models. Also, we do not extend a specific data model (e.g. the
relational data model or object-oriented one) but use model-driven engineering
techniques to integrate versioning as a crosscutting property of any model ele-
ment. We aim at providing a natural and seamless navigation into the history of
model element versions. Just like version control systems, e.g. Git [2], we only
store incremental changes rather than snapshots of a complete model.

6 Conclusion

The use of models to organize and store dynamic data suffers from the lack of
native mechanism to handle the history of data in modeling foundations. Mean-
while, the recent evolutions of model-driven engineering, and more precisely,
the emergence of the Models@run.time paradigm spreads the use of models to
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support reasoning at runtime. Therefore, the need for efficient mechanisms to
store and navigate the history of model element values (a.k.a. dynamic data)
has strongly increased. The contribution presented in this paper aims at ad-
dressing this need, adding a version identifier as a first-class feature crosscutting
any model element. This approach, coupled with the notion of trace and lazy
load/save techniques, allows model elements to be versioned independently from
each other without the need to version a complete model. Moreover, this paper
describes the navigation methods introduced on each model element to enable
the basic navigation in versions. Finally, we defined a navigation context to
simplify and improve the performances of navigation between model elements
coming from heterogeneous (different) versions.

We evaluate the added value of this work on a case study from the smart
grid domain, defined with an industrial partner. The validation relies on an
implementation of the approach into the Kevoree Modeling Framework. This
evaluation shows the efficiency of the storage and navigation mechanisms com-
pared to full sampling and ad-hoc navigation techniques. It also demonstrates
that in the worst case (i.e. when all model elements are modified at the same
pace) the storage overhead is negligible (1.02%), while our navigation mechanism
still offer constant performances. Even if the evaluation has been run in use cases
linked to the Models@run.time paradigm, we are convinced that this approach
can also be used in any kind of applications using versioned data. For exam-
ple, we use a derivation of this approach to enable what we call time-distorted
context representations to manage a huge amount of temporal data in runtime
reasoning processes [21]. This has been proven especially useful in the context
of reactive security for smart grids [20].

In future work we plan to: (i) integrate a declarative query language on top
of our approach to improve the selection of model element versions, instead
of relying only on the three basic operations shift, previous, and next, (ii) use
distributed data stores like HyperDex DB [3], and (iii) define reusable patterns
of version navigation to tame the complexity of reasoning process development.
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