Optimal mix of funded and unfunded pension systems: The case of Luxembourg

Jang SCHILTZ (University of Luxembourg)

joint work with
Jean-Daniel GUIGOU (University of Luxembourg),
& Bruno LOVAT (University of Lorraine)

2nd Luxembourg Workshop on Household Finance and Consumption

June 20, 2014
Outline

1 General context of the research project
Outline

1. General context of the research project

2. The salary trajectories in Luxembourg
Outline

1. General context of the research project
2. The salary trajectories in Luxembourg
3. The optimal mix of pension systems
Outline

1. General context of the research project
2. The salary trajectories in Luxembourg
3. The optimal mix of pension systems
4. Outlook
Outline

1. General context of the research project
2. The salary trajectories in Luxembourg
3. The optimal mix of pension systems
4. Outlook
The Luxembourg pension system

Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).

Very high replacement rate (over 90%).

Due to several reasons (longevity risk and labor market explosion in the 1990s) the system is not sustainable.

Reform possibilities:

▶ Parameter adjustment in the Pay-as-you-go system
▶ and/or development of complementary systems (mix of funded and unfunded system)
The Luxembourg pension system

- Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).

Due to several reasons (longevity risk and labor market explosion in the 1990s) the system is not sustainable.

Reform possibilities:
- Parameter adjustment in the Pay-as-you-go system
- and/or development of complementary systems (mix of funded and unfunded system)
The Luxembourg pension system

- Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).
- Very high replacement rate (over 90%).
The Luxembourg pension system

- Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).
- Very high replacement rate (over 90%).

Due to several reasons (longevity risk and labor market explosion in the 1990s) the system is not sustainable.
The Luxembourg pension system

- Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).
- Very high replacement rate (over 90%).

Due to several reasons (longevity risk and labor market explosion in the 1990s) the system is not sustainable.

- Reform possibilities:

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine) 2nd Luxembourg Workshop on Household Finance and Consumption
The Luxembourg pension system

- Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).
- Very high replacement rate (over 90%).

Due to several reasons (longevity risk and labor market explosion in the 1990s) the system is not sustainable.

Reform possibilities:

- Parameter adjustment in the Pay-as-you-go system
The Luxembourg pension system

- Pay-as-you-go system + creation of a reserve (1.5 times the amount of the annual expenses).
- Very high replacement rate (over 90%).

- Due to several reasons (longevity risk and labor market explosion in the 1990s) the system is not sustainable.

- Reform possibilities:
 - Parameter adjustment in the Pay-as-you-go system
 - and/or development complementary systems (mix of funded and unfunded system)
Our research project

We have analyzed a mix of funded and unfunded pension system:
Our research project

We have analyzed a mix of funded and unfunded pension system:

- a unique database
Our research project

We have analyzed a mix of funded and unfunded pension systems:

- a unique database
- an innovative statistical methodology
Our research project

We have analyzed a mix of funded and unfunded pension system:

- a unique database
- an innovative statistical methodology
- a theoretical model based on a diversification principle
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718 054 workers.
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718,054 workers.

Some sociological variables:

- gender (male, female)
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718 054 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718 054 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718 054 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
- year of birth
The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718 054 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
- year of birth
- age in the first year of professional activity
A statistical methodology based on homogeneous groups

We have a collection of individual trajectories.
A statistical methodology based on homogeneous groups

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.
A statistical methodology based on homogeneous groups

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.
A statistical methodology based on homogeneous groups

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
A statistical methodology based on homogeneous groups

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
- mixture: population composed of a mixture of unobserved groups
A statistical methodology based on homogeneous groups

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
- mixture: population composed of a mixture of unobserved groups
- finite: sums across a finite number of groups
The finite mixture model

If the data are (censored) normally distributed

\[L = \sigma N \prod_{i=1}^{r} \sum_{j=1}^{\sigma} \pi_j T \prod_{t=1}^{\phi} \left(y_{it} - \beta_j x_{it} \right) \]
The finite mixture model

If the data are (censored) normally distributed

\[
L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta_j x_{it}}{\sigma} \right). \tag{1}
\]
The finite mixture model

If the data are (censored) normally distributed

\[L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi \left(\frac{y_{it} - \beta_j x_{it}}{\sigma} \right). \]

(1)

This is too complicated to get closed-forms solutions.
The finite mixture model

If the data are (censored) normally distributed

\[L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \varphi \left(\frac{y_{it} - \beta_j x_{it}}{\sigma} \right). \] (1)

This is too complicated to get closed-forms solutions.

Software:
SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).

⇒ quasi-Newton procedure maximum research routine
Outline

1. General context of the research project
2. The salary trajectories in Luxembourg
3. The optimal mix of pension systems
4. Outlook
Proc Traj procedure

20 years of work for workers beginning their career between 1982 and 1987
Proc Traj procedure

20 years of work for workers beginning their carrier between 1982 and 1987

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)
Proc Traj procedure

20 years of work for workers beginning their carrier between 1982 and 1987

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

Proc Traj Macro:
Proc Traj procedure

20 years of work for workers beginning their carrier between 1982 and 1987

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

Proc Traj Macro:

```
DATA TEST;
    INPUT ID O1-O20 T1-T20;
    CARDS;
    data
RUN;
```
Proc Traj procedure

20 years of work for workers beginning their carrier between 1982 and 1987

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

Proc Traj Macro:

DATA TEST;
 INPUT ID O1-O20 T1-T20;
 CARDS;

data
RUN;

PROC TRAJ DATA=TEST OUTPLOT=OP OUTSTAT=OS OUT=OF OUTTEST=OE ITDETAIL;
 ID ID; VAR O1-O20; INDEP T1-T20;
 MODEL CNORM; MAX 8000; NGROUPS 6; ORDER 4 4 4 4 4 4;
RUN;
Results for 9 groups
Results for 9 groups

![Graph showing outcomes for different groups]

Group Percentages:
- 13.4
- 16.9
- 20.8
- 7.9
- 14.9
- 4.8

Outcome vs. Time (T)
Outline

1. General context of the research project
2. The salary trajectories in Luxembourg
3. The optimal mix of pension systems
4. Outlook
Working hypotheses

- Hypothesis 1. Every salary trajectory has a constant growth rate λ_j.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine) 2nd Luxembourg Workshop on Household Finance and Consumption ()
Working hypotheses

- Hypothesis 1. Every salary trajectory has a constant growth rate λ_j.

- Hypothesis 2. Let d denotes the intergenerational demographical rate, i.e. at time t, if N_0 denotes the number of people beginning to work and N_t the number of people working for t years, then

$$N_t = \frac{N_0}{(1 + d)^t}.$$
Sustainability coefficient of the PAYG system

\[
\tau_1 = \frac{\text{sum of all salaries earned by active workers}}{\text{sum of all pensions paid to retirees at time } t}
\]

\[
\tau_1 = S_0 + \ldots + S_T (1 + d)^T + \ldots + k (1 + d)^T + \ldots + P_T (1 + d)^T + \ldots
\]
Sustainability coefficient of the PAYG system

\[\tau_1 = \frac{\text{sum of all salaries earned by active workers}}{\text{sum of all pensions paid to retirees at time } t} \]
Sustainability coefficient of the PAYG system

\[\tau_1 = \frac{\text{sum of all salaries earned by active workers}}{\text{sum of all pensions paid to retirees at time } t} \]

\[\tau_1 = \frac{S_0 + \cdots + \frac{S_T}{(1+d)^T} k}{(1+d)^{T+1} P_{T+1} + \cdots + \frac{k}{(1+d)^{T+T^*}} P_{T+T^*}}. \]
Sustainability coefficient of the PAYG system

\(\tau_1 = \frac{\text{sum of all salaries earned by active workers}}{\text{sum of all pensions paid to retirees at time } t} \)

\[
\tau_1 = \frac{S_0 + \cdots + \frac{S_T}{(1+d)^T}}{\frac{k}{(1+d)^{T+1}}P_{T+1} + \cdots + \frac{k}{(1+d)^{T+T^*}}P_{T+T^*}}.
\]
Analysis of the current pension system
Analysis of the current pension system

Rate of necessary pension contributions to keep the system sustainable at the long run:

![Graph showing rate of pension contributions as a function of d]
Hypotheses 3. We suppose that every individual of group number j invests every year of his activity a fixed amount a_j which generates savings according to the market rate i.
Sustainability coefficient of the funded system

\[\tau_2 = \frac{\text{total sum earned by the individual during his period of activity}}{\text{sum of all the pensions that are paid to him thanks to the savings that he has accumulated}} \]
Sustainability coefficient of the funded system

\[\tau_2 = \frac{\text{total sum earned by the individual during his period of activity}}{\text{sum of all the pensions that are paid to him thanks to the savings that he has accumulated}} \]

\[\tau_2 = \frac{S_j}{a_j(i - \lambda_j)} \frac{(1 + i)^T - (1 + \lambda_j)^T}{(1 + i)^T - 1}. \]
Systemic risk

Modelisation based on portfolio type risk management principles
Systemic risk

Modelisation based on portfolio type risk management principles

<table>
<thead>
<tr>
<th></th>
<th>Market risk</th>
<th>Demographic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repartition</td>
<td>Negligeable</td>
<td>Extreme</td>
</tr>
<tr>
<td>Capitalization</td>
<td>Extreme</td>
<td>Negligeable</td>
</tr>
</tbody>
</table>
Global sustainability coefficient

\[\tau = x\tau_1 + (1 - x)\tau_2 \]

is the number of euros necessary to pay 1 euro for the pension.

Here \(x \) euros come from the PAYG system and \(1 - x \) euros from capitalization.
Global sustainability coefficient

\[\tau = x\tau_1 + (1-x)\tau_2 \]

is the number of euros necessary to pay 1 euro for the pension.

Here \(x \) euros come from the PAYG system and \(1 - x \) euros from capitalization.

We want to limit the risk of the hybrid system without reducing the pension and in the same time minimize the capitalization effort.
Gain of sustainability and optimal saving amount

\[G(x) = \frac{\text{var}(\tau_1) - \text{var}[\tau(x)]}{\text{var}(\tau_1)} \]

measures the gain of sustainability of the mixed system with respect of the PAYG system.
Gain of sustainability and optimal saving amount

\[G(x) = \frac{\text{var}(\tau_1) - \text{var}[\tau(x)]}{\text{var}(\tau_1)} \]

measures the gain of sustainability of the mixed system with respect of the PAYG system.

We suppose that the utility function \(U = U(a) \) of an active worker is decreasing in \(a \).
Gain of sustainability and optimal saving amount

Theorem. The value $x = x^*$ for which the utility function U attains its maximum under the sustainability constraint

$$G(x) \leq G^*$$

is given by $x^* = 1 - G^*$.
Gain of sustainability and optimal saving amount

Theorem. The value $x = x^*$ for which the utility function U attains its maximum under the sustainability constraint $G(x) \leq G^*$ is given by $x^* = 1 - G^*$.

Moreover the individual needs a constant annual saving amount

$$a^* = \sqrt{\frac{G^* K}{\text{var}(\tau 1)(1 - G^*)}},$$

where $K = \frac{S_j}{a_j(i - \lambda_j)} \frac{i(1+i)^T - (1+\lambda_j)^T}{(1+i)^T - 1}$ depends on the salary trajectory.
Example

An individual worker wants to divide by 2 the variability of his PAYG sustainability constraint needs to save annually at least the following amount (depending on his salary evolution subgroup):

<table>
<thead>
<tr>
<th>Group</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
<th>G9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuity</td>
<td>4466€</td>
<td>713€</td>
<td>1448€</td>
<td>5231€</td>
<td>220€</td>
<td>6364€</td>
<td>2809€</td>
<td>743€</td>
<td>3140€</td>
</tr>
</tbody>
</table>
Example

An individual worker wants to divide by 2 the variability of his PAYG sustainability constraint needs to save annually at least the following amount (depending on his salary evolution subgroup):

<table>
<thead>
<tr>
<th>Group</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
<th>G9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuity</td>
<td>4466€</td>
<td>713€</td>
<td>1448€</td>
<td>5231€</td>
<td>220€</td>
<td>6364€</td>
<td>2809€</td>
<td>743€</td>
<td>3140€</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curve 1</th>
<th>Curve 2</th>
<th>Curve 3</th>
<th>Curve 4</th>
<th>Curve 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_1 = 3.07%$</td>
<td>$\lambda_2 = 0.96%$</td>
<td>$\lambda_3 = 1.45%$</td>
<td>$\lambda_4 = 2.82%$</td>
<td>$\lambda_5 = 0.19%$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curve 6</th>
<th>Curve 7</th>
<th>Curve 8</th>
<th>Curve 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_6 = 2.58%$</td>
<td>$\lambda_7 = 1.28%$</td>
<td>$\lambda_8 = 0.48%$</td>
<td>$\lambda_9 = 1.09%$</td>
</tr>
</tbody>
</table>
Outline

1. General context of the research project
2. The salary trajectories in Luxembourg
3. The optimal mix of pension systems
4. Outlook
A generalization of Nagin’s model

Let x_1, \ldots, x_L and z_{i1}, \ldots, z_{iT} be covariates potentially influencing Y.

We propose the following model:

$$
 y_{it} = \left(\beta_{j0} + \sum_{l=1}^{L} \alpha_{j0l} x_l + \gamma_{j0} z_{it} \right) + \left(\beta_{j1} + \sum_{l=1}^{L} \alpha_{j1l} x_l + \gamma_{j1} z_{it} \right) \text{Age}_{i,t} + \left(\beta_{j2} + \sum_{l=1}^{L} \alpha_{j2l} x_l + \gamma_{j2} z_{it} \right) \text{Age}_{2,i,t} + \left(\beta_{j3} + \sum_{l=1}^{L} \alpha_{j3l} x_l + \gamma_{j3} z_{it} \right) \text{Age}_{3,i,t} + \left(\beta_{j4} + \sum_{l=1}^{L} \alpha_{j4l} x_l + \gamma_{j4} z_{it} \right) \text{Age}_{4,i,t} + \epsilon_{it},
$$

where $\epsilon_{it} \sim N(0, \sigma)$, σ being a constant standard deviation.
A generalization of Nagin’s model

Let $x_1 \ldots x_L$ and z_{i_1}, \ldots, z_{i_T} be covariates potentially influencing Y.

\[y_{it} = \left(\beta_0 + \sum_{l=1}^{L} \alpha_0^l x_l + \gamma_0^l z_{it} \right) + \left(\beta_1 + \sum_{l=1}^{L} \alpha_1^l x_l + \gamma_1^l z_{it} \right) \times \text{Age}_{it} + \left(\beta_2 + \sum_{l=1}^{L} \alpha_2^l x_l + \gamma_2^l z_{it} \right) \times \text{Age}_{2it} + \left(\beta_3 + \sum_{l=1}^{L} \alpha_3^l x_l + \gamma_3^l z_{it} \right) \times \text{Age}_{3it} + \left(\beta_4 + \sum_{l=1}^{L} \alpha_4^l x_l + \gamma_4^l z_{it} \right) \times \text{Age}_{4it} + \epsilon_{it}, \]

where $\epsilon_{it} \sim N(0, \sigma)$, σ being a constant standard deviation.
A generalization of Nagin’s model

Let \(x_1 \ldots x_L\) and \(z_{i1}, \ldots, z_{iT}\) be covariates potentially influencing \(Y\).

We propose the following model:

\[
y_{it} = \left(\beta_0^j + \sum_{l=1}^{L} \alpha_{0l}^j x_l + \gamma_0^j z_{it} \right) + \left(\beta_1^j + \sum_{l=1}^{L} \alpha_{1l}^j x_l + \gamma_1^j z_{it} \right) \text{Age}_{it} + \\
+ \left(\beta_2^j + \sum_{l=1}^{L} \alpha_{2l}^j x_l + \gamma_2^j z_{it} \right) \text{Age}_{it}^2 + \left(\beta_3^j + \sum_{l=1}^{L} \alpha_{3l}^j x_l + \gamma_3^j z_{it} \right) \text{Age}_{it}^3 + \\
+ \left(\beta_4^j + \sum_{l=1}^{L} \alpha_{4l}^j x_l + \gamma_4^j z_{it} \right) \text{Age}_{it}^4 + \varepsilon_{it},
\]

where \(\varepsilon_{it} \sim \mathcal{N}(0, \sigma)\), \(\sigma\) being a constant standard deviation.
The new Database

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.
The new Database

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1,303,010 salary lines corresponding to 85,049 workers.
The new Database

The data: second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1,303,010 salary lines corresponding to 85,049 workers.

Some sociological variables:
- gender (male, female)
The new Database

The data: second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1,303,010 salary lines corresponding to 85,049 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship
The new Database

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship
- sector of activity
The new Database

The data : second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
The new Database

The data: second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
- age in the first year of professional activity
The new Database

The data: second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
- age in the first year of professional activity
- marital status
The new Database

The data: second dataset Salaries of all workers in Luxembourg which began to work in Luxembourg between 1980 and 1990 at an age less than 30 years.

1,303,010 salary lines corresponding to 85,049 workers.

Some sociological variables:
- gender (male, female)
- nationality and residentship
- sector of activity
- year of birth
- age in the first year of professional activity
- marital status
- year of birth of children
New Project

- Salary trajectories depending on socioeconomic and macroeconomic covariates.
New Project

- Salary trajectories depending on socioeconomic and macroeconomic covariates.
- More realistic hypotheses for the economic modeling (time dependent demographical and market rates).
Salary trajectories depending on socioeconomic and macroeconomic covariates.

More realistic hypotheses for the economic modeling (time dependent demographical and market rates).

More precise use of the group trajectories.
Bibliography

