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Abstract. We describe a new tool for the search of collisions for hash
functions. The tool is applicable when an attack is based on a differential
trail, whose probability determines the complexity of the attack. Using
the linear algebra methods we show how to organize the search so that
many (in some cases — all) trail conditions are always satisfied thus
significantly reducing the number of trials and the overall complexity.

The method is illustrated with the collision and second preimage at-
tacks on the compression functions based on Rijndael. We show that slow
diffusion in the Rijndael (and AES) key schedule allows to run an attack
on a version with a 13-round compression function, and the S-boxes do
not prevent the attack. We finally propose how to modify the key sched-
ule to resist the attack and provide lower bounds on the complexity of
the generic differential attacks for our modification.

1 Introduction

Bit-oriented hash functions like MD5 [17] and SHA [10] have drawn much at-
tention since the early 1990s being the de-facto standard in the industry. Re-
cent cryptanalytic efforts and the appearance of real collisions for underlying
compression functions [19,18,4,13] motivated researchers to develop new fast
primitives. Several designs were presented last years (LASH [2], Grindahl [12],
RadioGatun [3], LAKE [1]) but many have already been broken [14,15,6].

While many hash functions are designed mostly from scratch one can easily
obtain a compression function from a block cipher. Several reliable constructions,
such as so-called Davies-Meyer and Miyaguchi-Preneel modes, were described in
a paper by Preneel et al. [16].

In this paper we present a method for speeding up collision search for byte-
oriented hash functions. The method is relatively generic, which is an advantage
in the view that most collision attacks exploit specific features of the internal
structure of the hash function (see, e.g., the attack on Grindahl [15]) and can be
hardly carried on to other primitives.

Most of the collision attacks are differential in nature. They consider a pair of
messages with the difference specified by the attacker and study propagation of
this difference through the compression function — a differential trail. The goal
of a cryptanalyst is to find a pair of messages that follows the trail (a conforming
pair). Our idea is to deal with fixed values of internal variables as sufficient
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conditions for the trail to be followed. We express all internal transformations
as equations and rearrange them such that one can quickly construct a pair of
executions that fits the trail.

We illustrate the method with a cryptanalysis of AES [7] in the Davies-Meyer
mode. The AES block cipher attracted much attention and was occasionally
considered as a basis for a compression function (mostly unofficially, though
some modes were proposed [5] and AES-related hash designs were also investi-
gated [12,11]).

This paper is organized as follows. In the next section we give an idea and
formal description of the algorithm. Then in Section 3 we show how to find
collisions, semi-free-start collisions and second preimages for the compression
functions based on the versions of Rijndael. Section 4 is devoted to the prop-
erties of the Rijndael internal transformations, which are weaknesses in the
hash function environment. Finally, we propose a modification to the original
key schedule, which prevents our attack, and provide some lower bounds for
attacks based on the differential techniques. The resulting hash function, which
we call Cheetah, is formally introduced in Appendix.

2 Idea in Theory

State of the art. Most of the recent attacks on compression functions deal with
a differential trail. Informally, a trail is a sequence of pairs of internal states with
a restriction on the contents. An adversary looks for the pair of messages that
produces such states in each round.

More formally, suppose that the compression function takes the initial value
IV and the message M as an input and outputs the hash value H . The whole
transformation is usually defined as a sequence of smaller transformations —
rounds. Then the execution of a k-round compression function looks as follows:

IV
f(M1,·)−−−−−→ S1

f(M2,·)−−−−−→ S2 · · ·Sk−1
f(Mk,·)−−−−−→ H,

where f is a round function of two arguments: the message block Mi and the
current internal state Si−1. The message blocks are a result of the message
schedule — a transformation of the original message. A collision is a pair of
messages (M, M ′) producing the same hash value H given the initial value IV .

In the collision search the exact contents of internal states are not important;
the only conditions are the fixed IV and the coincidence of resulting hash values.
Thus an adversary considers a pair of executions where the intermediate values
are not specified. However, a naive collision search for a pair of colliding messages
would have complexity 2n/2 queries (with the help of birthday paradox) where
n is the bit length of the hash value. Thus the search should be optimized.

In the differential approach an adversary specifies the difference in message
blocks Mi and internal states Si. A pair of executions can be considered as the
execution that deals with the differences: it starts and ends with a zero difference,
and some internal differences are also specified.
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A differential trail is a set of conditions on the pair of executions. We assume
that this set of conditions is final, i.e. the attacker use them as is and tries
message pairs one by one till all the conditions are satisfied. A trail may include
non-differential conditions, ex. constraints on specific bits, in order to maximize
the chances for the trail to be fulfilled. The complexity of the attack with a trail
is then defined by the probability that a message pair produce an execution that
fits the trail. This probability is determined by the nonlinear components (e.g.
S-boxes) that affect the propagation of the difference.

First idea. As we pointed out before, an adversary may try all the possible pairs
and check every condition. He may also strengthen a condition by fixing the
input value (or the output) of a non-linear function. Then in each trail he checks
whether the value is as specified. Thus to find a collision it would be enough
to build an execution such that the specified values follow the trail, and the
second execution will be derived by adding the differences to the first one. Our
algorithm (given below) deals with this type of trails.

Our improvement. Our goal is to carry out the message trials so that many
conditions are always satisfied. In such case the complexity of the attack is
determined by the conditions that we do not cover. Before we explain how our
algorithm works we introduce the notion of free variables.

First, we express all the transformations as equations, which link the internal
variables. Variables refer to bits or bytes/words depending on the trail. Secondly,
notice that the IV and the message fully define all the other variables and thus
the full execution. We call free variables1 a set of variables that completely and
computationally fast define the execution. If some variables are pre-fixed the
number of free variables decreases.

The idea of our method is to build a set of free variables provided that some
variables are already fixed. The size of such a set depends on how many variables
are fixed. The latter value also defines the applicability of our method. The heart
of our tool is an algorithm for the search of free variables. It may vary and be
combined with some heuristics depending on the compression function that it is
applied for, but the main idea can be illustrated on the following example.

Example 1. Assume we have 7 byte variables s, t, u, v, x, y, and z which are in-
volved in the following equations:

F (x ⊕ s)⊕ v = 0;
G(x ⊕ u)⊕ s⊕ L(y ⊕ z) = 0;
v ⊕G(u ⊕ s) = 0;
H(z ⊕ s⊕ v)⊕ t = 0;
u⊕H(t⊕ x) = 0.

1 Recall the Gaussian elimination process. After a linear system has been transformed
to the row echelon form all the variables are divided into 2 groups: bound variables
and free variables. Free variables are to be assigned with arbitrary values; and bound
variables are derived from the values of free variables.
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where F , G, H , and L are bijective functions. Note that y is involved in only one
equation so it can be assigned after all the other variables have been defined.
Thus we temporarily exclude the second equation from the system. Then note
that z is involved in only one equation among the remaining ones, so we again
exclude the equation from the system. This Gaussian-like elimination process
leads to the following system:

F (y⊕ z)⊕ L( u⊕ x)⊕ s = 0;
z ⊕H−1( t)⊕ v⊕ s = 0;

t⊕H−1( u)⊕ x = 0;
u⊕G−1( v)⊕ s = 0;

v ⊕ F ( x⊕ s) = 0.

Evidently, x and s can be assigned randomly and fully define the other three
variables. Thus x and s are free variables. Varying them we easily get other
solutions.

Now assume that the variable u is pre-fixed to a value a. Then the system is
transformed in a different way:

F (y⊕ z)⊕ L( x⊕ a )⊕ s = 0;
z ⊕H−1( t)⊕ v⊕ s = 0;

t⊕ x⊕ H−1(a) = 0;
x⊕ F−1(v)⊕ s = 0;

G−1(v)⊕ a⊕ s = 0.

Here only one variable — s — is free.
Now we provide a more formal description of the algorithm.

1. Build a system of equations based on the compression function.
The values defined by the trail are fixed to constants.

2. Mark all the variables and all the equations as non-processed.
3. Find the variable involved in only one non-processed equation.

Mark the variable and the equation as processed. If there is no
such variable — exit.

4. If there exist non-processed equations go to Step 3.
5. Mark all non-processed variables as free.
6. Assign random values to free variables and derive variables of

processed variables.

Depending on the structure of the equations, some heuristics can be applied at
step 3. For example, if there are many linear equations, real Gaussian elimination
can be applied. If there are terms of degree 2, one variable can be fixed to 0, and
so on.

When the algorithm can be applied. If there is no restriction on the internal
variables, the algorithm always succeeds: the message variables can be taken as



168 D. Khovratovich, A. Biryukov, and I. Nikolic

free. As soon as we fix some internal variables we have fewer options for choosing
free variables. In terms of block cipher based compression functions, we say that
the more active S-boxes we have the fewer free variables exist.

The main property of the compression function that affects the performance
of the algorithm is diffusion. The slower diffusion is, the more rounds can be
processed by the algorithm. As we show in Section 3, a slow diffusion in the
message schedule can be enough to maintain the attack.

This algorithm is not as universal as other algorithms dealing with non-linear
equations: SAT-solver based and Gröbner basis based. However, if it works a
cryptanalyst can generate a number of solutions in polynomial time while generic
algorithms have exponential complexity. This is a real benefit, since we can use
the algorithm at the top or at the bottom part of the trail, thus increasing
probability of a solution.

Equation properties. There is a desired property of equations: each variable
should be uniquely determined by the other ones. If this is not the case (fixing
all but one variable may not give a bijection) then the last step of the algorithm
becomes probabilistic (some values of free variables do not lead to the solution)
or, on the contrary, some variables can be assigned by one of a few values. We
can also emphasize not a single variable but a group of variables if it is fully
determined by the other variables involved in the equation.

We conclude that under these assumptions the exact functions that link vari-
ables do not matter. The only requirement is that they can be easily inverted,
which is typically true for the internal functions of a block cipher or a hash
function. If no heuristics which mix rows are applied then the algorithm does
not need the information about the non-linear functions, only the variables that
are involved in. Thus we consider not a system of equations but a matrix of de-
pendencies where rows correspond to equations, and columns to variables. The
following matrix represents the system from Example 1:

Before triangulation:

⎛
⎜⎜⎜⎜⎜⎜⎝

s t u v x y z
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 0 0 0
1 1 0 1 0 0 1
0 1 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. After:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y z t u v x s
1 1 0 1 0 1 1
0 1 1 0 1 0 1
0 0 1 1 0 1 0
0 0 0 1 1 0 1
0 0 0 0 1 1 1

free
variables

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Comparison to other methods. Several tools that reduce the search cost by elim-
inating some conditions were recently proposed. They are often referred to as
message modification (a notion introduced by Wang in attacks on SHA) though
there is often no direct ”modification”. The idea is to satisfy conditions by re-
stricting internal variables to pre-fixed values and trying to carry out those
restrictions from internal variables to message bits, which are controlled.

Compared to message modification and similar methods, our algorithm may
give a solution even if the restrictions can not be carried out to message bits
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directly. If a system of equations is solved, the algorithm produces one or many
solutions that satisfy the restrictions. Even if all the restrictions can not be
processed then one may try to solve the most expensive part. Thus we expect
our method to work in a more general and automated way compared to the
dedicated methods designed before.

3 Idea in Practice

We illustrate our approach with the cryptanalysis of a hash function based on
Rijndael [7] in the Davies-Meyer mode. The security of Rijndael as a com-
pression function has been frequently discussed in both official and non-official
talks though no clear answer was provided in favour of or against such a con-
struction. Additionally, the exact parameters of Rijndael as a hash function
are a subject of a discussion.

The Davies-Meyer mode has been chosen due to its message length/block
length ratio, which is crucial for the performance. Assume we want to construct
a compression function with performance comparable to SHA-1. The AES block
length of 128 bits is too small against birthday attack so 160 bits would be the
minimal admissible value. The size of a message block to be hashed should be
also increased in order to achieve better performance. However, there should be a
tradeoff between the message length and the number of rounds. A simple solution
is to take the message block equal to 2 internal blocks (320 bits). The 14-round
Rijndael-based construction gives us performance comparable to SHA-1. We
will concentrate on this set of parameters though other ones will be also pointed
out.

3.1 Properties of Rijndael Transformations. How to Build a Trail

Rijndael is surprisingly suitable for the analysis with our method due to sim-
plicity of its operations and properties of its S-boxes. A differential trail provides
a set of active S-boxes. Due to the special differential properties of Rijndael S-
boxes (2−6 maximal differential probability) the number of possible input/output
values is limited to not more than 4 possibilities. We take one of the few values
of an S-box input that provides the propagation of differences as a sufficient
condition. We found a 12-round trail (Figure 4) which has 50 active S-boxes (44
in the SubBytes transformations and 6 in the KeySchedule). However, most of
the active S-boxes are in the upper part of the trail, which allows us to use the
algorithm.

The crucial weakness of the Rijndael key schedule, which is exactly the
message schedule procedure in the considered compression function, is the XOR
operation that produces columns of the next subkey. It provides a good diffusion
as a key schedule, which was the goal of the Rijndael design, but is not adapted
for the use in a compression function, where all the internal variables are known
to an adversary.
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The KeySchedule transformation for a key of size 256 bits and more is given
by the following expressions:

ki,0 ← S(ki+1,NK−1)⊕ Cr, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;
ki,4 ← S(ki,3)⊕ ki,4, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ NK − 1,

(1)

where S() stands for the SubBytes transformation, and Cr — for the round-
dependant constant. It is easy to check that the first byte in a row affects all
the other bytes in the row, so that any difference will propagate through all the
xor operations. NK is a parameter equal to 8 for a 256-bit key. However, the
KeySchedule transformation is invertible, and its inversion has a slow diffusion.
This is the fact that we exploit. More precisely, the formulas for the inversion
are as following:

ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, NK − 1 ≥ j ≥ 5,

ki,4 ← S(ki,3)⊕ ki,4, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕ ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;

ki,0 ← S−1(ki+1,NK−1 ⊕ Cr), 0 ≤ i ≤ 3.

(2)

We build two trails: for 12 rounds and for 7 rounds. We use a local collision
illustrated in Figure 1 as a base for both of them. There, a one byte difference is
injected by the AddRoundKey transformation and spread to 4-byte difference after
MixColumns. The 4-byte difference is canceled out by the next AddRoundKey. Due
to a long message block both differences can be arranged into different columns.
The 4-byte difference is fully determined by the contents of the one active S-box.
We mark this value by a in Figure 1. It is a sufficient condition for the local
collision.

If we start with this pattern and go down all the bytes of the message block will
likely have the difference. However, the backward propagation is much different.
We can build a 7-round trail with only 9 active S-boxes (Figure 5). In order to
build a longer trail we swap the left and the right halves of the message block
and use some ad-hoc tricks in the first rounds. As a result, we obtain 12-round
trail with 50 active S-boxes (Figure 4).

3.2 Collisions, Second Preimages and the Matrix of Dependencies
for the Rijndael-Based Hash

Matrix of Dependencies. First we explain in details our usage of variables
and equations. We consider byte variables: the IV (4*NB variables2), the output
(4*NB), the message (4*NK per message schedule round), the internal states.
We deal with two internal states per round: after the SubBytes transformations
and after the MixColumns transformation. Thus we obtain 8*NB variables per
round. The equations are derived from the following transformations:
2 NB is the number of columns in the internal state. NB is equal to 8 in Rijndael-256.
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SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows
MixColumns

a

(a) (b)

Fig. 1. Local collision: non-zero differences (a) and fixed values (b)

I SubBytes◦AddRoundKey transformations: 4*NB equations in each internal
round;

II MixColumns◦ShiftRows transformations: NB equations in each internal
round;

III KeySchedule transformations: 4*NK equations in each schedule round.

The MixColumns transformation is actually a set of 4 linear transformations.
In the latter ones any 4 of 5 variables uniquely determine the other one. For the
MixColumns transformation as a whole a more complicated property holds: any
4 of 8 variables are determined by the other ones.

The variables that are predefined by a trail are substituted into the equations
and are not considered in the matrix.

320/160. 5 rounds. The simplest challenge is to build a 5-round collision for
the Rijndael-based hash with 320-bit message block and 160-bit internal state.
The trail is derived by removing the first two rounds from the 7-round trail
(Figure 5). There are 5 active S-boxes, which fix 5 of the 320 internal variables.
There are 225 equations. The resulting matrix of dependencies is presented in
Figure 2. The non-zero elements are color pixels with green ones representing
the MixColumns transformation.

The value of the one-byte difference is chosen randomly as well as that of
the active S-box. Let us denote the one-byte difference by δ and the input to
the active S-box by a. Then the 4-byte difference is the MixColumns matrix M
multiplied by (S(a) + S(a + δ), 0, 0, 0).

The matrix is easily triangulated (Figure 3). We obtain 55 free variables. Any
assignment of those variables and 5 fixed S-box inputs fully determine the IV
and the message.

320/160. 7 rounds. The trail in Figure 5 is a 7-round collision trail with 9
active S-boxes. Although the triangulation algorithm can not be directly applied
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320 variables

225
equations

Fig. 2. The matrix of dependencies for the 5-round trail before the triangulation

260 bound variables
60 free

variables

Fig. 3. The matrix of dependencies after the triangulation

to the resulting matrix, we can run it for the first 5 rounds, which contain 8 of 9
active S-boxes. Since we have several free variables we are able to generate many
colliding pairs. About one of 27 pairs satisfy the condition on the one remaining
active S-box so we repeat the last step of the algorithm 27 times and obtain a
7-round collision. The exact colliding messages are presented in Table 1.

320/160. 12 rounds. A 12-round trail is presented in Figure 4. We swap the
left and the right halves of the message block and use some ad-hoc tricks in the
first rounds. As a result, we obtain a 12-round trail with 50 active S-boxes with
only 6 of them in KeySchedule transformations.3

3 The most of non-zero columns in the differences between message blocks are of the
form (a, 0, 0, 0) or (b, c, d, e) where a, b, c, d and e are the same in all message blocks.
Those values are that are used for obtaining a local collision (Figure 1). They are
marked as grey cells in Figures 5 and 4. If they interleave some other values are
produced. The latter ones are marked as olive cells.
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Table 1. 7-round collision for the Rijndael-based compression function. Message bytes
with different values are emphasized.

IV

b8 29 68 d1 f8
5b d0 01 bd 17
05 83 8a 43 4b
40 40 9e 0c c5

Message 1

77 e6 a7 1e e3 40 e6 ef 56 26
7e 1b aa 2b fa 44 70 88 66 0c
04 2b 7b e1 d6 df 4d 09 52 5c
4a 81 31 98 b6 df 67 79 c6 ab

Output

83 e5 06 a4 46
5f e7 7c ba 49
8e 7d 1e bd 96
b8 d4 e3 e9 a0

Message 2

76 e7 a6 1f e3 42 e4 ed 54 26
7e 1b aa 2b fa 45 71 89 67 0c
04 2b 7b e1 d6 de 4c 08 53 5c
4a 81 31 98 b6 dc 64 7a c5 ab

The trail is too long to be processed by the triangulation algorithm directly.
Instead we fix not all S-box inputs. More precisely, we fix the 6 variables that
enter the active S-boxes in the first three KeySchedule transformations (actually
all active S-boxes in the message scheduling) and the 35 variables that are the
outputs of active S-boxes in first 4 rounds. There are 9 active S-boxes left unfixed.
We have 11 free variables and generate 27∗9 = 263 colliding pairs so that one of
them pass through those 9 S-boxes and gives the 12-round collision. The resulting
complexity is 263 compression function calls.
Fixed IV. So far we considered that the IV is constant but can be freely chosen,
mainly because we do not attack an already existing standard or a particular
proposal. Nevertheless, compression functions with a similar structure, which
may be designed later, would require an attack with the fixed IV.

The algorithm described before may be easily adapted to this case. We just
mark all the input variables in the trail as pre-fixed, which is equivalent to just
the removal of the corresponding columns from the matrix of dependencies. The
number of equations is not changed so the probability of successful triangulation
can only decrease, not increase. This is the case: now we are not able to reduce
the matrix for the 5-round trail, but for the 3-round one we can still do this.
This fact does not imply that the 3-round collisions is the maximum achieved
level. Actually we just bypass the next two rounds with some probability. If
the number of active S-boxes in the trail after these 3 rounds is not large, this
probability may still be reasonable.

For example, we can use the trail for 7-rounds collision and process by the
algorithm only first three rounds. Then we have to bypass through 3 active S-
boxes, which requires about 221 evaluations of the compression function and can
be done in real time.

512/256. If we just increase the hash length keeping the message/hash ratio we
actually get a much weaker compression function.

For example, a differential trail for 13 rounds with no active S-boxes in the
message scheduling can be easily built from the trail in Figure 5. The matrix
triangulation algorithm works for 7 rounds, and a 13-round collision can be found
after 235 computations of the compression function, which is substantially faster
than the birthday attack.
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Fig. 4. 12-round differential trail for the Rijndael-based compression function with
the 320-bit message block and the 160-bit internal state (Rijndael-hash 320/160)

3.3 Second Preimage Attack

320/160. Here we assume that the message is fixed, the IV is constant but not
fixed and we have to find a message such that it produces the same hash value as
the first one. Our goal is to obtain a second preimage faster than for 2160 calls.
We just take any trail such that the conditions on the message variables do not
confuse with the pre-fixed values. For example, the 7-round trail (Figure 5) do
not impose such restrictions on message variables.

We mark all the message variables as fixed and run the triangulation algorithm
on first three rounds. We obtain 60− 40− 6 = 14 variables that can be assigned
randomly. We generate 221 pairs (IV, second message) so that one of them passes
the three other active S-boxes in rounds 4-7. The resulting complexity of the
second-preimage search is about 221 compression function calls.

Although we have a longer collision trail (Figure 4), it can not be used because
the number of active S-boxes is bigger than the number of the degrees of freedom.
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Fig. 5. 7-round differential trail for Rijndael-hash 320/160

4 Rijndael Properties That May Lead to Weaknesses in
Compression Functions

Here we summarize the properties of Rijndael that allow us to attack Rijn-
dael-based compression functions.

Let us first look at the Rijndael key schedule ((1), (2)). The weakness that
we exploited is a non-symmetric diffusion. More precisely, one byte in block i
affects only two or three bytes in block i−1. Furthermore, one can build a trail in
a key schedule without active S-boxes for NK−4 schedule rounds. Full diffusion
in key schedule may take up to 4*NK schedule rounds if we consider one-byte
difference in a corner byte and proceed backwards.

Even active S-boxes in a trail give some additional power to an adversary.
Due to the differential properties of the Rijndael S-box non-zero difference Δa
can be converted to any of about 127 differences Δb; only half of differences can
not be reached. The exact value of the output difference is guaranteed by the
value of the S-box input variable.
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The derivation of unknown internal variables from the known ones is also
easier than that in the bit-oriented hash functions such as the SHA-family. In
Rijndael if we know two of three variables in the bitwise addition or four of eight
in MixColumns then we can uniquely determine the other variables. We would
not be able to do this if we had equations of type x1x2 = x3. So we claim that
equations in Rijndael are actually pseudo-linear rather that non-linear. Though
we do not know how to exploit this fact in attacks on Rijndael as a block cipher,
it is valuable if we consider a Rijndael-based compression function.

Finally we note that our attacks are only weakly dependant on some Rijn-
dael parameters such as actual S-box tables, the MixColumnsmatrix coefficients
and ShiftRows rotation values. For example, we only need a row that is not ro-
tated by the ShiftRows but it does not matter matter where it is exactly located.

5 Modification to the Message Schedule — Our Proposal

In this section we propose an improvement to the Rijndael message schedule,
which prevents the low-weight trails that were shown above.

The key idea is to use primitives providing good diffusion. The Rijndael
round function was designed so that no low-weight trails can be built for the
full cipher. We propose to use a modified version of this round function in the
message schedule for future Rijndael-based hash functions.

First, we significantly extend the size of the message block that is processed
by one call of the compression function. Secondly, 256 bits is going to be the
main digest size for SHA-3 [9]. A 1024-bit message block combined with a 256-
bit internal state give a good security/performance tradeoff, which is justified
below.

The message block is treated as a 8×16 byte square and passes through 3 iter-
ations of a round function. Like that of Rijndael, the round function we propose
is a composition of the SubBytes, the ShiftRows, and the MixColumns trans-
formations. While S-boxes remain the same, the ShiftRows and MixColumns
operations are modified in order to get a maximal possible diffusion. We propose
to use the following offset table and the MixColumns matrix:

The matrix A, which is modified version of the matrix used in Grindahl [12],
is an MDS-matrix.

Table 2. ShiftRows and MixColumns parameters for a new message schedule proposal

Index Offset Index Offset

0 0 4 5

1 1 5 6

2 2 6 7

3 3 7 8

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This round function provides full diffusion after 3 rounds thus giving 4096
bits to inject to the internal state. Since the internal state is 16 times smaller,
we propose to increase the number of rounds to 16. The resulting compression
function is more formally introduced in Appendix.

Resistance to attacks. We did not manage to find a good trail for the resulting
compression function so we can not apply our attack. Furthermore, now we
give arguments supporting that low-weight trails are impossible in the resulting
design: we give a lower bound on the number of active S-boxes in such a trail.

We consider a 16-round trail which starts and ends with a zero-difference state.
Let us denote the number of non-zero differences in the internal state before the
SubBytes transformation by si, 1 ≤ i ≤ 16. The last si is equal to zero. Let
us also denote by ci the number of non-zero differences in the internal after the
internal MixColumns transformation. The last ci is equal to 0 as well. Finally, we
denote by mi the number of non-zero differences in the round message block that
is xored to the internal state. These differences either cancel non-zero differences
in the internal state or create them. Thus the following condition holds

si + ci−1 ≥ mi (3)

Due to the branch number of the internal MixColumns transformation ci is
upper bounded: ci ≤ 4si. Thus we obtain the following:

si + 4si−1 ≥ mi ⇒
∑

i

si +
∑

i

4si−1 ≥
∑

i

mi ⇒ S ≥ M

5
,

where S is the number of active S-boxes in the internal state of the compression
function, and M is the number of non-zero byte differences in the expanded
message.

Now we estimate the minimum number of non-zero byte differences in the
message scheduling only. First we note that this number is equal to the number
of the active S-boxes in the message scheduling extended to 4 round. Such a
4-round transformation is actually a Rijndael-like block cipher, which can be
investigated using the theory of the wide trail design by Daemen and Rijmen [8].

Daemen and Rijmen estimated the minimum number of active S-boxes in 4
rounds of a Rijndael-like block cipher (Theorem 3, [8]). The sufficient condition
to apply their theorem is that the ShiftRows should be diffusion optimal: bytes
from a single column should be distributed to different columns, which is the
case. Thus the number of active S-boxes can be estimated as the square of the
branch number of the 8×8 MixColumns matrix, which is equal to 9. As a result,
any pair of different message blocks has difference in at least M = 81 bytes
of ExpandedBlock. This implies the lower bound 17 for S. Thus we obtain the
following proposition.

Proposition 1. Any collision trail has at least 17 active S-boxes in the internal
state.
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Thus any attack using such minimal trail as is would be only slightly faster
than the birthday attack. However, we expect that the values of M even close
to minimal do not give collision trails due to the following reasons:

– Small number of active S-boxes in the internal state implicitly assumes many
local collisions;

– The distribution of non-zero differences in the message scheduling is not
suitable for local collisions due to high diffusion;

– The MixColumns matrix in the message scheduling differs from that of the
internal transformation so, e.g., 4-byte difference collapse to 1-byte difference
via only one of two transformations.

6 Conclusions and Future Directions

We proposed the triangulation algorithm for the efficient search of the message
pairs that fit a differential trail with fixed internal variables. We illustrated the
work of the algorithm by applying it to Rijndael in the Davies-Meyer mode
with different parameters. Although the trails that we built contain many active
S-boxes, the task of the search for a message pair becomes much easier with our
algorithm. It allows to build message pairs that satisfy subtrails of an original
trails. Such subtrail can be chosen in order to minimize the number of active
S-boxes in the other part of the trail.

In Table 3 we summarize our efforts on building collisions and preimages for
Rijndael-based compression functions.

Table 3. Summary of attacks

Hash length Message length Rounds Compl. Type of a collision

160 320 7 27 Full collision

160 320 12 263 Full collision

160 320 7 221 Second preimage

256 512 13 235 Full collision

We also investigated why Rijndael as a compression function is vulnerable
to collision attacks. We showed how the non-symmetric diffusion in the message
schedule allows to build long differential trails.

As a countermeasure, we propose a new version of the message schedule for
the Rijndael-based compression functions and provide lower bounds for the
probability of differential trails for the resulting function.
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The Cheetah compression function is an iterative transformation based on the
Rijndael block cipher. The 128-byte message block is expanded to a 512-byte
block by the message schedule. The internal state is of size 32 bytes and is
iterated for 16 rounds. The output hash value is 32 bytes (256 bits).

The message block is expanded by the means of the message schedule. The
resulting block is divided into 16 vectors, which are xored to the internal state
before every round. The Cheetah compression function is then defined by the
following pseudo-code:

CheetahCompression(IntermediateHashValue, MessageBlock) {
InternalState = IntermediateHashValue;
ExpandedBlock = MessageExpansion(MessageBlock);
for(i=1; i<= 16; i++)
{

InternalState +=RoundBlock(ExpandedBlock,i);
InternalState = InternalRound(InternalState);

}
return InternalState;

}

The procedures MessageExpansion, RoundBlock, and InternalRound are deter-
mined below.

Message Schedule. The MessageExpansion procedure is a Rijndael-like trans-
formation, which is defined in pseudocode as follows:

MessageExpansion(byte MessageBlock[128]) {
byte ExpandedBlock[512];
ExpandedBlock[0..127] = MessageBlock;
for(i=1; i<=3; i++)
{

SubBytes(MessageBlock);
ShiftRows8(MessageBlock);
MixColumn8(MessageBlock);
AddRoundConstant(MessageBlock,i);
ExpandedBlock[128*i..128*i+127] = MessageBlock;

}
}

The SubBytes transformation is the byte-wise SubBytes transformation used
in Rijndael. The ShiftRows8 and the MixColumns8 operation parameters were
given in Table 2.

The AddRoundConstant operation adds a 32-bit constant to the message
block. The constant is a function of the round index r:

mi,0 = S[4 ∗ r + i], 0 ≤ i ≤ 3,

where S stands for the S-box.
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The RoundBlock operation selects a 32-byte block from ExpandedBlock =
(E0, E1, E2, E3). Define the round index r as r = 4l+m, 0 ≤ l, m ≤ 3. Then the
selected block is the 4× 8 byte array Mr, that is defined as follows:

Mr = (mi,j)4×8, El = (ei,j)8×16;
mi,j = e4∗(m%2)+i,4∗(m/2)+j .

The selected block is bytewise xored to the InternalState: anew
i,j ← ai,j + mi,j .

· · ·

···

Internal
state

Expanded
block

Message
block

Fig. 6. The outline of the com-
pression function

Internal round. The InternalRound transfor-
mation is actually the Rijndael round as it
would be used with 32-byte block. It consists
of three operations: SubBytes, ShiftRows, and
MixColumns.

InternalRound(byte InternalState[256]) {
SubBytes(InternalState);
ShiftRows4(InternalState);
MixColumn4(InternalState);

}

The SubBytes operation has already been
defined above. Both the ShiftRows and
MixColumns operations treat the InternalState
as a byte array of size 4 × 8, with 4 rows and 8
columns.

Parameters of the ShiftRows and the
MixColumns transformations are the same as
that of Rijndael-256 (Table 4).

Table 4. ShiftRows and MixColumns parameters for the internal round function

Row index Offset
i ci

0 0

1 1

2 3

3 4

B =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ .
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