Associative and preassociative aggregation functions

Erkko Lehtonen^(*) Jean-Luc Marichal^(**)

Bruno Teheux(**)

(*) University of Lisbon

(**) University of Luxembourg

Associative functions

Let X be a nonempty set

$$G: X^2 \to X$$
 is associative if

$$G(G(a,b),c) = G(a,G(b,c))$$

Examples:
$$G(a,b) = a+b$$
 on $X = \mathbb{R}$ $G(a,b) = a \wedge b$ on $X = L$ (lattice)

Associative functions

$$G(G(a,b),c) = G(a,G(b,c))$$

Extension to *n*-ary functions

$$G(a, b, c) = G(G(a, b), c) = G(a, G(b, c))$$

 $G(a, b, c, d) = G(G(a, b, c), d) = G(a, G(b, c), d) = \cdots$
etc.

Let

$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$

 $F: X^* \to X$ is associative if

$$F(x_1,...,x_p, y_1,...,y_q, z_1,...,z_r) = F(x_1,...,x_p, F(y_1,...,y_q), z_1,...,z_r)$$

Example:
$$F(x_1, ..., x_n) = x_1 + \cdots + x_n$$
 on $X = \mathbb{R}$ $F(x_1, ..., x_n) = x_1 \wedge \cdots \wedge x_n$ on $X = L$ (lattice)

Notation

We regard n-tuples x in X^n as n-strings over X

```
0-string: \varepsilon
1-strings: x, y, z, ...
n-strings: \mathbf{x}, \mathbf{y}, \mathbf{z}, ...
```

 X^* is endowed with concatenation

Example:
$$\mathbf{x} \in X^n$$
, $y \in X$, $\mathbf{z} \in X^m$ \Rightarrow $\mathbf{x}y\mathbf{z} \in X^{n+1+m}$ $|\mathbf{x}| = \text{length of } \mathbf{x}$

$$F(\mathbf{x}) = \varepsilon \iff \mathbf{x} = \varepsilon$$

 $F: X^* \to X$ is associative if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Equivalent definitions

$$F(F(xy)z) = F(xF(yz)) \quad \forall xyz \in X^*$$

$$F(xy) = F(F(x)F(y)) \quad \forall xy \in X^*$$

 $F: X^* \to X$ is associative if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Theorem

We can assume that $|xz| \leq 1$ in the definition above

That is, $F: X^* \to X$ is associative if and only if

$$F(\mathbf{y}) = F(F(\mathbf{y}))$$

 $F(x\mathbf{y}) = F(xF(\mathbf{y}))$
 $F(\mathbf{y}z) = F(F(\mathbf{y})z)$

$$F(\mathbf{y}z) = F(F(\mathbf{y})z)$$

$$F_n = F|_{X^n}$$

$$F_n(x_1 \cdots x_n) = F_2(F_{n-1}(x_1 \cdots x_{n-1})x_n) \qquad n \geqslant 3$$

Associative functions are completely determined by their unary and binary parts

Proposition

Let $F: X^* \to X$ and $G: X^* \to X$ be two associative functions such that $F_1 = G_1$ and $F_2 = G_2$. Then F = G.

Link with binary associative functions?

Proposition

A binary function $G: X^2 \to X$ is associative if and only if there exists an associative function $F: X^* \to X$ such that $F_2 = G$.

Does F_1 really play a role?

$$F_1(F(x)) = F(x)$$

 $F(xyz) = F(xF_1(y)z)$

$$F_1(F(\mathbf{x})) = F(\mathbf{x})$$

 $F(\mathbf{x}y\mathbf{z}) = F(\mathbf{x}F_1(y)\mathbf{z})$

Theorem

 $F: X^* \to X$ is associative if and only if

(i)
$$F_1(F_1(x)) = F_1(x)$$
, $F_1(F_2(xy)) = F_2(xy)$

(ii)
$$F_2(xy) = F_2(F_1(x)y) = F_2(x F_1(y))$$

(iii)
$$F_2(F_2(xy)z) = F_2(x F_2(yz))$$

(iv)
$$F_n(x_1 \cdots x_n) = F_2(F_{n-1}(x_1 \cdots x_{n-1}) x_n)$$
 $n \ge 3$

Theorem

 $F: X^* \to X$ is associative if and only if

(i)
$$F_1(F_1(x)) = F_1(x)$$
, $F_1(F_2(xy)) = F_2(xy)$

(ii)
$$F_2(xy) = F_2(F_1(x)y) = F_2(x F_1(y))$$

(iii)
$$F_2(F_2(xy)z) = F_2(x F_2(yz))$$

(iv)
$$F_n(x_1 \cdots x_n) = F_2(F_{n-1}(x_1 \cdots x_{n-1}) x_n)$$
 $n \ge 3$

Suppose F_2 satisfying (iii) is given. What could be F_1 ?

Example:
$$F_2(xy) = x + y$$

$$\Rightarrow F_1(x+y) = F_1(F_2(xy)) \stackrel{(i)}{=} F_2(xy) = x+y$$
$$\Rightarrow F_1(x) = x$$

Theorem

 $F: X^* \to X$ is associative if and only if

(i)
$$F_1(F_1(x)) = F_1(x)$$
, $F_1(F_2(xy)) = F_2(xy)$

(ii)
$$F_2(xy) = F_2(F_1(x)y) = F_2(x F_1(y))$$

(iii)
$$F_2(F_2(xy)z) = F_2(x F_2(yz))$$

(iv)
$$F_n(x_1 \cdots x_n) = F_2(F_{n-1}(x_1 \cdots x_{n-1}) x_n)$$
 $n \ge 3$

Example:
$$F_n(x_1 \cdots x_n) = \sqrt{|x_1|^2 + \cdots + |x_n|^2}$$

 $F_1(x) = x$
 $F_1(x) = |x|$

Let Y be a nonempty set

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(y) = F(y') \Rightarrow F(xyz) = F(xy'z)$$

Examples:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$
 $F_n(\mathbf{x}) = |\mathbf{x}|$ $(X \text{ arbitrary}, Y = \mathbb{N})$

$$F(y) = F(y') \Rightarrow F(xyz) = F(xy'z)$$

Equivalent definition

$$F(y) = F(y') \Rightarrow F(xyz) = F(xy'z)$$

Fact. If $F: X^* \to X$ is associative, then it is preassociative

Proof. Suppose
$$F(y) = F(y')$$

Then $F(xyz) = F(xF(y)z) = F(xF(y')z) = F(xy'z)$

$$F(y) = F(y') \Rightarrow F(xyz) = F(xy'z)$$

Proposition

 $F\colon X^* \to X$ is associative if and only if it is preassociative and $F_1(F(\mathbf{x})) = F(\mathbf{x})$

Proof. (Necessity) OK. (Sufficiency) We have $F(\mathbf{y}) = F(F(\mathbf{y}))$ Hence, by preassociativity, $F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z})$

Proposition

If $F: X^* \to Y$ is preassociative, then so is the function

$$x_1 \cdots x_n \mapsto F_n(g(x_1) \cdots g(x_n))$$

for every function $g: X \to X$

Example:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$

Proposition

If $F: X^* \to Y$ is preassociative, then so is

$$g \circ F : \mathbf{x} \mapsto g(F(\mathbf{x}))$$

for every function $g\colon Y\to Y$ such that $g|_{\mathrm{ran}(F)}$ is one-to-one

Example:
$$F_n(x) = \exp(x_1^2 + \dots + x_n^2)$$
 $(X = Y = \mathbb{R})$

Proposition

Assume $F: X^* \to Y$ is preassociative If F_n is constant, then so is F_{n+1}

Proof. If $F_n(\mathbf{y}) = F_n(\mathbf{y}')$ for all $\mathbf{y}, \mathbf{y}' \in X^n$, then $F_{n+1}(x\mathbf{y}) = F_{n+1}(x\mathbf{y}')$ and hence F_{n+1} depends only on its first argument...

We have seen that $F: X^* \to X$ is associative if and only if it is preassociative and $F_1(F(\mathbf{x})) = F(\mathbf{x})$

Relaxation of $F_1(F(\mathbf{x})) = F(\mathbf{x})$:

$$ran(F_1) = ran(F)$$

$$\operatorname{ran}(F_1) = \{F_1(x) : x \in X\}$$

$$\operatorname{ran}(F) = \{F(\mathbf{x}) : \mathbf{x} \in X^*\}$$

Preassociative functions

Preassociative functions $ran(F_1) = ran(F)$

Associative functions

We now focus on preassociative functions $F: X^* \to Y$ satisfying $ran(F_1) = ran(F)$

Proposition

These functions are completely determined by their unary and binary parts

Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F)$
- (ii) F can be factorized into

$$F = f \circ H$$

where $H \colon X^* \to X$ is associative

 $f: \operatorname{ran}(H) \to Y$ is one-to-one.

Axiomatizations of function classes

Theorem (Aczél 1949)

 $H\colon \mathbb{R}^2 \to \mathbb{R}$ is

- continuous
- one-to-one in each argument
- associative

if and only if

$$H(xy) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

where $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous and strictly monotone

$$H_n(\mathbf{x}) = \varphi^{-1}(\varphi(x_1) + \cdots + \varphi(x_n))$$

Axiomatizations of function classes

Theorem

Let $F: \mathbb{R}^* \to \mathbb{R}$. The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F)$, F_1 and F_2 are continuous and one-to-one in each argument
- (ii) we have

$$F_n(\mathbf{x}) = \psi(\varphi(x_1) + \cdots + \varphi(x_n))$$

where $\varphi\colon\mathbb{R}\to\mathbb{R}$ and $\psi\colon\mathbb{R}\to\mathbb{R}$ are continuous and strictly monotone

Axiomatizations of function classes

Recall that a *triangular norm* is a function $T: [0,1]^2 \to [0,1]$ which is nondecreasing in each argument, symmetric, associative, and such that T(1x) = x

Theorem

Let $F: [0,1]^* \to \mathbb{R}$ be such that F_1 is strictly increasing. The following assertions are equivalent:

- (i) F is preassociative and $ran(F_1) = ran(F)$, F_2 is symmetric, nondecreasing, and $F_2(1x) = F_1(x)$
- (ii) we have

$$F = f \circ T$$

where $f:[0,1] \to \mathbb{R}$ is strictly increasing and $T:[0,1]^* \to [0,1]$ is a triangular norm

Strongly preassociative functions

Definition. We say that $F: X^* \to Y$ is *strongly preassociative* if

$$F(xz) = F(x'z') \Rightarrow F(xyz) = F(x'yz')$$

Theorem

 $F: X^* \to Y$ is strongly preassociative if and only if F is preassociative and F_n is symmetric for every $n \in \mathbb{N}$

Open problems

- Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative functions
- (2) Find interpretations of preassociativity in fuzzy logic, artificial intelligence,...

Back to the factorization theorem

Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

- (i) F is preassociative and $ran(F_1) = ran(F)$
- (ii) F can be factorized into

$$F = f \circ H$$

where $H \colon X^* \to X$ is associative

 $f: \operatorname{ran}(H) \to Y$ is one-to-one.

String functions

A *string function* if a function

$$F: X^* \to X^*$$

 $F: X^* \to X^*$ is associative (E. Lehtonen) if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

(same equivalent definitions)

Associative string functions

 $F: X^* \to X^*$ is associative if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Examples

- F = id
- \bullet F =sorting data in alphabetic order
- \bullet F = transforming a string of letters into upper case
- F = removing a given letter, say 'a'
- \bullet F = removing all repeated occurrences of letters

$$F(mathematics) = matheics$$

Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

- (i) F is preassociative
- (ii) F can be factorized into

$$F = f \circ H$$

where $H \colon X^* \to X^*$ is associative

 $f: \operatorname{ran}(H) \to Y$ is one-to-one.

We can add:

- (i) $ran(F) = ran(F_1) \cup \cdots \cup ran(F_m)$
- (ii) $H: X^* \to X^1 \cup \cdots \cup X^m$

Preassociative functions		
	Associative string functions	

Open question:

Find characterizations of classes of associative string functions

Barycentrically associative functions

Notation

$$\mathbf{x}^n = \mathbf{x} \cdots \mathbf{x}$$
 (*n* times)
 $|\mathbf{x}| = \text{length of } \mathbf{x}$

 $F: X^* \to X$ is *B-associative* if

$$F(xyz) = F(xF(y)^{|y|}z) \quad \forall xyz \in X^*$$

Alternative names: decomposability, associativity of means.

Barycentrically associative functions

Figure: Barycentric associativity

$$F(xyz) = F(xF(y)^{|y|}z) \quad \forall xyz \in X^*$$

Barycentrically associative functions

Theorem (Kolomogoroff-Nagumo, 1930)

 $F \colon \mathbb{R}^* \to \mathbb{R}$ is B-associative, every F_n is

- symmetric
- continuous
- idempotent (i.e., $F_n(x^n) = x$)
- str. increasing in each argument

if and only if

$$F_n(\mathbf{x}) = \varphi^{-1} \left(\frac{1}{n} \sum_{i=1}^n \varphi(x_i) \right)$$

where $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous and strictly monotone

Let Y be a nonempty set

Definition. We say that $F: X^* \to Y$ is **B**-preassociative if

$$|\mathbf{y}| = |\mathbf{y}'|$$
 and $F(\mathbf{y}) = F(\mathbf{y}')$ \Rightarrow $F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$

Examples:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$
 $F_n(\mathbf{x}) = |\mathbf{x}|$ $(X \text{ arbitrary}, Y = \mathbb{N})$

Fact. Preassociative functions are B-preassociative

Proposition

 $F: X^* \to X$ is B-associative if and only if it is B-preassociative and $F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x})$

$$F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x}) \iff \delta_{F_n} \circ F_n = F_n \quad (n \in \mathbb{N})$$

 $\delta_{F_n}(\mathbf{x}) = F_n(\mathbf{x}^n)$

Relaxation:

$$\operatorname{ran}(\delta_{F_n}) = \operatorname{ran}(F_n) \quad (n \in \mathbb{N})$$

B-preassociative functions

B-preassociative functions $ran(\delta_{F_n}) = ran(F_n)$

B-associative functions

Theorem

Let $F: X^* \to Y$. The following assertions are equivalent:

- (i) F is B-preassociative and $\operatorname{ran}(\delta_{F_n}) = \operatorname{ran}(F_n)$ for all $n \in \mathbb{N}$
- (ii) F can be factorized into

$$F_n = f_n \circ H_n$$

where $H: X^* \to X$ is B-associative

 $f_n : \operatorname{ran}(H_n) \to Y$ is one-to-one.

Open question:

Describe the class of B-preassociative functions

Extension of Kolmogoroff-Nagumo theorem

Theorem

 $F: \mathbb{R}^* \to \mathbb{R}$ is B-preassociative, every F_n is

- symmetric
- continuous
- strictly increasing in each argument

if and only if

$$F_n(\mathbf{x}) = \psi_n \left(\frac{1}{n} \sum_{i=1}^n \varphi(x_i) \right)$$

where $\varphi \colon \mathbb{R} \to \mathbb{R}$ and $\psi_n \colon \mathbb{R} \to \mathbb{R}$ $(n \in \mathbb{N})$ are continuous and strictly increasing

