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SUMMARY

This paper presents and exercises a general structure for anobject-oriented enriched �nite element
code. The programming environment provides a robust tool fo r extended �nite element (XFEM)
computations and a modular and extensible system. The program structure has been designed
to meet all natural requirements for modularity, extensibi lity, and robustness. To facilitate mesh-
geometry interactions with hundreds of enrichment items, a mesh generator and mesh database are
included. The salient features of the program are: exibili ty in the integration schemes (subtriangles,
subquadrilaterals, independent near-tip and discontinuo us quadrature rules); domain integral methods
for homogeneous and bi-material interface cracks arbitrar ily oriented with respect to the mesh;
geometry is described and updated by level sets, vector level sets or a standard method; standard
and enriched approximations are independent; enrichment detection schemes: topological, geometrical,
narrow-band, etc.; multi-material problem with an arbitra ry number of interfaces and slip-interfaces;
non-linear material models such as J2 plasticity with linea r, isotropic and kinematic hardening.
To illustrate the possible applications of our paradigm, we present two-dimensional linear elastic
fracture mechanics for hundreds of cracks with local near-t ip re�nement, and crack propagation in
two dimensions as well as complex three-dimensional industrial problems. Copyright c 2006 John
Wiley & Sons, Ltd.
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1. Introduction

We present in this paper a novel open source architecture forthe extended �nite element
method aiming at easing the development of this method by researchers. The Partition of
Unity Method (PUM) [1] allows for the addition of a priori kno wledge about the solution of a
boundary value problem into the approximation space of the numerical solution through the
addition of enrichment functions that may be exactly reproduced by the enriched numerical
scheme. The extended �nite element method (XFEM) uses a local partition of unity [2, 3],
where some of the enrichment functions are chosen to be discontinuous thereby allowing for
the reproduction of strong discontinuities within an element. Only a portion of the mesh
is enriched. Another similar application of PUM is known as the Generalized Finite Element
Method (GFEM) [4,5]. Very recently, another related method emerged with the work of Hansbo
and Hansbo [6], based on Nitsche's method, in which the authors give a convergence proof.
Further, in Reference [7], it is shown that the kinematics of the method described in [6] is
in fact equivalent to that of the extended �nite element meth od. Based on Nitsche's method,
recent work has been performed in the area of discontinuity modeling within a �nite element
framework [8,9,10]. A review on computational modeling of cohesive cracks is given in [11].

Any function may be introduced in the approximation. In part icular, singular functions may
be added into the approximation to decrease the required mesh density close to singularities
such as crack tips in linear elastic fracture mechanics (LEFM). Enriched �nite element methods
have been successfully applied to numerous solid mechanicsproblems such as 2D crack growth
problems in linear elastic fracture mechanics with small displacements [2, 3, 12, 13], and large
displacement [14,15]. Extensions to 3D were presented in [16,17,18] and further improved to
handle crack initiation and propagation in [19] and multipl e cracks [20]. Other applications
include multiple crack growth in brittle materials [21], cr ack growth in shells and plates [22],
cohesive crack growth [23, 24, 25, 26, 27, 28, 29, 11], bi-material interface cracks [30], holes and
inclusions [31,32], brittle fracture in Polycrystalline M icrostructures [33], shear bands [34] and,
�nally, contact problems [35]. Multiscale work has been performed with micro-macro crack
models based on the LATIN methods (LArge Time INcrement method) in [36]. The XFEM
has also been used to model computational phenomena in areassuch as uids mechanics,
phase transformations [37], material science and bio�lm growth [38, 39], Chemically-induced
swelling of hydrogels [40], among others. Fluid-structureinteraction problems are also free-
boundary problems, where the \free" boundary usually is the structure. Recent work has
been performed in this area by several researchers [41]. Recent developments of enriched
�nite element methods in conjunction with discontinuous Galerkin in time, for dynamics and
time dependent problems have been recently made [42, 43, 44,45]. XFEM was also recently
introduced in spectral elements [46]. A nice work on interface conditions is given in [47].

For a complete review on recent developments of both XFEM andGFEM, interested readers
can refer to the papers of Q.Z. Xiao and B.L. Karihaloo at Cardi� University [48,49].

The PUM may be applied in the context of meshfree methods suchas the Element Free
Galerkin method (EFG) [50, 51, 52, 53], yielding enriched methods where crack tip �elds
[54], discontinuous derivatives [55] can be incorporated into the meshfree approximation. A
recent overview of meshfree methods may be found in [56, 57].One of the drawbacks of the
meshfree methods lies in the tricks needed to handle the essential boundary conditions due
to the lack of the so-called Kronecker-Delta property of meshfree approximation functions.
Another drawback of the meshfree methods is that it is di�cul t and awkward to convert
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in-house �nite element codes into a meshfree code. However,meshfree methods are very
powerful tools that were successfully used to model fracture in concrete, for instance
[58,59,60,61,62,63,64,65,66,67].

Enriched �nite element methods such as the XFEM, contrary to meshfree methods, can be
implemented within a �nite element code with relatively sma ll modi�cations: variable number
of degrees of freedom (dofs) per node; mesh geometry interaction (a procedure to detect
elements intersecting with the geometry of the discontinuities); enriched sti�ness matrices;
numerical integration. The goal of this papery is to present one way these additional features
can be added into an existing �nite element code, which is a topic of interest not only to �nite
element software companies desirous to include enrichmentinto an existing code, but also to
academics who would like to extend their in-house program. Moreover, we tackle all known
di�cult and critical parts in the implementation and explai n them in detail, so as to ease the
understanding. We strongly believe that the proposed XFEM library z is simple enough to give
beginning graduate students an easy start.

In order to produce extendable code, in which new problem formulations may easily be
added, the Object-Oriented Programming (OOP) approach gives the largest exibility [69].
An object oriented enriched �nite element library, named OpenXFEM++, which is based on
FEMOBJ, an object oriented �nite element code [69], has beenbuilt and used to solve various
2D LEFM problems with great success. The combination of an object-oriented XFEM code
and a commercial FE software allows the solution of very complex three-dimensional industrial
problems was presented in [70].

The paper is organized as follows. In section 2, a brief introduction to enriched FEM for
crack modeling is given. Section 3 expresses how relevant enrichment concepts can be easily
expressed in an Object-Oriented framework. In particular, the class diagram for the code
OpenXFEM++ is presented, and the key classes described. Section 4 presents a possible
extension of the code to new problems, in particular the addition of new enrichment functions
is easily made possible due to the chosen design technique. Numerical examples are presented
in Section 5. Finally, Section 6 provides a summary and some concluding remarks. The class
tree is given in appendix A and a typical data �le of OpenXFEM+ + is presented in appendix
B.

2. Crack modeling with partition of unity enrichment

The extended �nite element method [3,13] provides a simple and e�cient treatment of cracks
where the element topologies do not conform to the crack geometry. Some elements are split
by the crack and others contain the crack tips. Nodes whose support is bisected by a crack are
collected in Ncr , while nodes whose support contains the tips are grouped in the setNtip . In
Figure 1, these sets of nodes are shown.

The crack is represented in the XFEM by enriching the standard displacement approximation

y Details can be found in the Master's thesis [68], available u pon request to the �rst author
z provided on request
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(a) (b)

Figure 1. Selection of enriched nodes for 2D crack problem. Circled nodes (set of nodesNcr ) are
enriched by the step function whereas the squared nodes (setof nodesN tip ) are enriched by the crack

tip functions. (a) on structured mesh; (b) on unstructured m esh.

as follows:
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where N I (x) and eNJ (x) are �nite element shape functions, while u I , aJ and b � K are the
displacement and enrichment nodal variables, respectively. Note that the shape functions
eNJ (x) localizing the enrichment can di�er from the shape functions N I (x) for the displacement
approximation (for instance, high order shape functions N I (x) but linear shape functions
eNJ (x) were used for the six-noded triangular elements [71]).H (x) is the modi�ed Heaviside
function which takes on the value +1 above the crack and -1 below the crack and B � (x) is a
basis that spans the near tip asymptotic �eld:
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It was shown [72, 73] that the rate of convergence of PU enriched �nite element methods
such as the XFEM is considerably improved by �xing the near-tip enrichment domain (area in
2D, volume in 3D) independently of the mesh size. De�ning a circle C(x0 ; R) with prede�ned
radius R whose center is the crack tipx0 , any node located inside this circle is enriched with
the crack tip functions, i.e., belongs to the set of nodesNtip (see Figure 2). At this point, no
clear rule has been found that relates the optimal {from an accuracy standpoint{ enrichment
radius to the characteristic dimensions of the structure.

From this enriched approximation (1), using the Bubnov-Galerkin procedure, the standard
discrete equationKd = f is obtained. The numerical integration for elements cut by the crack
can be done by partitioning split elements into sub-triangles. Recently, a method requiring no
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(a) (b)

Figure 2. Another scheme for selection of enriched nodes for2D crack problem. Circled nodes (set
of nodes Ncr ) are enriched by the step function whereas the squared nodes(set of nodes N tip ) are

enriched by the crack tip functions.

background cells was presented, but is restricted to linearelastic materials and cracks that do
not kink inside elements [74]. When the solution of the standard discrete equations is obtained,
the stress intensity factors are computed using the domain form of the interaction integral. The
crack propagation direction is calculated from the maximum hoop stress criterion. Interested
readers can refer to [68,75] for details.

3. Object-oriented enriched �nite element implementation

3.1. Additional classes used to describe an enriched �nite element problem

The process of object-oriented design involves two main steps. First, the key concepts in
the application world (for instance, the �nite element world consisting of Nodes, Elements,
Materials, Solvers, etc.) need to be isolated. Second, those concepts should be transformed
into classes, i.e., building blocks that can be used to formulate a problem in the application
world. The problem at hand requires handling enrichment of the standard Finite Element
Method with a priori knowledge about the solution to the boundary value problem.
Some of the key concepts involved in the XFEM are enrichment items (crack, hole,
inclusion, material interface, bio�lm, solid-uid interf ace etc.), enrichment functions (Heaviside
function and branch functions etc.) and geometry entities (polylines, points, circles etc.)
which are implemented through the classesEnrichmentItem , EnrichmentFunction and
GeometryEntity , respectively. Numerical integration needs special attention for enriched
elements [3]. This is handled through theIntegrationRule class. To have a exible technique
for selection of enriched nodes, for example, the standard way (i.e. sub-triangle generation see
Figure 1) or �xed enrichment area (Figure 2), the class EnrichmentDetector is designed.
The crack growth law is implemented through classCrackGrowthDirectionLaw and its
derived classMaxHoopStress whereas the rules determining the crack advance length is
handled by classCrackGrowthIncrementLaw and its derived classesFixedIncrement
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and ParisLaw .
Besides these classes, some of the existing FE classes such as Domain, Element, Node

also demanded modi�cations. The modi�cation of such classes as well as the implementation
of new ones are detailed next.

3.1.1. Enrichment items A general enriched �nite element problem may hold a number
of features such as cracks, holes, material interfaces, sliding interfaces, contact interfaces,
uid-solid interfaces etc. In our implementation, those features are objects of class
EnrichmentItem . Such an object holds its geometry, an object of classGeometryEntity
described in Section 3.1.4 {used to check whether the enrichment item interacts with a given
element{, and its enrichment functions, object of classEnrichmentFunction , used to model
it. The interface of the EnrichmentItem class is given in Figure 3.

class EnrichmentItem : public FEMComponent {
public:

EnrichmentItem(int,Domain*);
virtual ~EnrichmentItem();

void getGeometry();
vector< EnrichmentFunction* >* giveEnrFuncVector();
bool interactsWith(Element*);
virtual void treatEnrichment();
EnrichmentDetector* defineMyEnrDetector();
EnrichmentDetector* giveMyEnrDetector();
GeometryEntity* giveMyGeo();
vector<Element*>* giveElementsInteracWithMe();
void setListOfInteractedElements(Element*);
virtual void resolveLinearDependency(){}
virtual void updateYourGeometry(){;}
virtual void updateEnrichment(){;}

protected:
GeometryEntity* myGeometry;
vector<EnrichmentFunction*>* myEnrichFns ;
EnrichmentDetector* myEnrDetector;
vector<Element*>* interactedElements ;

} ;

Figure 3. The interface of class EnrichmentItem

In the present implementation, three derived classes of thebase classEnrichmentItem
are designed as shown in Figure 4x. A 2D crack with two tips is modeled by an object
of class CrackInterior (see Figure 5) and two objects of classCrackTip (see Figure 6).
A CrackInterior object holds its tips through the data member myTips. The method
treatMeshGeoInteractionForMyTips is used to �nd elements containing these tips.

The member myAssociatedCrackInterior stores the associated crack interior of this tip. A
CrackTip object uses this member to update the geometry and the list ofelements cut by
its associated crack interior. The stress intensity factors (mode I, mode II and the equivalent

x generated by Doxygen [76]

Copyright c 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 2:1{33
Prepared using nmeauth.cls



AN EXTENDED FINITE ELEMENT LIBRARY 7

Figure 4. The inheritance tree of class EnrichmentItem

class CrackInterior : public EnrichmentItem
{
public:

CrackInterior(int,Domain*);
~CrackInterior(){;}

void getMyTips();
std::vector<CrackTip*> giveMyTips();

void treatMeshGeoInteractionForMyTips() ;
void resolveLinearDependency();

void updateEnrichment(){;}
void updateMyGeometry();

private:
std::vector<CrackTip*> myTips;

} ;

Figure 5. C++ header �le of a 2D crack interior

stress intensity factor) are stored in variablesK i, K ii, K eq , respectively.

For crack growth problems and especially multiple crack growth problems, it is necessary
to be able to kill crack tips, when they reach free boundaries{domain boundary or another
crack's interior. The data member bool isActive is implemented for this purpose, initially set
to true, and changed tofalse when the tip should be killed.

The key method of class CrackTip is the interaction integral computation,
computeInteractionIntegral(TimeStep*) , which allows to compute the stress intensity factors,
from which the crack propagation direction and increment are deduced.

Copyright c 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 2:1{33
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class CrackTip : public EnrichmentItem {
public:

CrackTip(int,Domain*);
~CrackTip();

void computeSIFs(TimeStep* stepN);
void computeK_eq(TimeStep* stepN);
std::list<Element*> buildIntegrationDomain();
std::valarray<double> computeInteractionIntegral(Tim eStep* stepN);

bool giveState()const {return isActive;}
void kill(){isActive = false;}
void crackTypeInitialization();
void crackTypeUpdate();

std::vector<Material*>* giveMatArray();

Mu::Segment* giveTipSegment();
FloatArray* computeLocalCoordOf(Mu::Point* p);

double giveRadiusOfDomainIntegration();
double giveEnrichRadius();

void resolveLinearDependency(){}

void updateMyGeometry();
Mu::Circle* DefineDomainForUpdatedEnrichment();
std::list<Element*> defineUpdatedElements();
void updateEnrichment();

void setMyAssociatedCrackInterior(CrackInterior* crIn t);

private:
CrackType tipID;
FieldType field;
std::vector<Material*>* matArray;
double K_i,K_ii,K_eq ;
Mu::Segment* tipSegment ;
bool isActive;
CrackInterior* myAssociatedCrackInterior ;

} ;

Figure 6. C++ header �le of a 2D crack tip

3.1.2. Enrichment functions The classEnrichmentFunction implements speci�c functions
holding a priori knowledge about the solution (branch functions for linear elastic fracture
mechanics) or particular functions used to model the discontinuities (Heaviside function for
displacement discontinuity and ramp function for strain di scontinuity).

An object of class EnrichmentFunction should know how to evaluate itself
(EvaluateYourSelfAt(Point*) ) and its gradient (EvaluateYourGradAt(Point*) ) at a given point
in space. To do so, it requires the geometry and the nature of the enrichment item with which
it is associated. A crack tip, for instance, knows which coordinate system to use to compute
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class EnrichmentFunction : public FEMComponent {
public:

EnrichmentFunction(Domain*,int);
~EnrichmentFunction();

virtual double EvaluateYourSelfAt(Mu::Point*){return N ULL;}
virtual FloatArray* EvaluateYourGradAt(Mu::Point*){re turn NULL;}

void setMyEnrichmentItem(EnrichmentItem*);
void findActiveEnrichmentItem(EnrichmentItem*);

protected:
int number;
std::vector<EnrichmentItem*> *myEnrItems;
EnrichmentItem *activeEnrItem;

} ;

Figure 7. Interface of class EnrichmentFunction

the asymptotic enrichment functions (Equation (2)) throug h its geometry. If several instances
of the same enrichment item are to be modelled in the same problem (for instance, multiple
crack problem), some nodes may require enrichment by two identical enrichment functions,
belonging to two di�erent enrichment items. Consequently, we chose to tell each enrichment
item which enrichment function it is associated with, and vice versa. Therefore, an object of
classEnrichmentFunction holds a list of objects of EnrichmentItem being modeled by
this enrichment function. The data member myEnrItems (see Figure 7) is designed for this
purpose. To know for which EnrichmentItem the enrichment function should be computed,
we design the data memberactiveEnrItem.

The EnrichmentFunction class serves as aninterface to the code, because it speci�es all
methods that should be implemented by an enrichment function, but actually implements none
of them (abstract class). This is a safe method to make sure a new programmer implements
all required methods, since this check is made atcompile time. The inheritance tree of the
EnrichmentFunction class is given in Figure 8{ .

An example of a derived classk is the classHomoElastCrackAsymp , which specializes into
the computation of the asymptotic crack tip �elds for an homo geneous linear elastic material.
For a future programmer to add enrichment functions for, say, a Neo-Hookean material, it is
su�cient to implement a HomoNeoHookeanCrackAsym class, which will only di�er from
the HomoElastCrackAsymp class, by the implementation of its evaluation methods.

3.1.3. Numerical integration For split elements, to exactly integrate the weak form, a
widely used method is to partition the element into subelements�� . The task of class
SplitGaussLegendreQuadrature lies in �nding the coordinates and weights of the
quadrature points to be used to integrate the weak-form accurately. First, the intersection

{ generated by Doxygen [76]
k specialized forms of enrichment functions
�� or rather sub-integration cells since no extra dof is associ ated with the sub-triangles.
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Figure 8. The inheritance tree of class EnrichmentFunction

points of the element edges with the geometry of the enrichment item are computed. Then,
they are fed into a Delaunay mesher [77, 78] together with theelement's nodes, yielding the
sub-integration triangles. Finally, for each triangle, the integration points are obtained, and
their coordinates transformed into the parent coordinate system of the split element. In order
to make seamless the addition of new integration techniques, this class is derived from an
interface abstract class:IntegrationRule .

Special integration techniques are required for near-tip enriched �nite elements (since the
integrand in the sti�ness matrix is no longer polynomial). T o enable this, suitable integration
rules are derived from theIntegrationRule abstract class.

3.1.4. Geometry handling In our implementation, geometry can be handled a number of
ways (Standard, Level Set, Vector Level Set, etc.). Similarly, the update of the geometry can
easily be chosen. The XFEM is naturally coupled with the level set method [79,31] and, more
recently, the vector level set was proposed, for crack growth problems, as a simpler alternative
to the standard level set method. Duot et al. [80] review the drawbacks of existing level set
methods for which an improved version, leading to optimallyaccurate stress intensity factors,
is proposed. Standard geometry handling for theEnrichmentItem is also possible, and used
in the numerical examples, along with a Tree structure to manage both geometrical entities
and �nite elements. The advantages of using an integrated mesh generator are detailed in the
paper by Dunant et al. [78].

Each EnrichmentItem knows its geometry as an object of classGeometryEntity , say
myGeo. Through myGeo, the enrichment item knows whether it interacts with a given element.
In turn, myGeo, through its GeometryDescription member, knows how to perform this
interaction (by standard geometry or using level sets).
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This piece of code is given as follows:

bool GeometryEntity :: interactsWith(Element* e) {
return this->giveMyGeoDescription()->interactsWith(e ,this);}

For example, for a CrackInterior represented by standard geometry (line segments), the
usual geometry predicates are used as in [13] to check the intersection between an element and
the crack. It is noted that the level sets are used only for description of the geometry of the
discontinuities, not to generate the mesh. For complex structures or microstructures, however,
using level sets to build the mesh is promising.

3.1.5. Classes speci�c to the enriched nodes detectionA exible XFEM code should allow
the user to decide the criterion based on which enriched nodes are selected. To detect near-tip
enriched nodes, we can name: nodes of elements containing the tip and inclusion in a ball
of radius R centered at the crack tip as possible criterions. Similarly, only nodes belonging
to an element split by a discontinuity should be enriched with the Heaviside function, while,
for bio�lm problems [39,38], elements within the bio�lm, an d below a given distance from the
bio�lm/water interface often need to be asymptotically enr iched in order to track the boundary
layer.

The abstract class EnrichmentDetector and its derived classes serve the purpose
of making the selection of enriched nodes exible. Abstract class EnrichmentDetector
is designed with only one pure virtual method void setEnrichedNodes(EnrichmentItem
*enrItem) . It is obvious that we can not have objects of classEnrichmentDetector since
a generalEnrichmentDetector does not know how to select enriched nodes. That is why
we design this class as an abstract class. Therefore, its derived classes have to implement the
method setEnrichedNodes(EnrichmentItem*).

For linear elements, it is su�cient to enrich all of the nodes of a split element. However, for
higher order elements, the choice of which nodes should be enriched depends on the partition
of unity shape functions to be used. If linear shape functions are used for the enriched part,
only the corner nodes need to be enriched {not the mid-side nodes. This is implemented in
method setEnrichmentForMyNodes(EnrichmentItem *enrItem) of classTri6 .

3.2. Modi�cation of standard �nite element classes

3.2.1. Class Domain The domain [69] can be considered as the main object that contains
all the problem's components: list of nodes, elements, materials, loads, etc. It serves as a link
between the components needed to describe the physical and numerical problem. To account
for the discontinuities, the following data members and methods are added as shown in Figure
9.

The main method of this class is the solution proceduresolveFractureMechanicsProb-
lemAt(TimeStep* stepN) as shown in Figure 10. Given the aforementioned classes of objects,
solving an enriched �nite element problem now reduces to handling the mesh geometry
interaction to �nd out elements that interact with the EnrichmentItem s and enrich the
corresponding nodes with the approriateEnrichmentFunction s. If there are conicts, those
are resolved by the methodresolveLinearDependencyForEnrichment(). Finally, the Domain
object asks itsNLSolver object to Solve() the problem using the appropriate scheme [69].
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class Domain {
private :
List* enrichmentFunctionList ;
List* enrichmentItemList ;
List* geoEntityList ;
bool isFEM ;
bool isXFEM ;
CrackGrowthDirectionLaw* directionLaw ;
CrackGrowthIncrementLaw* incrementLaw ;

public :
EnrichmentItem* giveEnrichmentItem(int n);
EnrichmentFunction* giveEnrichmentFunction(int n)
GeometryEntity* giveGeoEntity(int n) ;

void solveFractureMechanicsProblem ();
void solveFractureMechanicsProblemAt(TimeStep*);

void treatMeshGeoInteractionPhase1();
void treatMeshGeoInteractionPhase2();
void treatEnrichment() ;
void resolveConflictsInEnrichment();
void resolveLinearDependencyForEnrichment();

} ;

Figure 9. Added data and methods for class Domain to account discontinuities

void Domain :: solveFractureMechanicsProblemAt(TimeSte p* stepN)
{

if (unknownArray) {
delete unknownArray;

}

this -> treatMeshGeoInteractionPhase1();
this -> treatMeshGeoInteractionPhase2();
this -> treatEnrichment();
this -> resolveConflictsInEnrichment();
this -> resolveLinearDependencyForEnrichment();

unknownArray = this -> giveNLSolver() -> Solve();

this -> terminate(stepN) ;
}

Figure 10. Method solveFractureMechanicsProblemAt(TimeStep* stepN)
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3.2.2. Class Element The data members that are added for theElement class include the
following:

FEInterpolation* standardFEInterpolation used as interpolation functions for classical
�nite approximation.

FEInterpolation* enrichmentFEInterpolation shape functions multiplied by the enrich-
ment functions to form the PUM shape funcions. It was shown that using higher order
shape functions for this approximation decreases the error, but makes the convergence
rate erratic, because of the loss of reproducing condition in partially enriched elements.
[72,81].

std::list < EnrichmentItem* > * enrichmentItemListOfElem Every EnrichmentItem
objects interacting with one element are stored in this list. Element e uses this list to
do the partitioning for numerical integration.

bool isUpdated a marker to know a given element is needed to recompute its sti�ness
matrix when the EnrichmentItem involves as time goes by.

New methods are added :

bool isEnriched();
void isEnrichedWith(EnrichmentItem *enrItem);
void treatGeoMeshInteraction();
virtual void setEnrichmentForMyNodes(EnrichmentItem*) {}

virtual FEInterpolation* giveFEInterpolation(){return NULL;}
virtual FEInterpolation* giveXFEInterpolation(){retur n NULL;}

void setUpIntegrationRule();
virtual vector<DelaunayTriangle*>* PartitionMySelf(){ return NULL;}
virtual GaussPoint** setGaussQuadForJ_Integral(){retu rn NULL;}

void setStateOfElement(){isUpdated = true ;}
bool isUpdatedElement(){return isUpdated ;}

The method isEnriched() consists in looping over the receiver's nodes (the current instance
of the Element object), if at least one node is enriched, then the element isenriched. The
Element needs to know if it is enriched or not to correctly compute theB matrix (equation
(3)) and use the appropriate integration rule.

When an element is enriched by anEnrichmentItem then the method isEnriched-
With(EnrichmentItem *enrItem) inserts enrItem into its enrichmentItemListOfElem.

The de�nition of the elemental sti�ness matrix, K e, of element e occupying a volume 
 e

writes

K e =
Z


 e

B T DB d
 e (3)

whereD is the constitutive matrix and B is the matrix of shape function derivatives including
the enriched part. The method computeBMatrixAt(Gausspoint *gp) was modi�ed as shown
in Figure 11. The �rst advantage of this approach is that the code to compute the sti�ness
matrix of any element (enriched or not) is unchanged. Secondly, a node can be enriched with

Copyright c 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 2:1{33
Prepared using nmeauth.cls



14 S. BORDAS, P. V. NGUYEN, C. DUNANT, H. NGUYEN-DANG, A. GUIDOU M

any number of enrichment functions. For instance, an element may be split by a crack and
also contain the tip of another crack. In this case, nodes of this element are enriched by both
the step function (of the �rst crack) and the crack asymptoti c functions (of the second one).

FloatMatrix* Element :: ComputeBmatrixAt(GaussPoint *aG ausspoint){
Compute the standard part of B matrix, called Bu
If this element is not enriched, return Bu and stop.
Otherwise, loop on nodes, if node is enriched then
Loop on enrichment items of this node, say enrItem

Each enrItem knows which enrichment functions should be use d.
Loop on these enrichment functions and calculate their
contribution to B matrix, say Ba

The final result is B = [Bu Ba]
}

Figure 11. Method ComputeBmatrixAt(GaussPoint*)

To do the element partitioning for �nding Gauss points for split and tip elements, method
PartitionMySelf() is implemented. It is a pure virtual method: its derived classes such asTriU,
QuadU , and Tri6 have their own implementation.

Since the Gauss points used for the computation of the interaction integral are di�erent
from those used in the sti�ness matrix computation (see alsoSection 3.1.3), the method
setGaussQuadForJIntegral() is designed. It is a pure virtual method since each element type
potentially requires di�erent integration schemes.

It is obvious that when EnrichmentItem objects change, for example when cracks grow,
only some nodes and elements around the crack tips should change status. The rest of the
elements are unchanged and it is not e�cient to recompute their sti�ness matrix. The data
member isUpdated is implemented to handle this problem. Initially, this memb er is set to false,
after the crack growth step, if a given element is detected tobe changed then itsisUpdated is
reset to true i.e., its matrix needs to be recomputed.

3.2.3. Class Node To handle the nodal enrichment, the following data members are added
to this class

int isEnriched a marker to di�erentiate non-enriched and enriched nodes.

list < EnrichmentItem* > * enrichmentItemListOfNode This is list of all Enrichmen-
tItem objects acting on the node.

and here are added methods

void isEnrichedWith(EnrichmentItem* enrItem);
void resolveConflictsInEnrichment();
void resolveLinearDependency(EnrichmentItem*);

int getIsEnriched(){return isEnriched;}
list<EnrichmentItem*>* giveEnrItemListOfNode();

A node should not be enriched with both the Heaviside function and branch
functions associated with the same crack. Therefore, whenever the data member
enrichmentItemListOfNode contains objects of both class CrackInterior and class
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CrackTip , one should remove theCrackInterior object so that this node is just enriched
with branch functionsyy . This is performed by method resolveConictsInEnrichment() .

For any node enriched by the Heaviside functionH (x), its support is fully cut into two
disjoint pieces by the crack. If for a certain node nI , one of the two pieces is very small
compared to the other, then the function H (x) is almost a constant over the support, leading
to an ill-conditioned sti�ness matrix [3]. In this case, node nI is no longer enriched with the
function H (x) {method resolveLinearDependency(EnrichmentItem*).

With enriched �nite elements, the number and nature of the degrees of freedoms associated
with a node may vary from node to node and, in addition, evolvewith time. Therefore, the
way to compute the number of dofs and the location of dofs in the global matrix must be
modi�ed. Below are modi�ed and added methods implemented for this purpose :

size_t computeNumberOfDofs () ;
size_t giveNumberOfTrueDofs () ;
size_t giveNumberOfDofs () ;

IntArray* giveStandardLocationArray () ;
IntArray* giveEnrichedLocationArray () ;

For plane elasticity problems, the number of dofs,nDOF , of any node is determined by

nDOF =
�

2 if node is not enriched
2 + 2nenr otherwise

(4)

where nenr is the number of enrichment functions used to enrich this node. nenr is the total
number of enrichment functions of all enrichment items acting on this node. It is important
to note that Equation (4) must be addapted for the case of a slip interfacezz, in which only
one additional degree of freedom per node is required since the discontinuity is only along
one direction. The code permits the treatment of such cases with no additional care since
enrichment is treated at the degree of freedom level. In other words, upon calculation of the
number of degrees of freedom and their equation number in theglobal system of equations, it
is checked whether the active degree of freedom is enriched.

4. Extension to new problems

This section explains how the object-oriented approach allows to easily extend the current
code to include new problems.

Here, assume that we want to solve interfacial crack problems. First, the asymptotic
functions associated with this problem need to be added [30]. To do so, it su�ces to build a new
class calledBiMaterialElastCrackAsymp in which the near tip asymptotic functions for
interfacial cracks are implemented. It is emphasized that this new class is completely similar
to classHomoElastCrackAsymp .

yy the � 7�! sin �= 2 branch function is discontinuous through � = � � since sin �= 2 = � sin( � �= 2), therefore,
tip elements' nodes do not need to be enriched with the Heavis ide function since the discontinuity is provided
naturally by the branch functions.
zz allowing for a jump in the tangential displacement while mai ntaining continuity in the normal direction
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Finally, to compute the stress intensity factors (SIF), we need to implement the auxiliary
�elds used in the domain integral computations. Here, there are two possibilities : (1) use
inheritance, i.e., one would implement an abstract class, say AuxiliaryFields , with pure
virtual methods to compute the components of any auxiliary � eld and two derived classes, one
for homogeneous cracks and one for interfacial cracks. Thisapproach is simple but leads to
code duplication, thus is not e�ective; (2) use templates. Following this way, one implements a
single template class. In the current implementation, we chose the template approach as given
in Figure 12.

template<class M1, class M2, const FieldType field=PlaneS train>
class AuxiliaryField
{
public:

AuxiliaryField(){};
virtual ~AuxiliaryField(){};
void ComputeComponentsOfAuxField(CrackTip*,Point*,Mo deType,

FloatMatrix&,FloatArray&,FloatArray&);
void ComputeComponentsOfOneMat(CrackTip* tip,Point*,M odeType,

FloatMatrix&,FloatArray&,FloatArray&);
void ComputeComponentsOfBiMat(CrackTip* tip,Point*,Mo deType,

FloatMatrix&,FloatArray&,FloatArray&);
protected:

M1 *material1;
M2 *material2;
size_t giveNumberOfMaterials() const{

return (size_t)(typeid(M2) != typeid(NullMaterial))+1 ; }
};

Figure 12. Interface of class AuxiliaryField

If the auxiliary �elds of the homogeneous crack (under planestrain condition) are needed,
the declaration goes as follows

AuxiliaryField<Material,NullMaterial,PlaneStrain> *a uxFieldHomo
= new AuxiliaryField<Material,NullMaterial,PlaneStrai n>();

If the auxiliary �elds for a bimaterial crack are needed, then one declares as follows

AuxiliaryField<Material,Material,PlaneStrain> *auxFi eldBiMat
= new AuxiliaryField<Material,Material,PlaneStrain>() ;

5. Numerical applications

We present numerical results for the computation of the stress intensity factors (SIFs) and
study the crack growth simulations in isotropic homogeneous and heterogeneous media. First,
the examples on static crack problems are considered with the following objectives:

1. to verify and test the OpenXFEM++ library;
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2. to show the computational advantage of embedding a mesherinto an extended �nite
element code;

3. to show the accuracy obtainable on unstructured as well asstructured meshes which are
relatively coarse;

4. to study the domain independence in the SIF computations;
5. to assess the accuracy of the SIF computations in three dimensions;
6. to show how XFEM can be used for industrial problems;

Various crack growth problems are then solved to show the strength of the XFEM. In
particular, crack growth in multimaterial media is studied through two examples, namely
the crack growth from a �llet and crack inclusion interactio n. We also perform a simple
computation concerning the inuence of the coating of inclusions on crack propagation, where
both the inclusion and the coating are handled through enrichment with a discontinuous
derivative function {also known as ramp function, i.e. the absolute value of the signed distance
function. To complete the numerical applications, we show how the XFEM may be used for a
complex, industrial, three-dimensional crack growth problem.

For the 2D examples, plane strain conditions are assumed throughout. Linear elements
(three-noded triangular element and four-noded quadrilateral) are used for all computations.
The calculation of the stress intensity factors is performed with the domain form of the
interaction integral. Quasi-static crack growth is governed by the maximum hoop stress
criterion, and the crack growth increment is chosen in advance and constant for all steps
in the 2D simulations, and governed by the Paris law in the 3D simulations.

5.1. Inclined crack in tension

Stress intensity factors are calculated for a plate with an angled center crack shown in Figure
13. The plate is subjected to a far �eld uniaxial stress as shown. It is emphasized that the
same mesh (structured triangular mesh consisting of only 1520 elements) is used for all angles
considered, with only three elements along the length of thecrack.

The plate dimensions are taken to beW = 10in. with a half crack length of a = 0 :5in. As
the plate dimensions are large in comparison to the crack length, the numerical solution can
be compared to the solution for an in�nite plate. For the load shown, the exact stress intensity
factors are given by:

K I = �
p

�a cos2 �; K II = �
p

�a sin� cos� (5)

Numerical results for the SIFs are obtained for � = 15o, 30o, 45o, 60o, 70o, and domain
independence of theJ integral computation is also studied. In Table I, the normalized SIFs
are compared to the exact solution:rd is the radius of the domain used for the interaction
integral computation and hlocal is the size of the tip element. Excellent agreement between
the numerical solution and the exact solution is obtained for this coarse mesh with only three
elements along the crack length.

Additionally, we observe that with rd=hlocal = 3 :0 and 3:5, the obtained SIFs are incorrect.
The reason for this is that the domain size is big enough to include the other tip element.

The SIFs are also computed for other angles with the domain size used in the interaction
integral computation is rd = 2 :5hlocal and plotted in Figure 14. The result shows excellent
agreement with exact solution for the entire range of� .
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Figure 13. Inclined crack in tension

Table I. Normalized SIFs for the inclined crack problem. r d is the radius of the domain used for the
interaction integral computation and hlocal is the size of the tip element.

� SIFs Exact
XFEM

rd=hlocal = 1 :5 2.0 2.5 3.0 3.5

15o
K I

�
p

�a
0.9330 0.9313 0.9316 0.9312 0.9791 0.9882

K II

�
p

�a
0.2500 0.2760 0.2512 0.2489 0.2607 0.2613

30o
K I

�
p

�a
0.7500 0.7232 0.7486 0.7484 0.7787 0.7770

K II

�
p

�a
0.4330 0.4028 0.4413 0.4413 0.4455 0.4427

45o
K I

�
p

�a
0.5000 0.4836 0.4897 0.5010 0.5159 0.5132

K II

�
p

�a
0.5000 0.4767 0.5009 0.5022 0.5132 0.5108

60o
K I

�
p

�a
0.2500 0.2000 0.2581 0.2549 0.2582 0.2596

K II

�
p

�a
0.4330 0.3783 0.4406 0.4366 0.4563 0.4547

75o
K I

�
p

�a
0.0670 0.0589 0.0673 0.0690 0.0692 0.0689

K II

�
p

�a
0.2500 0.2115 0.2526 0.2535 0.2565 0.2560
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Figure 14. K I and K II vs. � for a plate with an angle center crack

5.2. Densely micro cracked solid

Although there are numerous publications on the XFEM, littl e attention has been cast onto
e�cient implementation. To the authors knowledge, Reference [78] is the only work assessing
the CPU time consumption of various mesh-geometry interaction algorithms. In Dunant et
al. [78], the authors show that by retaining mesh information from the mesh generator and
storing it in tree structures allowing for fast access and retrieval, dramatic performance gains
are attained. For cases where thousands of enrichment itemsare present, such as in dense
micro �ssuration problems or materials with complex micro structures, it is crucial to devise
an e�cient mesh-geometry interaction module. By integrating an internal mesher to XFEM
codes [78], the enrichment detection step is optimal, whilst the ability to generate general,
well adapted meshes is retained. As an illustrating example, consider a rectangular plate
with four hundred (400) cracks of random length and orientation as shown in Figure 15.
The displacements are �xed on the left and right ends of the sample, symmetrically whereas
the top and bottom edges are left free.

In this example, the mesh-geometry computation step took less than a second. Such a
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Figure 15. One of the principal stresses, computed around approximatively 400 cracks.

case uses approximatively 200,000 degrees of freedom, including enrichment. The longest step
is solving the linear system itself and the total analysis time is about 12mn on a desktop
computer. The assembly step takes 20% longer, than an equivalently sized assembly with no
enrichment. To solve the same problem with conventional �nite elements (without quarter
point elements), we created a mesh holding 253,652 elements, 142,345 nodes and 1,024,998
unknowns, with su�cient re�nement close to the eight hundre d (800) crack tips in the domain.
The total analysis time was thirty minutes (30mn), includin g meshing, assembly, and solve with
a preconditioned conjugate gradient, on the same desktop computer. This comparison is only
crude since we did not compare the results for both cases. Reference [78] provides details on
the e�ciency of the proposed approach.
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5.3. Crack growth from a �llet

This example together with the next one are presented in order to demonstrate the inuence
of material heterogeneity on crack paths. Figure 16 shows the experimental con�guration for
crack growth from a �llet [82]. The crack path depends on the welding residual stresses and
the bending sti�ness of the structure. Here, residual stresses are not taken into account. The
bending sti�ness of the structure is modi�ed by varying the t hickness of the lower I-beam.
Only limiting cases for the bottom I-beam of a rigid constraint (very thick beam) and exible
constraint (very thin beam) are examined.

Figure 16. Experimental con�guration for crack growth from a �llet. The dotted region is the
computational domain and the boundary conditions are impos ed along line AB .

The structure is loaded with a traction of P = 20kN, and the initial crack length is taken
to be of a = 5mm. The computational domain is the dotted region and is discretized with
7108 three-noded triangular elements. The e�ects of the thickness are incorporated into the
problem through the Dirichlet boundary conditions. For a ri gid I-beam, the displacement in
the vertical direction is �xed on the entire bottom edge. A e xible beam is idealized by �xing
the vertical displacement at only both endpoints of the bottom edge. For both sets of boundary
conditions, an additional degree of freedom is �xed to prevent rigid body motions.
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Crack growth is simulated with a �xed crack increment length of 1mm at each step. Figure
17 shows the mesh in the vicinity of the �llet and compares thecrack paths for the cases of a
thick I-beam (upper crack) and thin I-beam (lower crack). Th e results are consistent with both
experimental [82] and previous numerical results using theElement Free Galerkin method [54]
and advanced remeshing technique [83].

Figure 17. Zoom of crack paths for the case of a thick (top crack) and thin (bottom crack) I-beam.

5.4. Crack inclusion interaction

A rectangular plate with an o�-centered inclusion is pre-cracked and subjected to a tensile
stress as shown in Figure 18. Both cases of uncoated and coated inclusion are considered.
Let R be the ratio of the matrix to the inclusion Young's moduli, R = Ematr =Eincl and the
Poisson's ratio is kept the same for the matrix, the inclusion and the coating.

The numerical simulations are performed for two cases, namely (1) hard inclusion ( R = 0 :1)
and (2) soft inclusion (R = 10). Figure 19 shows the calculated crack paths using 4292 three-
noded triangular elements and a crack increment length of 0.1. One observes that, for a soft
inclusion (Figure 19(a)), the crack is attracted to the inclusion. Conversely, if the inclusion is
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Figure 18. Crack inclusion interaction problem: uncoated i nclusion (left �gure) and coated inclusion
(right �gure)

more rigid than the matrix (Figure (19(b))), the crack is mov ing away from the inclusion. The
obtained results are consistent with those using remeshingtechniques [83].

In the following the inuence of mesh densities on the simulated crack path is studied. Two
unstructured meshes of 2018 and 4292 elements are considered. The crack increment lengths
are always about the tip element's size. Results given in Figure 20 show that, for su�ciently
�ne meshes and an appropriate crack increment length (aboutthe tip element's size), the
simulated crack paths are almost identical.

When studying the inuence of inclusion coating on crack propagation around an inclusion
with the FEM, one mesh must be created for each coating thickness under consideration.
Using the XFEM with material interface enrichment [31], thi s burden is lifted and only one
mesh may be used for all coating thicknesses. In what follows, the ratio R is taken equal
to 10, i.e. the coating is ten times harder than the matrix and of thickness t = 0 :2. A fully
non-conforming mesh is built and all discontinuities (crack and two material interfaces) are
represented through enrichment. Although the coating thickness is only 0.2 and it is just ten
times harder than the matrix, the crack path given in Figure 21 shows its considerable e�ect
on crack path, as the coating prevents the crack from being attracted by the soft inclusion.
The purpose of this analysis is to show the exibility of the enriched �nite elements. For more
details on this subject, readers could refer to the work of Knight et al. [84].
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(a) (b)

Figure 19. Simulated crack paths:(a) Soft inclusion; and (b ) Hard inclusion

5.5. Penny crack in a �nite cube under uniaxial tension

In this example, the geometry of the problem is a cube of sideb = 2mm at the center of
which a penny crack of radius a is embedded. The cube is subjected to uniaxial tension
� 1 = 1mN/mm 2. The stress intensity factors along the front are computed for the initial
crack. The crack is then grown under fatigue assuming the Paris law For an in�nite domain,
the closed form solution is known for this problem, namely

K I = 2 � 1

r
a
�

(6)
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Figure 20. Calculated crack trajectories for two mesh densities. The top corresponds to the case of
the hard inclusion whereas the lower curve is associated with the soft inclusion

Mode I, II and III stress intensity factors are computed along the front of the penny crack.
The maximum, minimum and average error results for di�erent mesh sizes and initial crack
size are tabulated in Table II.

Relative error on K I a = 3 :0mm
h = 0 :01mm

a = 0 :4mm
h = 0 :01mm

a = 0 :2mm
h = 0 :01mm

a = 0 :1mm
h = 0 :01mm

Max error (%) 7.569 6.1594 16.912 35.4873
Avg error (%) 1.9429 3.1807 6.6254 16.94
Min error (%) 0.0040957 0.074917 0.050829 0.22179

Table II. Error on the mode I stress intensity factor for the p roblem of a penny crack embedded in a
�nite cube for various crack radii and characteristic mesh s izes.

In Table II, h denotes the characteristic element length at the vicinity of the crack and a the
penny crack radius. Note that for a ratio a=h = 40 (third column in Table II), the maximum
error on the front is about 6%. This information is useful to help design optimized meshes for
more complex problems. Note that even though no meshing of the crack is needed, it is still
important to have su�cient mesh re�nement in the vicinity of the crack in order to obtain
accurate SIF values.

The penny crack described above is grown under fatigue governed by a Paris law with C = 1
and m = 2. The increment in crack length � a is given as a function of material parameters
C; m, the stress intensity factor range � K and the number of increment in loading cycles as
� a = C (� K )m . The initial crack con�guration and velocity �eld on the fro nt and the crack
after �ve time steps are shown in Figure 23. Note that the velocity �eld on the front indicated
by the arrows is almost uniform on the crack front and that the crack front remains circular
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(a) (b)

Figure 21. Simulated crack paths:(a) Fully non-conforming mesh; and (b) Interfaces are explicitly
meshed

with growth. Figure 22 shows the progression of the crack length with the number of fatigue
cycles.

Remark 1: Note that although the stress intensity factors at each stepare computed with
a fair accuracy, the predicted crack growth curve drifts away from the analytical solution as
time evolves. This phenomenon is all the more acute when the Paris exponent is high. This
idea is summarized in Table III, which shows the error on the crack growth rate induced
by an initial error on the stress intensity factor for three values of the Paris exponent. The
Moving Least Squares Element Free Galerkin method (MLS-EFG) is particularly attractive to
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Figure 22. Crack length (mm) versus number of cycles for a penny crack in a �nite cube

compute stress intensity factors. In Reference [58], for instance, it is shown that the accuracy of
the EFG with extrinsic partition of unity enrichment is much higher than that of the XFEM
presented here. This is certainly a by-product of the high degree of continuity of the MLS
approximation, which allows reducing the maximum error on stress intensity factor along the
front to only 0.2% for a 81,000 dof discretization.

Remark 2: A similar reasoning leads to the conclusion that, in order toachieve an accuracy
of 1% on crack growth increments, the stress intensity factors need to be known with less than
0:2% error. As shown in [58], this level of accuracy can easily be achieved using an MLS-EFG
method with extrinsic enrichment.
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Paris exponent Error on SIF Error on crack growth rate
2 5% 10.25%
3 5% 15.76%

4.98 5% 27.5%

Table III. E�ect of the Paris exponent on the error on the crac k growth rate.

(a) Initial crack (b) Crack after 5 steps

Figure 23. Growth of a penny crack under uniaxial tension: in itial con�guration with crack growth
�eld distribution on front and crack after �ve steps.

5.6. Industrial example, the Boeing 757 EE Access Door

To illustrate the applicability of the XFEM to industrial pr oblems, we present some damage
tolerance assessment results for a complex aerospace component {the Boeing 757 EE Access
Door. The material of the door is A356-T60. The material constants of this aluminium grade
are taken asE = 72:4GP a and Poisson's ratio � = 0 :33. Constant amplitude load cycles are
assumed, and fatigue crack propagation is governed by the Paris law. Fatigue properties for
the aluminium were given by the NASA program NASGRO [85]:

� m = 4 :98
� C = 2 :25� 10� 12( m

cycles )( 1
MPa

p
m )4:98

obtained with the super-element-XFEM method of References[70,86], FAA reports [87,88,89]
and Ph.D. thesis [38]. The model of the door mixes Bathe and Dvorkin shell elements

Copyright c 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 2:1{33
Prepared using nmeauth.cls



AN EXTENDED FINITE ELEMENT LIBRARY 29

with solid elements, linked using Multiple Point Constrain t (MPC) elements. The door is
subjected to a cyclic pressure loading of amplitude 9psi applied on the outer skin, to simulate
compression/decompression cycles of the cabin. A superelement technique depicted in Figure
24 is used.

Figure 24. Superelement model and XFEM model
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The advantage of the method proposed here is to permit multiple analyses to be carried
out with minimum human intervention. The purpose of this pap er is not to fully describe the
damage tolerance assessment, as in Reference [86] nor the superelement-XFEM methodology
of Reference [70].

(a) Continuum model and initial location of the crack

(b) XFEM model: re�nement in the crack
region

(c) XFEM model with 0.1mm elements in the
crack region

Figure 25. XFEM models of the Boeing 757 EE Access door stop and location of the initial crack

Consequently, one single scenario of an edge crack of radius2.54mm is used here to estimate
the safe time intervals between two inspections The resultssummarized here are given in detail
in Reference [70], to which the interested reader is referred for more details.

Remark 3: In the crack growth plots, the minimum, average and maximum distance from
the crack front to the center of the initial aw are given. Ini tially, for a circular aw, all points
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on the front are equidistant from the center of the aw. If the SIFs is not constant on the
front, some points on this front may move at di�erent speed.

In this example, we assume that the stress intensity factor on the crack is constant and equal
to the maximum mode I SIF on the whole front, which is a conservative design assumption.
The corresponding crack length versus time curve is given inFigure 26. In Figure 27, crack
growth curves for two time steps are depicted and show the insensitivity of the method to the
choice of the time step used for the Paris' crack growth law.

Figure 26. Crack length (mm) versus number of cycles for a corner edge crack in a stop with the
constant mode I maximum SIF assumed on the whole front for gro wth.

6. Conclusions

In this paper, an evolutive, versatile and easy-to-use C++ object-oriented {the C++ code
has been compiled with Microsoft Visual Studio .NET2003{ approach to the computer
implementation of enriched �nite element methods is presented. Object-oriented design allows
easy code expansion. Hence, the incorporation of new enrichment functions, for instance, is
straightforward. The code is coupled with an integrated mesh generator whose advantages
are described Reference [78] where it is shown that problemswith thousands of enrichment
features, such as cracks, can be solved very e�ciently, while a more naive approach makes
this class of problems prohibitive. Basically, coupling a mesh generator to the extended
�nite element code permits performing mesh-geometry interaction, geometric enrichment, i.e.
enrichment of �xed-area around the crack tip, local re�nement, J-integral computations, for an
optimal computational cost, by using tree structures, retaining the mesh generator information
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(a) Crack length (mm) versus time (cycles)
with crack advances on the order of 2.5
elements per step

(b) Crack length (mm) versus time (cycles)
with crack advances on the order of 1 element
per step

(c) SIF (mN =mm2p
mm) with crack advances

on the order of 2.5 elements per step
(d) SIF (mN =mm2p

mm) with crack advances
on the order of 1 element per step

Figure 27. Severed stop, quarter corner edge crack growth for two time steps

and making it available to the solver.
The focus of the numerical examples are on computational fracture applications in isotropic

homogeneous and heterogeneous media as well as industrial crack growth problems. The code
also handles arbitrary material interfaces and voids, interface cracks as well as non-linear
material laws and multiple fatigue crack propagation. Enrichment features can be treated using
standard geometry, level sets and vector level sets. Quadrature rules are adaptive, and include
sub-triangulation, and rectangular background grids. High order elements are supported, and
the �nite element space used for the standard degrees of freedom is independent from that
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used for the enriched part of the approximation, allowing for a greater exibility.

Issues pertaining to the modi�cation of classical �nite element classes as well as the
implementation of new classes are addressed. Numerical examples in 2D and complex 3D
situations show the accuracy and e�ciency of the method and how enriched �nite elements
can be applied to industrial crack growth problems.

Excellent domain independence in the SIF computations are realized for straight cracks.
A preliminary parameter study on the inuence of the radius of the domain used for stress
intensity computation is performed. A more complete study may be found in [68], where it is
concluded that for �xed enrichment area, the interaction in tegral domains shouldnot be smaller
than the enrichment radius. However, no conclusion are drawn concerning the optimal value
of the asymptotic enrichment radius and its relationship with the structure's characteristic
dimensions, nor has a general methodology been devised to estimate the optimal value for the
enrichment radius. This is subject to on-going work.

This paper points out the advantages of partition of unity enriched �nite element methods
over their meshfree counterparts. Enriched FEM being �nite element based can exploit the
large body of available �nite element technology and piecesof software. This is reected in
the relatively small modi�cations of an available �nite ele ment package required for their
implementation. The discontinuities being unmeshed, an open issue resides in devising an
optimal technique to track the discontinuities in enriched numerical methods, especially if
such methods need to be coupled with existing commercial software. A large step in this
direction is detailed in the paper by Duot et al. [80], which shows how the usual level set
techniques may be improved to yield robustness and accuracyto the crack-tracking algorithm.
In Reference [58], in the context of an adaptive moving leastsquares element free Galerkin
method with extrinsic partition of unity enrichment, we pre sent a possible explicit treatment of
the crack geometry in quite complex settings including multiple cracks, initiation, growth and
coalescence of arbitrary cracks in non-linear materials, statics and dynamics. Useful references
for 3D crack growth in LEFM in the context of the EFG method are [51,52,53].

This work is intended to serve as a starting package for further developments of enriched
�nite element methods such as the XFEM or the GFEM. The proposed library can be obtained
on request by contacting the corresponding author. We believe that it can serve as a very
e�cient base for further developments, especially for beginning graduate students.
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APPENDIX

I. The class hierarchy

This appendix introduces the class hierarchy of the OpenXFE M++ library. Classes in bold font are
new ones, while the classes initalic font are classes of FEMOBJ which are modi�ed to include the
X-FEM.

AuxiliaryFields
Dictionary
Dof
Domain
FEInterpolation

FEInterpolation2d
FEI2dQuadLin
FEI2dTriLin

IntegrationRule
SplitGaussQuadrature
StandardGaussQuadrature

FEMComponent
CrackGrowthIncrementLaw

ParisLaw
FixedIncrement

CrackGrowthDirectionLaw
MaxHoopStress
MaxEnergyReleaseRate

Element
QuadU
TriU
Tri6

EnrichmentFunction
DiscontinuousFunction
AsymptoticFunction

CrackAsymptotic
HomogElastCrackAsymp
BiMaterialElastCrackAsymp

EnrichmentItem
CrackInterior
CrackTip
Hole
MaterialInterface

GeometryDescription
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LevelSetDescription
VectorLevelSetDescription
StandardDescription

GeometryEntity
Circle
PiecewiseLinear
Vertex

Load
BodyLoad

DeadWeight
BoundaryCondition
InitialCondition
NodalLoad

LoadTimeFunction
ConstantFunction
PeakFunction
PiecewiseLinFunction

Material
ElasticMaterial
VonMisesMaterial
VonMisesMaterialH
NullMaterial

NLSolver
ConstantSti�ness
ModNewtonRapson
NewtonRapson

Node
TimeIntegrationScheme

Newmark
Static

TimeStep
FileReader
FloatArray

Column
GaussPoint
IntArray
LHS

SkyLine
LinearSystem
List
MathUtil
Matrix

FloatMatrix
DiagonalMatrix

PolynomialMatrix
Pair
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Polynomial
PolynomialXY

II. Typical data �le of OpenXFEM++

This appendix presents the data �le of the OpenXFEM++ packag e. For the complete explanation on
sections of the data �le, the interested reader can refer to [ 68].

TimeIntegrationScheme
1 class Static *
**
Material 1
1 E 3.e7 n 0.25 *
**
Element 234
1 class T3U mat 1 nodes 1 3 4 *
2 class T3U mat 1 nodes 10 33 41 *
**
Node 1234
1 coord 2 0.0 0.0 nDofs 2 bcOnDof1 1 bcOnDof2 1 *
2 coord 2 2.0 0.0 nDofs 2 bcOnDof1 1 bcOnDof2 1 *
**
Load 2
1 class BoundaryCondition loadTimeFunction 1 conditions 1 d 0. *
2 class NodalLoad loadTimeFunction 2 components 2 4000. 0. *
**
EnrichmentItem 3
1 class CrackInterior myTips 2 2 3 geometry 1
EnrichmentFunctions 1 1 enrichScheme 3 *
2 class CrackTip Type HomoElast Mat 1 geometry 2 EnrichmentF uncs 4 2 3 4 5
enrichScheme 1 domainIntFac 2.5 *
3 class CrackTip TypeHomoElast Mat 1 geometry 2 EnrichmentF uncs 4 2 3 4 5
enrichScheme 1 domainIntFac 2.5 *
**
GeometryEntity 3
1 class PiecewiseLinear numOfVertices 2 vertices 2 3 geoDes cription 1*
2 class Vertex coord 2 0.75 3.0 *
3 class Vertex coord 2 1.25 3.0 *
**
EnrichmentFunction 5
1 class DiscontinuousField *
2 class HomoElastCrackAsymp1 *
3 class HomoElastCrackAsymp2 *
4 class HomoElastCrackAsymp3 *
5 class HomoElastCrackAsymp4 *
**

CrackGrowthDirectionLaw
1 class MaxHoopStress *
**
CrackGrowthIncrementLaw
1 class FixedIncrement delta 0.2 *
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