Corrections of exercises 2-4

Exercise 2
a) $X - 1$ divides $X^4 - 1$ because
$$X^4 - 1 = (X - 1)(X^3 + X^2 + 1)$$
thus
$$\gcd(X^4 - 1, X - 1) = X - 1$$
b) Apply Euclid’s algorithm:
$$3X^3 + 2X + 1 = (3X + 12)(X^2 - 4X) + 50X + 1$$
$$X^2 - 4X = (\frac{1}{50}X - \frac{201}{50})(50X + 1) + \frac{201}{50}$$
Thus the last non zero residue in Euclid’s algorithm is $\frac{201}{50}$ which proves that
$$\gcd(3X^3 + 2X + 1, X^2 - 4X) = 1$$
Alternative proof: $X^2 - 4X = X(X - 4)$ thus a non constant divisor of $X^2 - 4X$ has either 0 or 4 as a root. None of them is a root of $3X^3 + 2X + 1$ thus the can’t have a non constant common divisor.

Exercise 3
a) In \mathbb{F}_p any non-zero element is invertible thus the group of units has $p - 1$ elements. Thus Lagrange’s theorem implies that for any unit $a \in \mathbb{F}_p - \{0\}$,
$$a^{p-1} = 1$$
i.e. $a^p = a$ that is, a is a root of $X^p - X$. As 0 is also obviously a root of $X^p - X$, this normalized polynomial of degree p has exactly p different roots in \mathbb{F}_p and thus factorizes as
$$X^p - X = \prod_{a \in \mathbb{F}_p} (X - a)$$
1. In $\mathbb{F}_3[X]$, since $3 = 0$ and $2 = -1$,
$$X(X - 1)(X - 2) = X(X^2 - 3X + 2) = X(X^2 + 2) = X^3 + 2X = X^3 - X$$
2. As already said in a), for any a in \mathbb{F}_p,
$$a^p - a = 0$$
Thus evaluating $X^p - X + 1$ on a gives 1 which doesn’t equal 0, so this polynomial has no root in \mathbb{F}_p.

Exercise 4
(a) $\mathbb{F}_7^* = \{1, 2, 3, 4, 5, 6\}$ endowed with multiplication is a cyclic group of order 6 so it’s generators are elements which have order exactly 6 and we know from cyclicity (identification with $\mathbb{Z}/6\mathbb{Z}$, +) that there must be two of them, one being the inverse of the other. 1 has order 1 so it’s not a generator. $2^3 = 8 = 1 = 64 = 4^3$ so 2 and 4 have order two so they are not generators. $6^2 = 36 = 1$ so 6 has order 2 and is not a generator. Thus the generators must be 3 and 5. Notice that $3 \times 5 = 15 = 1$ so we recover that one is the inverse of the other.
b) We have seen that $1 = 6^2$ is a square. Let’s compute directly all squares of non-zero elements of \mathbb{F}_7:
- $6^2 = 1$ so 1 is a square,
- $5^2 = 25 = 4$ so 4 is a square,
- $4^2 = 16 = 2$ so 2 is a square,
- $3^2 = 9 = 2$, nothing new,
- $2^2 = 4$ so nothing new,
- $1^2 = 1$
We see that there are 3 squares in \mathbb{F}_7^* which are 2, 4 and 1.
Notice that $a \mapsto a^2$ is a group homomorphism from \mathbb{F}_7^* to itself. It’s kernel is a subgroup of \mathbb{F}_7^* so it has order 1, 2, 3 or 6. Since $X^2 - 1$ has at most two roots in \mathbb{F}_7, this kernel has in fact order two, it is $\{1, 6\}$ Thus we recover that the image (i.e. the subgroup of squares) has order $6/2 = 3$.