Exchangeable Hoeffding decompositions over finite sets: a combinatorial characterization and counterexamples

Omar EL-DAKKAK, Giovanni PECCATI and Igor PR"UNSTER
Université Paris-Ouest, Nanterre, La Défense,
Université du Luxembourg and
Università degli Studi di Torino

Abstract

We study Hoeffding decomposable exchangeable sequences with values in a finite set $D = \{d_1, \ldots, d_K\}$. We provide a new combinatorial characterization of Hoeffding decomposability and use this result to show that, for every $K \geq 3$, there exists a class of neither Pólya nor i.i.d. D-valued exchangeable sequences that are Hoeffding decomposable. The construction of such sequences is based on some ideas appearing in Hill, Lane and Sudderth [1987] and answers a question left open in El-Dakkak and Peccati [2008].

Key words and phrases: Exchangeability; Hoeffding Decompositions; Pólya Urns; Urn Sequences; Weak Independence.

AMS 2000 Classification: 60G09, 60G99.

1 Introduction and framework

1.1 Overview

Let $X_{[1,\infty)} := \{X_n : n \geq 1\}$ be a sequence of square-integrable random variables with values in some Polish space. We say that $X_{[1,\infty)}$ is Hoeffding-decomposable if every square-integrable symmetric statistic of any n-subvector of $X_{[1,\infty)}$, for every $n \geq 2$, can be uniquely represented as an orthogonal sum of n U-statistics with degenerate kernels of increasing order. The classic notion of ‘degeneracy’ that is needed in this context is formally introduced in formula (1.8) below.

Since their discovery in the landmark paper by Hoeffding [1948], Hoeffding decompositions in the case of i.i.d. sequences have been successfully applied in a variety of frameworks, e.g.: linear rank statistics (Hajek [1968]), jackknife estimators (Karlin and Rinott [1982]), covariance analysis of symmetric statistics (Vitale [1992]), convergence of U-processes (Arcones and Giné [1993]), asymptotic problems in geometric probability (Avram and Bertsimas [1993]), Edgeworth expansions (Bentkus, Götze and van Zwet [1997]), and tail estimates for U-statistics (Major [2005]). See also Koroljuk and Borovskich [1994] and references therein.

Outside the i.i.d. framework, Hoeffding decompositions have been notably applied to study sampling without replacement from finite populations. The first analysis in this direction can be found in Zhao and Chen [1990]. Bloznelis and Götze [2001, 2002] generalized these results in order to characterize the asymptotic normality of symmetric statistics based on sampling without replacement (when the size of the population diverges to infinity), as well as to obtain explicit Edgeworth expansions. In Bloznelis [2005], Hoeffding-type decompositions are explicitly computed for statistics depending on extractions without replacement from several distinct populations.

In Peccati [2003, 2004, 2008] the theory of Hoeffding decompositions was extended to the framework of general exchangeable (infinitely extendible) random sequences. In Peccati [2004] it was shown that the class of Hoeffding decomposable exchangeable sequences coincides with the collection of weakly independent sequences, and that the class of weakly independent (and, therefore, Hoeffding decomposable) sequences contains the family of generalized Pólya urn sequences (see, e.g., Blackwell and MacQueen [1973] or Pitman [1996]). The connection with Pólya urns was further exploited in Peccati [2008], where Hoeffding-type decompositions were used in order to establish several new
spectral properties of Ferguson-Dirichlet processes (Ferguson [1973]), such as for instance a chaotic representation property. In El-Dakkak and Peccati [2008], the results established in Peccati [2004] were enriched and completed in two directions. On the one hand, it was proved that a (non deterministic) infinite exchangeable sequence with values in \{0, 1\} is Hoeffding decomposable if and only if it is either a Pólya sequence or i.i.d.. This result connects \textit{de facto} the seemingly unrelated notions of a Hoeffding decomposable sequence and of a urn process, a concept thoroughly studied in Hill, Lane and Sudderth [1987]. For the sake of completeness, it is worth recalling that, following Hill, Lane and Sudderth [1987], an exchangeable sequence \(X_{(1,\infty)}\) will be termed deterministic if \(P[X_k = X_1, \forall k \geq 2] = 1\). On the other hand, and using different techniques, a partial characterization of Hoeffding decomposable exchangeable sequences with values in a finite set with more than two elements was obtained. While not being as exhaustive as the one in the two-color case, this characterization was used to prove that Pólya urns are the only Hoeffding decomposable sequences within a large class of exchangeable sequences. Such a family of exchangeable sequences is defined in terms of their directing (or de Finetti) measure, which is obtained by normalizing vectors of infinitely divisible (positive) independent random variables (see Regazzini, Lijoi and Prünster [2003] and James, Lijoi and Prünster [2006]). See Lijoi and Prünster (2010) for an overview of their use in Bayesian Statistics.

Therefore, the analysis carried out in El-Dakkak and Peccati [2008] left the following question unanswered:

\textbf{Problem A:} \textit{Are Pólya and i.i.d. sequences the only infinite non deterministic Hoeffding decomposable sequences with values in a finite set with \(\geq 3\) elements ?}

We shall give a negative answer to Problem A. This is surprising given the above mentioned positive characterization might somehow lead to conjecture the opposite and, hence, makes the present result even more remarkable. In fact, the negative answer is obtained by explicitly building a class of \textit{neither Pólya nor i.i.d. yet Hoeffding decomposable} exchangeable sequences with values in a finite set with strictly more than two elements. See Theorem 2.3 below for a precise statement. Interestingly, this class turns out to be a generalization of a counterexample appearing in Hill, Lane and Sudderth [1987, p. 1591], showing that, unlike in the two-color case (see Theorem 1.3), there exist non-deterministic exchangeable 3-color urn processes that are neither Pólya nor i.i.d. sequences. Our fundamental tool is a new combinatorial characterization, stated in Theorem 3.4 of the system of predictive probabilities associated with Hoeffding-decomposable exchangeable sequences taking values in an arbitrary finite set. This characterization, which is of independent interest, represents a generalization of a crucial combinatorial statement proved in Proposition 4 of El-Dakkak and Peccati [2008].

In what follows, we recall some well-known facts about the main notions used in the sequel, namely: exchangeability (Section 1.2), Hoeffding decomposability (Section 1.3), weak independence (Section 1.4) and urn processes (Section 1.5).

For further details about exchangeability, urn processes and Hoeffding decompositons, the reader is referred e.g. to Aldous [1983], Hill, Lane and Sudderth [1987], Peccati [2004] and El-Dakkak and Peccati [2008].

\textbf{Remark 1.1} Every exchangeable sequence \(\{X_1, X_2, \ldots\}\) considered in this paper is assumed to take values in some finite set \(D\). In particular, every random variable of the type \(F = \varphi(X_1, \ldots, X_n), n \geq 1\), is automatically bounded.

\textbf{1.2 Exchangeability}

For every \(n \geq 2\), we denote by \(\mathcal{S}_n\) the group of all permutations of the set \([n] = \{1, \ldots, n\}\). A vector \((X_1, \ldots, X_n)\) of \(D\)-valued random variables is said to be \textit{exchangeable} if, for all \(x_n = (x_1, \ldots, x_n) \in D^n\) and all \(\pi \in \mathcal{S}_n\),

\[P(X_1 = x_1, \ldots, X_n = x_n) = P(X_1 = x_{\pi(1)}, \ldots, X_n = x_{\pi(n)}) \, . \]
A D-valued infinite sequence $X_{[1,\infty)}$ is exchangeable if every n-subvector of $X_{[1,\infty)}$ is exchangeable. Let Π_D denote the set of all probability measures on D. By the de Finetti representation theorem (see Aldous [1983]), an infinite sequence $X_{[1,\infty)}$ with values in $D = \{d_1, \ldots, d_K\}$ is exchangeable if and only if there exists a unique probability measure γ on Π_D (called directing or the de Finetti measure associated with the sequence $X_{[1,\infty)}$) such that, for all $n \geq 2$ and all $(x_1, \ldots, x_n) \in D^n$,

$$\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) = \int_{\Pi_D} \prod_{j=1}^{n} p\{x_j\} \gamma(dp),$$

where the elements of Π_D are written in the form $p := \{p\{d_i\} : i = 1, \ldots, K\}$. In other words, the de Finetti representation theorem states that a sequence of random variables is exchangeable if and only if it is a mixture of i.i.d. random sequences with values in D.

Plainly, any probability measure $p \in \Pi_D$ can be parametrized in terms of the simplex

$$\Theta_{K-1} := \left\{ (\theta_1, \ldots, \theta_{K-1}) : \theta_h \geq 0, \ h = 1, \ldots, K - 1 \text{ and } \sum_{h=1}^{K-1} \theta_h \leq 1 \right\},$$

by setting $p\{d_1\} = \theta_1, \ldots, p\{d_{K-1}\} = \theta_{K-1}$ and $p\{d_K\} = 1 - \sum_{h=1}^{K-1} \theta_h$. With this convention, the representation in (1.1) can be rewritten as

$$\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) = \int_{\Theta_{K-1}} \left(\prod_{j=1}^{K-1} \theta_j^{i_j} \right) \left(1 - \sum_{h=1}^{K-1} \theta_h \right)^{1-K} \gamma(d\theta_1, \ldots, d\theta_{K-1}),$$

where (with an abuse of notation) we have identified γ with its image through the canonical bijection between Π_D and Θ_{K-1}, and where $i_j := \sum_{v=1}^{n} 1(x_v = d_j), \ j = 1, \ldots, K$. Note that, when $K = 2$, (1.2) becomes

$$\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) = \int_{[0,1]} \theta^i (1 - \theta)^{n-i} \gamma(d\theta),$$

where $i = \sum_{v=1}^{n} 1(x_v = d_1)$.

If there exists a vector $\alpha = (\alpha_1, \ldots, \alpha_K) \in (0, +\infty)^K$ of strictly positive numbers such that

$$\gamma(d\theta_1, \ldots, d\theta_{K-1}) = \frac{1}{B(\alpha)} \left(\prod_{j=1}^{K-1} \theta_j^{\alpha_j - 1} \right) \left(1 - \sum_{h=1}^{K-1} \theta_h \right)^{\alpha_K - 1} d\theta_1 \cdots d\theta_{K-1},$$

where $B(\alpha) := \prod_{j=1}^{K-1} \Gamma(\alpha_j) / \Gamma\left(\sum_{j=1}^{K-1} \alpha_j \right)$, and $\Gamma(\cdot)$ stands for the usual Gamma function, we say that γ is a Dirichlet probability measure and that $X_{[1,\infty)}$ is a K-color Pólya sequence with parameter α. Specializing (1.3) to the case $K = 2$, one sees immediately that the measure γ in (1.3) becomes a Beta distribution with parameters α_1, α_2. It follows that an exchangeable sequence $X_{[1,\infty)}$ is a two-color Pólya sequence if and only if its de Finetti measure is a Beta distribution.

1.3 Hoeffding decomposability

Let us first introduce some notation. For all $n \geq 1$ and all $1 \leq u \leq n$, we write $[n] = \{1, \ldots, n\}$ and $[u, n] = \{u, u+1, \ldots, n\}$, and set $X_{[n]} := (X_1, X_2, \ldots, X_n)$ and $X_{[u, n]} := (X_u, X_{u+1}, \ldots, X_n)$. As in El-Dakkak and Peccati [2008], define, for all $n \geq 2$, the sequence of spaces

$$\{SU_k(X_{[n]}): k = 0, \ldots, n\},$$

generated by symmetric U-statistics of increasing order, as follows: $SU_0(X_{[n]}) := \mathbb{R}$ and, for all $k = 1, \ldots, n$, $SU_k(X_{[n]})$ is the collection of all random variables of the type

$$F(X_{[n]}) = \sum_{1 \leq j_1 < \cdots < j_k \leq n} \varphi(X_{j_1}, \ldots, X_{j_k}),$$

(1.5)
where φ is a real-valued symmetric function from D^k into \mathcal{R}. Any random variable F as in $[15]$ is called a U-statistic with symmetric kernel of order k. Since the collection $\{SU_k (X_{[n]})\}$ is an increasing sequence of vector spaces such that $SU_n (X_{[n]}) = L_s (X_{[n]})$ (where $L_s (X_{[n]})$ is defined as the Hilbert space of all symmetric statistics $T (X_{[n]})$ with respect to the inner product $(T_1, T_2) := \mathbb{E} (T_1 (X_{[n]}) T_2 (X_{[n]})))$, one can meaningfully define the sequence of symmetric Hoeffding spaces associated with $X_{[n]}$, denoted by

$$
\{SH_k (X_{[n]}) : k = 0, \ldots, n\},
$$
as follows: $SH_0 (X_{[n]}) := SU_0 (X_{[n]}) = \mathcal{R}$, and

$$
SH_k (X_{[n]}) := SU_k (X_{[n]}) \cap SU_{k-1} (X_{[n]})^\perp, \quad k = 1, \ldots, n,
$$
where all orthogonals (here and in the sequel) are taken in $L_s (X_{[n]})$. The following representation is therefore at hand

$$
L_s (X_{[n]}) = \bigoplus_{k=0}^n SH_k (X_{[n]}),
$$
where ‘\oplus’ stands for an orthogonal sum. This fact implies that, for all $n \geq 2$, every symmetric statistic $T (X_{[n]})$ admits an almost-surely unique representation of the type:

$$
T (X_{[n]}) = \mathbb{E} (T) + \sum_{k=1}^n F_k (X_{[n]}), \quad (1.6)
$$
where the F_k’s are uncorrelated U-statistics such that, for all $k = 1, \ldots, n$, there exists a symmetric kernel φ_k of order k satisfying

$$
F_k (X_{[n]}) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \varphi_k (X_{i_1}, \ldots, X_{i_k}). \quad (1.7)
$$

We are now in a position to recall the definition of Hoeffding decomposability for exchangeable sequences given in Peccati [2004].

Definition 1.2 The exchangeable sequence $X_{[1, \infty)}$ is said to be **Hoeffding decomposable** if, for all $n \geq 2$ and all $k = 1, \ldots, n$, the following double implication holds: $F_k \in SH_k (X_{[n]})$ if and only if the kernel φ_k appearing in its representation (1.6)–(1.7) is **completely degenerate**, that is

$$
\mathbb{E} (\varphi (X_{[k]}) \mid X_{[2,k]}) = 0, \quad a.s.-\mathbb{P}. \quad (1.8)
$$

1.4 Weak independence

Fix $n \geq 2$ and let $S (D^n)$ be the class of all symmetric real-valued functions on D^n. Fix $\varphi \in S (D^n)$ and define the functions $[\varphi]_{n,n-1}^{(n-1)} : D^{n-1} \to \mathcal{R}$ and $[\varphi]_{n,n-1}^{(n-u)} : D^{n-1} \to \mathcal{R}$, $u = 2, \ldots, n$ as the unique mappings such that

$$
[\varphi]_{n,n-1}^{(n-1)} (X_{[2,n]}) = \mathbb{E} (\varphi (X_{[n]}) \mid X_{[2,n]}), \quad a.s.-\mathbb{P}, \quad (1.9)
$$
and

$$
[\varphi]_{n,n-1}^{(n-u)} (X_{[u+1,u+n-1]}) = \mathbb{E} (\varphi (X_{[n]}) \mid X_{[u+1,u+n-1]}), \quad a.s.-\mathbb{P}, \quad (1.10)
$$
respectively. Exchangeability and symmetry imply that $D^{n-1} \to \mathcal{R} : x \mapsto [\varphi]_{n,n-1}^{(n-1)} (x)$ and $D^{n-1} \to \mathcal{R} : x \mapsto [\varphi]_{n,n-1}^{(0)} (x)$ (the latter being the function appearing (1.10) written for $u = n$) are symmetric functions whereas, for $u = 2, \ldots, n-1$, the function $D^{n-1} \ni (x_1, \ldots, x_{n-1}) \mapsto [\varphi]_{n,n-1}^{(n-u)} (x_1, \ldots, x_{n-1})$ is separately symmetric in the variables (x_1, \ldots, x_{n-u}) and $(x_{n-u+1}, \ldots, x_{n-1})$, and not necessarily as
a function on \(D^{n-1} \). Recall that, given a function \(f : D^n \to \mathbb{R} \), the canonical symmetrization of \(f \), denoted by \(\tilde{f} \), is given by

\[
\tilde{f}(x_n) = \frac{1}{n!} \sum_{\pi \in \mathfrak{S}_n} f(x_{\pi(n)}) , \; x_n \in D^n.
\]

Now define the sequence of vector spaces

\[
\Xi_n(X_{[1,\infty)}) := \left\{ \varphi \in S(D^n) : [\varphi]_{n,n-1}^{(n-1)}(X_{[2,n]}) = 0 \right\} , \quad n \geq 2,
\]

and the array of spaces

\[
\widetilde{\Xi}_{n,n-u}(X_{[1,\infty)}) := \left\{ \varphi \in S(D^n) : [\tilde{\varphi}]_{n,n-1}^{(n-u)}(X_{[u+1,u+n-1]}) = 0 \right\} , \quad u = 2, \ldots, n, \; n \geq 2,
\]

where \([\varphi]_{n,n-1}^{(n-u)}\) is the canonical symmetrization of \([\varphi]_{n,n-1}^{(n-u)}\).

Definition 1.3 We say that the sequence \(X_{[1,\infty)} \) is *weakly independent* if, for every \(n \geq 2 \),

\[
\Xi_n(X_{[1,\infty)}) \subset \bigcap_{u=2}^n \widetilde{\Xi}_{n,n-u}(X_{[1,\infty)}).
\]

In other words, weak independence occurs if, for every \(n \geq 2 \) and every \(\varphi \in S(D^n) \), the relation \([\varphi]_{n,n-1}^{(n-1)}(X_{[2,n]}) = 0 \) necessarily implies that \([\tilde{\varphi}]_{n,n-1}^{(n-u)}(X_{[u+1,u+n-1]}) = 0 \) for all \(u = 2, \ldots, n \). For instance, when \(n = 3 \) weak independence yields the following implication for every symmetric \(\varphi \) on \(D^2 \):

\[
\mathbb{E}(\varphi(X_1,X_2) \mid X_2) = 0 \quad \Rightarrow \quad \mathbb{E}(\varphi(X_1,X_2) \mid X_3) = 0.
\]

The following statement contains some of the main findings in Peccati [2004] (Part I) and El-Dakkak and Peccati [2008] (Part II).

Theorem 1.4 (Peccati, 2004; El-Dakkak and Peccati, 2008) Let \(X_{[1,\infty)} \) be an exchangeable sequence of random variables with values in the finite set \(D \).

(I) Assume that

\[
SH_k(X_{[n]}) \neq \{0\} , \quad \forall k = 1, \ldots, n, \; \forall n \geq 2.
\]

Then \(X_{[1,\infty)} \) is Hoeffding decomposable if and only if it is weakly independent.

(II) Assume that \(D = [2] \) and that \(X_{[1,\infty)} \) is non-deterministic (so that \((1.11)\) is automatically satisfied). Then, \(X_{[1,\infty)} \) is Hoeffding decomposable if and only if \(X_{[1,\infty)} \) is either a Pólya sequence or an i.i.d. sequence.

1.5 Urn processes and a result by Hill, Lane and Sudderth

Let \(X_{[1,\infty)} := \{ X_n : n \geq 1 \} \) be a sequence of \(\{0,1\} \)-valued random variables. Roughly speaking, \(X_{[1,\infty)} \) is a *two-color urn process* if its probabilistic structure can be represented by successive drawings from an urn with changing composition. More precisely, consider an urn containing \(r \) red balls and \(b \) black balls, \(r, b \in \{1,2,\ldots\} \), and let \(Y_0 := r/(r + b) \) denote the initial proportion of red balls in the urn. Suppose that a red ball is added with probability \(f(Y_0) \) and that a black ball is added with probability \(1 - f(Y_0) \), where \(f \) denotes a function from the unit interval into itself, and let \(Y_1 \) be the new proportion of red balls in the urn. Now, iterate the procedure to generate a sequence \((Y_0,Y_1,Y_2,\ldots)\). For all \(n \geq 1 \), let \(X_n \) denote the indicator of the event that the \(n \)-th ball added is red.
The process \(\textbf{X}_{[1,\infty)} := \{X_n : n \geq 1\} \) constructed in this manner is called a two-color urn process with initial composition \((r,b)\) and urn function \(f\). It is immediately seen that, for all \(n \geq 1\),

\[
\mathbb{P}(X_{n+1} = 1 \mid X_1, \ldots, X_n) = f(Y_n).
\]

In other words, two-color urn processes are characterized by the fact that the conditional probability that, at stage \(n+1\), a red ball is added depends uniquely on the proportion of red balls at stage \(n\), via the function \(f\).

A two-color urn process is said to be exchangeable if the sequence \(\textbf{X}_{[1,\infty)}\) is exchangeable (see Section 1.1). In particular, if \(\textbf{X}_{[1,\infty)}\) is a two-color urn process with initial composition \((r,b)\), and the identity map as urn function then \((a)\) it is exchangeable and \((b)\) the de Finetti measure of \(\textbf{X}_{[1,\infty)}\) is a Beta distribution with parameters \(r\) and \(b\). In that case, we will say that \(\textbf{X}_{[1,\infty)}\) is a two-color Pólya urn process. Similarly, a two-color urn process, \(\textbf{X}_{(1,\infty)}\), with constant urn function, identically equal to \(Y_0\) is \((a)\) exchangeable and \((b)\) has de Finetti measure equal to a point mass at \(Y_0\). In other words, \(\textbf{X}_{(1,\infty)}\) is a sequence of i.i.d. Bernoulli trials with parameter \(Y_0\). Finally, a two-color urn process, \(\textbf{X}_{[1,\infty)}\), with urn function

\[
f(x) = p1_{\{X_0\}}(x) + 1_{(X_0,1)}(x), \quad p \in (0, 1),
\]

is \((a)\) exchangeable and \((b)\) has de Finetti measure \(\gamma = p\delta_{\{1\}} + (1 - p)\delta_{\{0\}}\). In that case, we will say that \(\textbf{X}_{[1,\infty)}\) is a deterministic urn process. Note that such processes are characterized by the fact that the support of their de Finetti measure is \(\{0\} \cup \{1\}\).

The following statement is the main result of Hill, Lane and Sudderth [1987]: it shows that the three classes described above are the only two-color exchangeable urn processes.

Theorem 1.5 (Hill, Lane and Sudderth, 1987) Let \(\textbf{X}_{[1,\infty)}\) be an exchangeable non deterministic urn process with values in \(\{0, 1\}\). Then, \(\textbf{X}_{[1,\infty)}\) is either a two-color Pólya urn process, or an i.i.d. Bernoulli sequence.

Remark 1.6 In the parlance of the present article, a distinction is made between Pólya sequences and Pólya urn processes, the latter being a proper subset of the former: in fact, according to our definitions, a Pólya urn process is a Pólya sequence with de Finetti measure given by a Beta distribution whose parameters are integer-valued.

We now turn to the definition of multicolor urn processes. Consider an urn containing balls of \(K\) colors, \(K \in \{3,4,\ldots\}\), and suppose that it contains exactly \(r_i\) balls of color \(d_i\), respectively, \(r_i \in \{1,2,\ldots\}, i = 1,\ldots,K\). Let \(Y_0 := (Y_{0,1},\ldots,Y_{0,K})\) be the vector of initial proportions of balls of each color in the urn, where \(Y_{0,i} := \frac{r_i}{\sum_{k=1}^{K} r_k}\) denotes the proportion of balls of color \(d_i\), \(i = 1,\ldots,K\). Suppose that, at stage 1, a ball is added and that it is of color \(d_j\) with probability \(f_j(Y_{0,1},\ldots,Y_{0,K})\), \(j = 1,\ldots,K\), where the \(f_j\)'s are \([0,1]-valued functions defined on the simplex

\[
S_K := \left\{ y = (y_1,\ldots,y_K) : \sum_{k=1}^{K} y_k = 1, \; y_k \geq 0, \; k = 1,\ldots,K \right\},
\]

such that, for all \(y \in S_K\), \(\sum_{j=1}^{K} f_j(y) = 1\). Let \(Y_1 := (Y_{1,1},\ldots,Y_{1,K})\) be the new composition of the urn and iterate the process to generate a sequence \((Y_0,Y_1,Y_2,\ldots)\). For all \(n \geq 1\), let \(X_n\) be the \((d_1,\ldots,d_K)\)-valued random variable such that \(X_n = d_j\) if and only if the ball added, at stage \(n\), is of color \(d_j\). The process \(\textbf{X}_{[1,\infty)} := \{X_n : n \geq 1\}\) obtained in this manner is called a \(K\)-color urn process with initial composition \((r_1,\ldots,r_K)\) and urn function \(f = (f_1,\ldots,f_K)\), and we have, for all \(n \geq 1\) and all \(j \in \{1,\ldots,K\}\),

\[
\mathbb{P}(X_{n+1} = d_j \mid X_1,\ldots,X_n) = f_j(Y_n).
\]

A \(K\)-color urn process with initial composition \((r_1,\ldots,r_K)\) and an urn function given by the identity map is \((a)\) exchangeable and \((b)\) has de Finetti measure given by a Dirichlet distribution of parameters
Such an urn process will be called a K-color Pólya urn process with initial composition (r_1, \ldots, r_K). Once more, the class of K-color Pólya urn processes is a proper subset of the class of K-color Pólya sequences. The following example, taken from p. 1591 of Hill, Lane and Sudderth [1987], shows that a neat result such as Theorem 1.5 cannot hold for exchangeable urn processes with values in sets with strictly more than two elements.

Example 1.7 An urn contains three balls, 1 red, 1 black and 1 green. At each stage, a ball is drawn. If the ball is red, it is replaced and another red ball is added. If the ball is black or green, it is replaced, and a green or black ball is added, depending whether a fair coin falls head or tails. Attaching the labels 1, 2, 3, respectively, to the colors red, black and green, one sees immediately that the sequence $\{X_n : n \geq 1\}$, defined as $X_n = j$ ($j = 1, 2, 3$) according to whether the nth ball added to the urn is of color j, is an exchangeable urn process with urn function given by $f_1(y) = y_1$ and $f_2(y) = f_3(y) = (y_2 + y_3)/2$. In particular, $\{X_n\}$ is not a Pólya urn process.

The main achievement of the present paper is the proof that a generalization of the previous example provides examples of Hoeffding decomposable exchangeable sequences that are neither Pólya nor i.i.d.

1.6 Plan

Section 2 contains a discussion and the statement of our main result: Theorem 2.3. Section 2 contains the main combinatorial tools and the novel combinatorial characterization that are needed throughout the present paper, whereas the proof of Theorem 2.3 is provided in Section 3.

2 A remarkable class of exchangeable sequences

To achieve the announced negative result we introduce a remarkable class of exchangeable sequences. As will be clear from its definition, this class generalizes the exchangeable sequence introduced by Hill, Lane and Sudderth [1987] that we recalled in Example 1.7. Let $K \geq 3$, and let $X_{[1,\infty]}$ be an exchangeable sequence with values in $D = \{d_1, \ldots, d_K\}$, whose de Finetti measure γ is such that

$$\gamma(\mathrm{d}\theta_1, \ldots, \mathrm{d}\theta_{K-1}) = \frac{1}{B(\pi, \nu)} \delta_{\alpha_1(1-\theta_1)}(\mathrm{d}\theta_2) \cdots \delta_{\alpha_{K-2}(1-\theta_{K-1})}(\mathrm{d}\theta_{K-1}) \theta_1^{\pi-1}(1-\theta_1)^{\nu-1} \mathrm{d}\theta_1,$$

where $\pi, \nu > 0$ and $\alpha_1, \ldots, \alpha_{K-2} > 0$ are such that $\sum_{i=1}^{K-2} \alpha_i < 1$.

Remark 2.1 Equation (2.13) defines the de Finetti measure of an exchangeable sequence that is neither i.i.d. nor Pólya. In the sequel, we will refer to any such sequence as a

$$\text{HLS}_K(\pi, \nu, \alpha_1, \ldots, \alpha_{K-2}) \text{ exchangeable sequence},$$

(or, simply, a HLS$_K$-exchangeable sequence, if the parameters $\pi, \nu, \alpha_1, \ldots, \alpha_{K-2}$ need not be specified in a given context), with reference to the paper by Hill, Lane and Sudderth [1987]. In particular, as deduced from the discussion below, the case HLS$_3(1, 2, \frac{1}{3})$ corresponds to the 3-color urn sequence described in Example 1.7.

When π and ν are integer-valued, for any fixed K all HLS$_K(\pi, \nu, \alpha_1, \ldots, \alpha_{K-2})$ exchangeable sequences are non Pólya exchangeable urn processes. To see this, it suffices to notice that any such sequence can be generated by means of an urn with initial composition $(\nu_1, \ldots, \nu_{K-1})$, where the integers ν_i are such that $\nu = \sum_{i=1}^{K-1} \nu_i$, and with urn function $f = (f_1, \ldots, f_K)$ given by $f_1(y) = y_1$, $f_j(y) = \alpha_{j-1} \sum_{i=1}^{K-1} y_i$ ($j = 2, \ldots, K-1$), and $f_K(y) = (1-\alpha) \sum_{i=1}^{K-1} y_i$, with $\alpha = \sum_{i=1}^{K-2} \alpha_i$. An HLS$_K(\pi, \nu, \alpha_1, \ldots, \alpha_{K-2})$ exchangeable urn process (i.e. with integer-valued π and ν) has consequently the following interpretation: suppose an urn contains initially π balls of color d_1 and ν_{i-1} balls of color d_i, $i = 2, \ldots, K$, with $\sum_{i=1}^{K-1} \nu_i = \nu$. The following random experiment is run at each stage: a ball is drawn, if it is of color d_1, it is replaced along with another of the same color. If the ball drawn is of color d_i, $i = 2, \ldots, K$, it is replaced along with a ball of color d_j, with probability t_j, where $t_j = \alpha_{j-1}$, if $j = 2, \ldots, K-1$ and $t_j = 1-\alpha = 1-\sum_{s=1}^{K-2} \alpha_s$, if $j = K$.

6
Remark 2.2 In the above described explicit realization of a sequence of the type $HLS_K(\pi, \nu, \alpha_1, \ldots, \alpha_{K-2})$, the initial decomposition of the index ν into integers ν_i, $i = 2, \ldots, K$, is immaterial.

Let $X_{\lfloor 1, \infty \rfloor}$ be an $HLS_K(\pi, \nu, \alpha_1, \ldots, \alpha_{K-2})$ exchangeable sequence. For any $x_n = (x_1, \ldots, x_n) \in \{d_1, \ldots, d_K\}^n$, containing exactly z_i coordinates equal to d_i, $i = 1, \ldots, K - 1$, setting $\theta := \sum_{i=1}^{K-1} \theta_i$ and $z := \sum_{i=1}^{K-1} z_i$, one has that

$$
\mathbb{P}(X_{[n]} = x_n)
= \frac{1}{B(\pi, \nu)} \int_{\Theta_K} (1 - \theta)^{n-z_1 - \sum_{i=2}^{K-1} \alpha_i z_i} \prod_{i=1}^{K-1} \theta_i^{\alpha_i(1-\theta)} \cdot \delta_{\alpha_i(1-\theta_i)}(d\theta_2) \cdot \delta_{\alpha_{K-2}(1-\theta_1)}(d\theta_{K-1}) \theta_1^{\nu-1}(1 - \theta_1)^{\nu-1} d\theta_1
= \frac{(1 - \alpha)^{n-z} \prod_{i=1}^{K-1} \alpha_i^{z_i} \cdot \int_0^1 \theta_1^{\nu-1}(1 - \theta_1)^{n-z_1 + \nu-1} d\theta_1}{B(\pi, \nu)}
= \left[(1 - \alpha)^{n-z} \prod_{i=1}^{K-2} \frac{\alpha_i^{z_i+1}}{\alpha_i} \right] \frac{B(z_1 + \pi, n - z_1 + \nu)}{B(\pi, \nu)}. \quad (2.14)
$$

The following statement provides a negative answer to Problem A (as discussed in Section 1.1), and is one of the main achievements of the present paper. In particular, it shows that a naive generalization of Theorem 1.4(II) cannot be achieved for sets containing strictly more than 2 elements.

Theorem 2.3 For any $K \geq 3$ and any choice of the parameters $\pi, \nu > 0$ and $\alpha_1, \ldots, \alpha_{K-2} > 0$ with $\sum_{i=1}^{K-2} \alpha_i < 1$, the corresponding $HLS_K(\pi, \nu, \alpha_1, \ldots, \alpha_{K-2})$ sequence is Hoeffding decomposable while being neither i.i.d. nor Pólya.

Section 3 contains a combinatorial characterization of Hoeffding decomposability in the framework of exchangeable sequences taking values in a finite set with $K \geq 3$ elements. Such a result will be our main tool in the proof of Theorem 2.3, as detailed in the subsequent Section 4.

3 A combinatorial characterization of Hoeffding-decomposability on finite spaces

3.1 Framework

Let $X_{\lfloor 1, \infty \rfloor} := \{X_n : n \geq 1\}$ be a sequence of exchangeable random variables with values in $D = \{d_1, \ldots, d_K\}$, $K \geq 3$. Let γ be the de Finetti measure associated with $X_{\lfloor 1, \infty \rfloor}$. Throughout this section, we will systematically assume that $X_{\lfloor 1, \infty \rfloor}$ is such that

$$
\mathbb{P}(X_{[n]} = x_n) > 0, \quad \forall x_n \in D^n, \quad \forall n \geq 1. \quad (3.15)
$$

In the sequel, we will adopt the following notation: let $\mathcal{N}(n, K)$ denote the set of weak K-compositions of n, that is the collection of all vectors $i_K = (i_1, \ldots, i_K) \in \mathbb{N}^K$ such that $\sum_{j=1}^K i_j = n$. For each $n \geq 1$ and each $i_K \in \mathcal{N}(n, K)$, define the set

$$
C(n, i_K) := \left\{ x_n \in D^n : \sum_{h=1}^n 1(x_h = d_j) = i_j, \ j = 1, \ldots, K \right\}.
$$

By exchangeability of $X_{\lfloor 1, \infty \rfloor}$ and symmetry of all $\varphi \in \Xi_n (X_{\lfloor 1, \infty \rfloor})$, for all $n \geq 2$ and all $i_K \in \mathcal{N}(n, K)$, the functions $x_n \mapsto \mathbb{P}(X_{[n]} = x_n)$ and $x_n \mapsto \varphi(x_n)$ are constant on $C(n, i_K)$. The constant values taken by each of these functions will be denoted, respectively, $\mathbb{P}_n(i_1, \ldots, i_{K-1})$ and $\varphi_n(i_1, \ldots, i_{K-1})$. Note that the omission of the last coordinate of the vector i_K comes from the fact that its value is completely determined by those of the previous $K-1$ coordinates.
Remark 3.1 (On multinomial coefficients) Consider integers $m \geq 1$ and $b_1, \ldots, b_k \geq 0$ such that $\sum b_i \leq m$. In what follows we adopt the notation $(b_1, \ldots, b_k)_s$ in order to indicate the multinomial coefficient

$$\frac{m!}{b_1! \cdots b_k!(m - \sum b_i)!}.$$

We shall also use the following special “star notation”:

$$\left(\begin{array}{c} m \\ b_1, \ldots, b_k \end{array} \right)_s = \left(\begin{array}{c} m \\ b_1 \end{array} \right)_s \left(\begin{array}{c} m - b_1 \\ b_2 \end{array} \right)_s \cdots \left(\begin{array}{c} m - (b_1 + \cdots + b_{k-1}) \\ b_k \end{array} \right)_s,$$

(3.16)

where

$$\left(\begin{array}{c} a \\ b \end{array} \right)_s = \left(\begin{array}{c} a \\ b \end{array} \right) 1_{\{0, \ldots, a\}^c}(b),$$

(3.17)

and $\binom{n}{k}$ is the usual binomial coefficient. Note that $(b_1, \ldots, b_k)_s = (b_1, \ldots, b_k)_s$, whenever the binomial coefficients on the RHS of (3.17) are all different from zero.

3.2 Two technical lemmas

Our first technical result concerns the structure of the spaces $\Xi_n (X_{1,\infty})$ introduced in Section 1.4.

Lemma 3.2 If $X_{1,\infty}$ is an exchangeable random sequence satisfying (3.17), then the vector space $\Xi_n (X_{1,\infty})$ is the \(\left[\left(\begin{array}{c} n+K-1 \\ K-1 \end{array} \right) - \left(\begin{array}{c} n+K-2 \\ K-1 \end{array} \right) \right]\)-dimensional vector space spanned by the symmetric kernels $\varphi_n^{m_{K-2}}$, $m_{K-2} = (m_1, \ldots, m_{K-2}) \in \bigcup_{a=0}^n \mathcal{N}(a, K-2)$, such that, for each $m_{K-2} = (m_1, \ldots, m_{K-2}) \in \bigcup_{a=0}^n \mathcal{N}(a, K-2)$, and each $i_K = (i_1, \ldots, i_{K-1}, i_K) \in \mathcal{N}(n, K)$,

$$\varphi_n^{m_{K-2}} (i_1, \ldots, i_{K-1}) = (-1)^{i_1} \left(\begin{array}{c} m_1 - i_2 \cdots m_{K-2} - i_{K-1} \\ i_1 \end{array} \right)_s \frac{\mathbb{P}_n(0, m_1, \ldots, m_{K-2})}{\mathbb{P}_n(i_1, \ldots, i_{K-1})}.$$

(3.18)

Proof. The fact that

$$\dim(\Xi_n (X_{1,\infty})) = \left(\begin{array}{c} n+K-1 \\ K-1 \end{array} \right) - \left(\begin{array}{c} n+K-2 \\ K-1 \end{array} \right)$$

follows from Proposition 6 in El-Dakkak and Peccati [2008]. In order to prove the rest of the statement, we will show that the collection

$$\Phi_n := \left\{ \varphi_n^{m_{K-2}} : m_{K-2} \in \bigcup_{a=0}^n \mathcal{N}(a, K-2) \right\},$$

is indeed a basis of the vector space $\Xi_n (X_{1,\infty})$. To do that, we will first show that, for each $i_K \in \{i_K = (i_1, \ldots, i_K) \in \mathcal{N}(n, K) : i_1 \geq 1\}$, there exists a linear mapping $f_{i_K} : \mathfrak{R}^A \to \mathfrak{R}$, where $A = \bigcup_{a=0}^n \mathcal{N}(a, K-2)$, such that, for all $\varphi_n \in \Xi_n (X_{1,\infty})$,

$$\varphi_n (i_1, \ldots, i_{K-1}) = f_{i_K} \left(\varphi_n (0, m_{K-2}) : m_{K-2} \in \bigcup_{a=0}^n \mathcal{N}(a, K-2) \right).$$

(3.19)

Once the explicit representation (3.19) will be at hand, the characterization of Φ_n as a basis will be deduced from the fact that, for $m_{K-2} \in \bigcup_{a=0}^n \mathcal{N}(a, K-2)$, the functions $\varphi_n^{m_{K-2}}$ appearing in the statement verify the relation

$$\varphi_n^{m_{K-2}} (i_1, \ldots, i_K) = f_{i_K} \left(1_{\{m_{K-2}\}} (y_{K-2}) : y_{K-2} \in \bigcup_{a=0}^n \mathcal{N}(a, K-2) \right).$$

(3.20)
Let \(\varphi_n \in \Xi_n (\mathbf{X}_{[1,\infty)}) \). It turns out that, for all \(i_K \in \{ i_K = (i_1, \ldots, i_K) \in \mathcal{N}(n, K) : i_1 \geq 1 \} \),

\[
\varphi_n (i_1, \ldots, i_{K-1}) = -\frac{1}{\mathbb{P}_n (i_1, \ldots, i_{K-1})} \sum_{j_1=2}^K \varphi_n \cdot \mathbb{P}_n \left(\mu_1^{i_1} (i_1, \ldots, i_{K-1}) \right),
\]

(3.21)

where \(\varphi_n \cdot \mathbb{P}_n (\cdot) := \varphi_n (\cdot) \mathbb{P}_n (\cdot) \), where, for \(1 \leq l < p \leq K-1 \),

\[
\mu_p^l (i_1, \ldots, i_{K-1}) := (i_1, \ldots, i_{l-1}, i_l - 1, i_{l+1}, \ldots, i_{p-1}, i_p + 1, \ldots, i_{K-1}),
\]

and where for \(1 \leq l \leq K-1 \),

\[
\mu_l^K (i_1, \ldots, i_{K-1}) := (i_1, \ldots, i_{l-1}, i_l - 1, i_{l+1}, \ldots, i_{K-1}).
\]

Before proving formula (3.21), we make some remarks and give simple examples regarding our notation in order to better clarify it. For \(1 \leq l < p \leq K-1 \), the action of the operator \(\mu_p^l \) consists in subtracting 1 from the \(l \)-th coordinate of the vector \((i_1, \ldots, i_{K-1}) \) an adding 1 to the \(p \)-th coordinate. For example:

\[
\mu_2^4 (2, 7, 5, 9, 4) = (2, 6, 5, 10, 4).
\]

On the other hand, when \(1 \leq l \leq K-1 \) and \(p = K \), the action of the operator \(\mu_l^K \) consists in just subtracting 1 from the \(l \)-th coordinate. This is consistent with our conventions since we are omitting the \(K \)-th coordinate of the vectors \((i_1, \ldots, i_K) \); in other words the the 1 subtracted from the \(l \)-th coordinate is actually added the the last coordinate whose value we are omitting since it is completely determined by the values of the previous ones.

We shall now prove formula (3.21). Fix \(n \geq 2 \) and \(\varphi_n \in \Xi_n (\mathbf{X}_{[1,\infty)}) \). By the definition of \(\Xi_n (\mathbf{X}_{[1,\infty)}) \), we must have

\[
E \left(\varphi_n (\mathbf{X}_{[n]}) | \mathbf{X}_{[2,n]} \right) = 0.
\]

Then, for any arbitrarily fixed \(x_{n-1} \in D^{n-1} \),

\[
\sum_{i=1}^K \varphi_n (d_i, x_{2}, \ldots, x_{n-1}) \mathbb{P}_n \left(X_1 = d_i, X_{[2,n]} = x_{n-1} \right) = 0.
\]

Suppose \(x_{n-1} \in C(n-1, h_K) \), for some \(h_K \in \mathcal{N}(n-1, K) \). Then, by (3.15), the just-stated formula is equivalent to

\[
\varphi_n \cdot \mathbb{P}_n (h_1 + 1, h_2, \ldots, h_{K-1}) + \sum_{j_1=2}^K \varphi_n \cdot \mathbb{P}_n \left(\mu_1^{j_1} (h_1 + 1, h_2, \ldots, h_{K-1}) \right) = 0,
\]

thus proving that (3.21) holds for the vector \(i_K = (i_1, \ldots, i_K) := (h_1 + 1, h_2, \ldots, h_K) \). Clearly, \(i_K \in \{ i_K = (i_1, \ldots, i_K) \in \mathcal{N}(n, K) : i_1 \geq 1 \} \). To see that (3.21) holds for all \(i_K \in \{ i_K = (i_1, \ldots, i_K) \in \mathcal{N}(n, K) : i_1 \geq 1 \} \), observe that for any such \(i_K \), there exists \(h_K \in \mathcal{N}(n-1, K) \) such that \(i_K = (h_1 + 1, \ldots, h_K) \). This proves also that

\[
\text{card} (\{i_K = (i_1, \ldots, i_K) \in \mathcal{N}(n, K) : i_1 \geq 1\}) = \text{card} (\mathcal{N}(n-1, K)).
\]

(3.22)

Now, recursion in (3.21) gives

\[
\varphi_n (i_1, \ldots, i_{K-1}) = \frac{(-1)^{j_1}}{\mathbb{P}_n (i_1, \ldots, i_{K-1})} \sum_{j_1=2}^K \sum_{j_2=2}^K \varphi_n \cdot \mathbb{P}_n \left(\mu_1^{j_1} \circ \cdots \circ \mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right),
\]

(3.23)

where the operator \(\mu_1^{j_1} \circ \cdots \circ \mu_1^{j_1} \) denotes the successive iteration of operators \(\mu_1^{j_1}, \ldots, \mu_1^{j_1} \). For example,

\[
\mu_2^2 \circ \mu_1^3 \circ \mu_1^4 (4, 7, 5, 4, 9) = \mu_2^2 (\mu_1^3 (\mu_1^4 (4, 7, 5, 4, 9))) = (0, 9, 6, 5, 9).
\]
To see this, fix $j_1 \in \{2, \ldots, K\}$ and apply (3.21) to $\varphi_n \left(\mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right)$ to obtain

$$\varphi_n \left(\mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right) = -\frac{1}{\mathbb{P}_n \left(\mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right)} \sum_{j_2=2}^{K} \varphi_n \cdot \mathbb{P}_n \left(\mu_2^{j_2} \circ \mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right).$$

Do that for all $j_1 \in \{2, \ldots, K\}$ and plug in (3.21) to obtain

$$\varphi_n (i_1, \ldots, i_{K-1}) = \frac{1}{\mathbb{P}_n (i_1, \ldots, i_{K-1})} \sum_{j_1=1}^{i_{K-1}} \sum_{j_2=2}^{K} \varphi_n \cdot \mathbb{P}_n \left(\mu_1^{j_2} \circ \mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right).$$

Iterating the process i_1 times gives (3.23).

Next, observe that the term $\varphi_n \cdot \mathbb{P}_n \left(\mu_1^{j_1} \circ \cdots \circ \mu_1^{j_1} (i_1, \ldots, i_{K-1}) \right)$ is certainly of the form

$$\varphi_n \cdot \mathbb{P}_n (0, i_2 + b_1, i_3 + b_2, \ldots, i_{K-1} + b_{K-2}),$$

where $b_v = \sum_{i=1}^{i_1} 1 (j_v = v + 1), v = 1, \ldots, K - 2$ is the number of 1’s substracted from the first coordinate of (i_1, \ldots, i_{K-1}) and added to coordinate $v + 1$. Note that b_{K-1} (i.e. the number of 1’s substracted from the first coordinate and added to the last) is completely determined by the vector $b_{K-2} = (b_1, \ldots, b_{K-2})$. Clearly, the operator $\mu_1^{j_1} \circ \cdots \circ \mu_1^{j_1}$ is commutative in the sense that

$$\mu_1^{j_1} \circ \cdots \circ \mu_1^{j_1} = \mu_1^{j_{\sigma(1)}} \circ \cdots \circ \mu_1^{j_{\sigma(1)}},$$

for any permutation σ of $(1, \ldots, i_1)$. It follows that, for any fixed $(b_1, \ldots, b_{K-2}) \in \bigcup_{i_1=0}^{i_1} \mathcal{N}(a, K - 2)$ the term 3.21 occurs exactly $(b_1, b_2, \ldots, b_{K-2})$ times in the sum described in (3.23). Consequently, (3.23) can be rewritten as follows:

$$\varphi_n (i_1, \ldots, i_{K-1}) = \frac{(-1)^i_1}{\mathbb{P}_n (i_1, \ldots, i_{K-1})} \sum_{(+) \sum_{i=1}^{i_1} (b_1, \ldots, b_{K-2})} \varphi_n \cdot \mathbb{P}_n (0, i_2 + b_1, i_3 + b_2, \ldots, i_{K-1} + b_{K-2}),$$

where the sum $(+)$ is extended to all vectors $b_{K-2} = (b_1, \ldots, b_{K-2}) \in \bigcup_{i_1=0}^{i_1} \mathcal{N}(a, K - 2)$. Set $m_p := b_p + i_{p+1}$, $p = 1, \ldots, K - 2$, and rewrite (3.25) as

$$\varphi_n (i_1, \ldots, i_{K-1}) = \frac{(-1)^i_1}{\mathbb{P}_n (i_1, \ldots, i_{K-1})} \sum_{(\sum) \sum_{m_1=0}^{i_1} (m_1 - i_2, \ldots, m_{K-2} - i_{K-1})} \varphi_n \cdot \mathbb{P}_n (0, m_1, \ldots, m_{K-2}),$$

where the sum (\sum) is extended to all vectors $(m_1, \ldots, m_{K-2}) \in \bigcup_{i_1=0}^{i_1} \mathcal{N}(a, K - 2)$, such that

$$m_1 \in \{i_2, \ldots, i_1 + i_2\},$$
$$m_2 \in \{i_3, \ldots, (i_1 - m_1) + i_2 + i_3\},$$
$$m_3 \in \{i_4, \ldots, (i_1 - m_1) + (i_2 - m_2) + i_3 + i_4\},$$
$$\vdots$$
$$m_{K-2} \in \{i_{K-1}, \ldots, \sum_{v=1}^{K-3} (i_v - m_v) + i_{K-2} + i_{K-1}\}.$$
where the sum (\(=\)) is extended to all vectors \(m_{K-2} = (m_1, \ldots, m_{K-2}) \in \bigcup_{a=0}^{n} \mathcal{N}(a, K - 2)\). Since equality (3.27) holds for any \(\varphi_n \in \Xi_n(X_{[1, \infty)})\) and any \(i_K \in \{i_K = (i_1, \ldots, i_K) \in \mathcal{N}(n, K) : i \geq 1\}\), then we have proved (3.19). The claim of the present step of the proof follows, now, immediately from (3.20).

Next, adapting the arguments rehearsed in the proof of Lemma 3 of El-Dakkak and Peccati [2008] yields the following statement about symmetrizations.

Lemma 3.3 Fix \(m \geq 2\) and \(v \in \{1, \ldots, m - 1\}\) and let the application

\[
f_{v, m-v} : D^n \to \mathfrak{A} : (x_1, \ldots, x_m) \mapsto f_{v, m-v} (x_1, \ldots, x_m),
\]

where \(D = \{d_1, \ldots, d_K\}\), be separately symmetric in the variables \((x_1, \ldots, x_v)\) and \((x_{v+1}, \ldots, x_m)\) (and not necessarily as a function on \(D^n\)). Then, for any \(x_m \in C(m, z_K)\) for some \(z_K = (z_1, \ldots, z_K) \in \mathcal{N}(m, K)\), the canonical symmetrization of \(f\), denoted \(\bar{f}\), reduces to

\[
\bar{f} (x_m) = \frac{\sum_{(v)} (k_1, k_2, \ldots, k_{K-1}) \left(\sum_{z=1}^{m-v} v \right) f_{v, m-v} ((k_1, \ldots, k_{K-1}), (z_1 - k_1, \ldots, z_K - k_K))}{\sum_{(v)} (k_1, k_2, \ldots, k_{K-1})},
\]

(3.28)

where the sums \((v)\) are extended to all the vectors \((k_1, \ldots, k_{K-1})\) with

\[
k_1 \in \{0 \lor [z_1 - (m - v)], \ldots, z_1 \wedge v\},
\]

\[
k_2 \in \{0 \lor [z_2 - (m - v) - (z_1 - k_1)], \ldots, z_2 \wedge (v - k_1)\},
\]

\[
\vdots
\]

\[
k_{K-1} \in \{0 \lor [z_{K-1} - (m - v) - \sum_{p=1}^{K-2} (z_p - k_p)], \ldots, z_{K-1} \wedge (v - \sum_{p=1}^{K-2} k_p)\}.
\]

The set of all such vectors will, in the sequel, be referred to as the set of all \((m, v, z_K)\)-coherent vectors and where \(\sum_{(v)} (k_1, \ldots, k_{K-1})\), \((z_1 - k_1, \ldots, z_K - k_K)\) denotes the common value of \(f_{v, m-v}(y_m)\) when \(y_m = (y_1, \ldots, y_m)\) is such that the subvector \((y_1, \ldots, y_v)\) contains exactly \(k_i\) coordinates equal to \(d_i\), \(i = 1, \ldots, K\), and the subvector \((y_{v+1}, \ldots, y_m)\) contains exactly \((z_i - k_i)\) coordinates equal to \(d_i\), \(i = 1, \ldots, K\).

As a consequence, \(\bar{f}_{v, m-v}(x_m) = 0\) for every \(x_m \in D^m\) if, and only if, for all \(z_K = (z_1, \ldots, z_K) \in \mathcal{N}(m, K)\),

\[
\sum_{(v)} (k_1, k_2, \ldots, k_{K-1}) \left(\sum_{z=1}^{m-v} v \right) f_{v, m-v} ((k_1, \ldots, k_{K-1}), (z_1 - k_1, \ldots, z_K - k_K)) = 0.
\]

(3.29)

3.3 The characterization

We are now ready to prove the announced full characterization of \(D\)-valued Hoeffding decomposable exchangeable sequences satisfying (3.13), where \(D = \{d_1, \ldots, d_K\}\). To this end, recall that, for every symmetric \(\varphi : D^n \to \mathfrak{A}\), every \(u = 2, \ldots, n\) and every \(x_{n-1} = (x_1, \ldots, x_{n-1}) \in D^{n-1}\),

\[
[\varphi]_{n,n-1}^{(n-u)} (x_{n-1}) = \mathbb{E} \left(\varphi \left(X_{[u]} \right) \bigg| X_{[u+1,u+n-1]} = x_{n-1} \right).
\]

Observe that the function \([\varphi]_{n,n-1}^{(n-u)} : D^{n-1} \to \mathfrak{A}\) clearly meets the symmetry properties of Lemma 3.3 with \(m = n - 1\) and \(v = n - u\). Now, fix \(z_K = (z_1, \ldots, z_K) \in \mathcal{N}(n - 1, K)\) and suppose \(x_{n-1} = (x_1, \ldots, x_{n-1}) \in C(n - 1, z_K)\) is such that \(\sum_{t=1}^{n-u} 1 (x_t = d_p) = k_p, p = 1, \ldots, K - 1\). Then
\[[\varphi]_{n,n-1}^{(n-u)}(x_{n-1}) = \sum_{q_1=0}^{u} \sum_{q_2=0}^{u-q_1} \cdots \sum_{q_{K-1}=1}^{u} \left(u - \sum_{j=1}^{K-2} q_j \right) \varphi_n(k_1 + q_1, \ldots, k_{K-1} + q_{K-1}) \times \]
\[\frac{\mathbb{P}_{n+u-1}(z_1 + q_1, \ldots, z_{K-1} + q_{K-1})}{\mathbb{P}_{n-1}(z_1, \ldots, z_{K-1})}. \] (3.30)

By applying (3.29) in the case \(m = n - 1 \), we deduce that \([\varphi]_{n,n-1}^{(n-u)}(x_{n-1}) = 0\) if and only if
\[\sum_{\ast} \left(\binom{n-u}{k_1, k_2, \ldots, k_{K-1}}(z_1 - k_1, z_2 - k_2, \ldots, z_{K-1} - k_{K-1}) \times \right. \]
\[\left. [\varphi]^{(n-u)}_{n,n-1}(k_1, z_1, \ldots, z_{K-1} - k_{K-1}) \right) = 0, \] (3.31)
where the sum \(\ast \) is extended to all \((n - 1, n - u, z_K)\)-coherent vectors \((k_1, \ldots, k_{K-1})\), i.e.
\[k_1 \in \{ 0 \lor [z_1 - (u - 1)], \ldots, z_1 \land (n - u) \}, \]
\[k_2 \in \{ 0 \lor [z_2 - (u - 1) - (z_1 - k_1)], \ldots, z_2 \land (n - u - k_1) \}, \]
\[\vdots \]
\[k_{K-1} \in \{ 0 \lor [z_{K-1} - (u - 1) - \sum_{a=1}^{K-2} (z_p - k_p)], \ldots, z_{K-1} \land (n - u - \sum_{a=1}^{K-2} k_p) \}, \]
and where the notation \([\varphi]^{(n-u)}_{n,n-1}(k_1, \ldots, k_{K-1}), (z_1 - k_1, \ldots, z_K - k_{K-1})\) has been introduced to indicate the common value of \([\varphi]^{(n-u)}_{n,n-1}(x_{n-1})\), for all \(x_{n-1}(x_1, \ldots, x_{n-1}) \in C(n - 1, z_K) \) such that \(\sum_{i=1}^{n} x_i = d_p \).

Now recall that, by Theorem 3.3, Hoeffding decomposability and weak independence are equivalent provided condition (1.11) is verified. The fact that such condition is verified in our case is a consequence of Point 2 of Proposition 6 in Peccati and El-Dakkak [2008]. Moreover, \(\mathbf{X}_{[1,\infty]} \) is weakly independent if, and only if, for all \(n \geq 2 \) and all \(\varphi_n \in \Xi_n(\mathbf{X}_{[1,\infty]}) \), one has \(\varphi_n \in \tilde{\Xi}_{n,n-u}(\mathbf{X}_{[1,\infty]}) \), for all \(u = 2, \ldots, n \). By Lemma 3.3 this implies that for every \(\mathbf{m}_{K-2} \in \bigcup_{a=0}^{n} \mathcal{N}(a, K - 2) \), the corresponding basis function \(\varphi_n^{(n-u)}(\mathbf{m}_{K-2}) \) belongs to \(\tilde{\Xi}_{n,n-u}(\mathbf{X}_{[1,\infty]}) \). On the other hand since any \(\varphi_n \in \Xi_n(\mathbf{X}_{[1,\infty]}) \) is a linear combination of the basis functions \(\varphi_n^{(n-u)}(\mathbf{m}_{K-2}) \), we deduce that weak independence occurs if, and only if, for all \(\mathbf{m}_{K-2} \in \bigcup_{a=0}^{n} \mathcal{N}(a, K - 2) \), \(\varphi_n^{(n-u)}(\mathbf{m}_{K-2}) \in \tilde{\Xi}_{n,n-u}(\mathbf{X}_{[1,\infty]}) \). In other words, weak independence occurs if, and only if, for all \(n \geq 2 \), all \(u = 2, \ldots, n \), all \(\mathbf{z}_K = (z_1, \ldots, z_K) \in \mathcal{N}(n - 1, K) \), and all \(\mathbf{m}_{K-2} \in \bigcup_{a=0}^{n} \mathcal{N}(a, K - 2) \)
\[\sum_{\ast} \left(\binom{n-u}{k_1, k_2, \ldots, k_{K-1}}(z_1 - k_1, z_2 - k_2, \ldots, z_{K-1} - k_{K-1}) \times \right. \]
\[\left. [\varphi_n^{(n-u)}(\mathbf{m}_{K-2})]^{(n-u)}_{n,n-1}(k_1, z_1, \ldots, z_{K-1} - k_{K-1}) \right) = 0, \] (3.32)
the sum \(\ast \) being, as usual, extended to all \((n - 1, n - u, \mathbf{z}_K)\)-coherent vectors \((k_1, \ldots, k_{K-1})\). Substituting (3.18) and (3.30) in (3.31), one has that (3.32) is true if, and only if, all \(\mathbf{m}_{K-2} \in \bigcup_{a=0}^{n} \mathcal{N}(a, K - 2) \), for the following quantity equals 0:
\[\frac{\mathbb{P}_n(0, m_1, \ldots, m_{K-2})}{\mathbb{P}_{n-1}(z_1, \ldots, z_{K-1})} \sum_{\ast} (-1)^{k_1} \left(\binom{n-u}{k_1, k_2, \ldots, k_{K-1}}(z_1 - k_1, z_2 - k_2, \ldots, z_{K-1} - k_{K-1}) \times \right. \]
\[\left. \times \sum_{\ast} (-1)^{q_1} \left(\binom{u}{q_1, \ldots, q_{K-1}} \right) \frac{\mathbb{P}_n(0, m_1, \ldots, m_{K-2} - k_{K-1} - q_{K-1})}{\mathbb{P}_n(0, k_1 + q_1, \ldots, z_{K-1} + k_{K-1})}, \right) \] (3.33)
where the sum (\ast) is extended to all $(n-1, n-u, z_K)$-coherent vectors (k_1, \ldots, k_{K-1}) and the sum ($\ast\ast$) is extended to all $q_{K-1} = (q_1, \ldots, q_{K-1}) \in \bigcup_{a=0}^{u} \mathcal{N}(a, K-1)$. Note that

$$\mathbb{P}_{n+u-1}(z_1 + q_1, \ldots, z_{K-1} + q_{K-1}) \quad (3.34)$$

$$\frac{1}{(z_1-k_1, z_2-k_2, \ldots, K_{K-1}-k_{K-1})} \mathbb{P}_{n+u-1}(z_1 + q_1, \ldots, z_{K-1} + q_{K-1} \mid k_1 + q_1, \ldots, z_{K-1} + k_{K-1}),$$

where $\mathbb{P}_{n+u-1}(z_1 + q_1, \ldots, z_{K-1} + q_{K-1} \mid k_1 + q_1, \ldots, z_{K-1} + k_{K-1})$ denotes the conditional probability that the vector $X_{[n+u-1]}$ contains exactly $z_p + q_p$ coordinates equal to d_p, $p = 1, \ldots, K-1$, given that the subvector $X_{[n]}$ contains exactly $k_p + q_p$ coordinates equal to d_p, $p = 1, \ldots, K-1$. Plugging (3.34) into (3.33), one deduces immediately the announced characterization of weak independence.

Theorem 3.4 Let $X_{[1, \infty)}$ be an infinite sequence of exchangeable D-valued random variables satisfying (3.14). For the sequence to be Hoeffding-decomposable, it is necessary and sufficient that, for every $u \geq 2$, every $u = 2, \ldots, n$, every $z_K = (z_1, \ldots, z_K) \in \mathcal{N}(n-1, K)$ and every $m_{K-2} = \bigcup_{a=0}^{n} \mathcal{N}(a, K-2)$, the following quantity equals 0:

$$\sum_{(*)} (-1)^{k_1} \left(\begin{array}{c} n-u \\ k_1, k_2, \ldots, k_{K-1} \end{array} \right) \times$$

$$\sum_{(**)} (-1)^{q_1} \left(\begin{array}{c} u \\ q_1, \ldots, q_{K-1} \end{array} \right) \left(\begin{array}{c} k_1 + q_1 \\ m_1 - k_2 - q_2, \ldots, m_{K-2} - k_{K-1} - q_{K-1} \end{array} \right) \times$$

$$\times \mathbb{P}_{n+u-1}(z_1 + q_1, \ldots, z_{K-1} + q_{K-1} \mid k_1 + q_1, \ldots, z_{K-1} + k_{K-1}),$$

where the sum (\ast) is extended to all $(n-1, n-u, z_K)$-coherent vectors (k_1, \ldots, k_{K-1}), and the sum ($\ast\ast$) is extended to all $q_{K-1} = (q_1, \ldots, q_{K-1}) \in \bigcup_{a=0}^{u} \mathcal{N}(a, K-1)$.

In the next section, we will use the content of Theorem 3.4 in the case $K = 3$.

4 Proof of Theorem 2.3

We start by stating a result that is easily deduced from the proof of the Theorem 1 in El-Dakkak and Peccati [2008].

Lemma 4.1 For all $\pi, \nu > 0$, all $n \geq 2$, all $u = 2, \ldots, n$, all $z = 0, \ldots, n-1$ and all $k \in \{\max\{0, z-(u-1)\}, \ldots, \min\{z, n-u\}\}$,

$$\sum_{q=0}^{u} (-1)^q \frac{B(\pi + z + q, \nu + n + u - 1 - z - q)}{B(\pi + k + q, \nu + n - k - q)} = 0.$$

To keep the notation as understandable as possible, we shall restrict ourselves to the case $K = 3$. The proof for general K carries out exactly in the same way. Let $X_{[1, \infty)}$ be an HLS$_3(\pi, \nu, \alpha)$-exchangeable sequence with values in $D = \{d_1, d_2, d_3\}$, where $\pi, \nu > 0$ and $0 < \alpha < 1$. By (2.14), the following facts are in order: (a) $X_{[1, \infty)}$ satisfies (3.15), (b) $X_{[1, \infty)}$ is neither i.i.d. nor a K-color Polya sequence and (c) if $x_n \in D^n$ contains exactly z_1 coordinates equal to d_1 and z_2 coordinates equal to d_2, then, in the language of the present paper,

$$\mathbb{P}(X_{[n]} = x_n) = \mathbb{P}_n(z_1, z_2) = \alpha^{z_2}(1-\alpha)^{n-z_1-z_2} \frac{B(z_1 + \pi, n - z_1 + \nu)}{B(\pi, \nu)}. \quad (4.36)$$

Recall that, by Theorem 3.4, an exchangeable sequence with values in $D = \{d_1, d_2, d_3\}$ is Hoeffding-decomposable if and only if, for all $n \geq 2$, all $u = 2, \ldots, n$, all $m = 0, \ldots, n$ and all $(z_1, z_2) \in S(z_1, z_2) := \{(z_1, z_2) \in \{0, \ldots, n-1\}^2 : z_1 + z_2 \leq n-1\}$, one has
0 = \sum_{k_1 \in A(z_1, u)} \sum_{k_2 \in A(z_2, u)} (-1)^{k_1} \binom{n - u}{k_1} \binom{u - 1}{k_2} (z_1 - k_1) (z_2 - k_2) \times
\sum_{q_1 = 0}^{u} \sum_{q_2 = 0}^{u - q_1} (-1)^{q_1} \binom{u}{q_1} \binom{k_1 + q_1}{q_2} \binom{m - k_2 - q_2}{u - q_1} \frac{\mathbb{P}_{n + u - 1}(z_1 + q_1, z_2 + q_2)}{\mathbb{P}_n(k_1 + q_1, k_2 + q_2)},

where

A(z_1, u) = \{\max\{0, z_1 - (u - 1)\}, \ldots, \min\{z_1, n - u\}\},

and

A_{z_2, u} = \{\max\{0, z_2 - (u - 1) - (z_1 - k_1)\}, \ldots, \min\{z_1, n - u - k_1\}\},

and where the notation \((\alpha)\) is defined in (3.17).

It follows that \(X_{[1, \infty]}\) is Hoeffding-decomposable if and only if for all \(n \geq 2\), all \(u = 2, \ldots, n\), all \(m = 0, \ldots, n\), and all \((z_1, z_2) \in S(z_1, z_2) := \{(z_1, z_2) \in \{0, \ldots, n - 1\}^2 : z_1 + z_2 \leq n - 1\}\), one has

\[0 = \sum_{k_1 \in A(z_1, u)} \sum_{k_2 \in A(z_2, u)} (-1)^{k_1} \binom{n - u}{k_1} \binom{u - 1}{k_2} (z_1 - k_1) (z_2 - k_2) \times
\sum_{q_1 = 0}^{u} \sum_{q_2 = 0}^{u - q_1} (-1)^{q_1} \binom{u}{q_1} \binom{k_1 + q_1}{q_2} \binom{m - k_2 - q_2}{u - q_1} \frac{B(\pi + z_1 + q_1, \nu + n + u - 1 - z_1 - q_1)}{B(\pi + k_1 + q_1, \nu + n - k_1 - q_1)},\]

where

\[C = C(\alpha, u, z_1, z_2, k_1, k_2) = \alpha^{z_2 - k_2} (1 - \alpha)^{(u - 1) - (z_1 - k_1) - (z_2 - k_2)},\]

clearly does not depend on \(q_1\) and \(q_2\).

We will, in fact, show an even stronger fact. More precisely, we will show that, for all \(n \geq 2\), all \(u = 2, \ldots, n\), all \(m = 0, \ldots, n\), all \((z_1, z_2) \in S(z_1, z_2) := \{(z_1, z_2) \in \{0, \ldots, n - 1\}^2 : z_1 + z_2 \leq n - 1\}\), all \(k_1 \in A(z_1, u)\) and all \(k_2 \in A_{z_2, u}\), one has

\[\sigma(n, u, m, z_1, k_1, k_2) = 0,\]

where

\[\sigma(n, u, m, z_1, k_1, k_2) := \sum_{q_1 = 0}^{u} \sum_{q_2 = 0}^{u - q_1} (-1)^{q_1} \binom{u}{q_1} \binom{k_1 + q_1}{q_2} \binom{m - k_2 - q_2}{u - q_1} \frac{B(\pi + z_1 + q_1, \nu + n + u - 1 - z_1 - q_1)}{B(\pi + k_1 + q_1, \nu + n - k_1 - q_1)}.\]

Towards this aim, we first show that

\[\sigma(n, u, m, z_1, k_1, k_2) = \sum_{q_1 = 0}^{u} (-1)^{q_1} \binom{u}{q_1} \frac{B(\pi + z_1 + q_1, \nu + n + u - 1 - z_1 - q_1)}{B(\pi + k_1 + q_1, \nu + n - k_1 - q_1)} \sum_{q_2 = 0}^{u - q_1} \binom{u}{q_2} \binom{k_1 + q_1}{q_2} \binom{m - k_2 - q_2}{u - q_1},\]

\[= \left(\frac{k_1 + u}{m - k_2} \right) \sum_{q_1 = 0}^{u} (-1)^{q_1} \binom{u}{q_1} \frac{B(\pi + z_1 + q_1, \nu + n + u - 1 - z_1 - q_1)}{B(\pi + k_1 + q_1, \nu + n - k_1 - q_1)}.\]

In other words, we show that

\[\tilde{\sigma}_{q_1}(m, u, k_1, k_2) = \sum_{q_2 = 0}^{u - q_1} \binom{u}{q_2} \binom{k_1 + q_1}{q_2} \binom{m - k_2 - q_2}{u - q_1} = \left(\frac{k_1 + u}{m - k_2} \right),\]

(4.38)
i.e. that $\tilde{\sigma}_i(m, u, k_1, k_2)$ does, actually, not depend on q_1. For reading convenience, set $u - q_1 = i$ and $m - k_2 = j$ and rewrite $\tilde{\sigma}_i(m, u, k_1, k_2)$ as

$$\tilde{\sigma}_i(j, u, k_1) = \sum_{q_2=0}^{i} \binom{\frac{i}{q_2} - j}{\frac{j - q_2}{i}}.$$

To see that $\tilde{\sigma}_i(j, u, k_1) = \tilde{\sigma}_j(j, u, k_1)$, start by fixing $i \in \{0, \ldots, u\}$. If $j < 0$ (i.e. if $m < k_2$), then the equality is trivial. If $0 \leq j \leq i$, then, by definition of $\binom{k_1 + u - 2}{j - q_2}$, we have

$$\tilde{\sigma}_i(j, u, k_1) = \tilde{\sigma}_j(j, u, k_1),$$

and the result follows by a direct application of the van der Monde formula. If $j < i$, then a direct application of the classical Pascal’s triangle gives

$$\binom{k_1 + u}{j} = \binom{k_1 + u - 1}{j - 1} + \binom{k_1 + u - 1}{j} + \binom{k_1 + u - 2}{j - 1} + \binom{k_1 + u - 2}{j} + \binom{k_1 + u - 3}{j - 1} + \binom{k_1 + u - 3}{j}.$$

Now that (4.38) is in order, fix, arbitrarily, n, u, z_1, k_1. For all k_2 and m such that $m \in \{0, \ldots, k_2 - 1\} \cup \{k_1 + u + 1, \ldots, n\}$, we have, by definition of $\binom{k_1 + u}{m - k_2}$, that $\sigma(n, u, m, z_1, k_1, k_2) = 0$ as desired. The fact that this is still the case for all $m \in \{k_2, \ldots, k_1 + u\}$, follows from (4.37) and Lemma 4.1. The proof of Theorem 2.3 is concluded.

Acknowledgements. The authors are especially grateful to Eugenio Regazzini for a number of illuminating discussions. I. Prünster is also affiliated to Collegio Carlo Alberto and partially supported by MIUR, Grant 2008MK3AFZ, and Regione Piemonte.

References

