Two properties of vectors of quadratic forms in Gaussian random variables

Vladimir I. Bogachev (Moscow State University)
Egor D. Kosov (Moscow State University)
Ivan Nourdin (Université de Lorraine)
Guillaume Poly (Université du Luxembourg)

Abstract: We study distributions of random vectors whose components are second order polynomials in Gaussian random variables. Assuming that the law of such a vector is not absolutely continuous with respect to Lebesgue measure, we derive some interesting consequences. Our second result gives a characterization of limits in law for sequences of such vectors.

Keywords: Quadratic forms; second Wiener chaos; convergence in law; absolute continuity.

2000 Mathematics Subject Classification: 60F05; 60G15; 60H05.

1. Introduction and main results

Due to many applications in probability and statistics, quadratic forms or more general second order polynomials in Gaussian random variables are an object of great importance. The aim of this paper is to present some new results about distributions of random vectors whose components are such quadratic forms.

To be more specific, let us fix an integer number $k \geq 2$ and let us introduce an array $g_{i,j}$, $1 \leq i \leq k$, $j = 1, 2, \ldots$ of $N(0, 1)$ random variables. Assume that the variables $g_{i,j}$ are jointly Gaussian and that $E[g_{i,j} g_{i,j}'] = 0$ whenever $j \neq j'$ (that is, for any fixed i, the sequence $g_{i,1}, g_{i,2}, \ldots$ is composed of independent $N(0, 1)$ random variables). Let us also consider a random vector $F = (F_1, \ldots, F_k) \in \mathbb{R}^k$ whose components are “quadratic forms”, that is, for any $i = 1, \ldots, k$,

$$F_i = \sum_{j=1}^{\infty} \lambda_{i,j} (g_{i,j}^2 - 1) \quad \text{for some } \lambda_{i,j} \in \mathbb{R} \text{ with } \sum_{j=1}^{\infty} \lambda_{i,j}^2 < \infty. \quad (1.1)$$

In his seminal paper [7], Kusuoka showed that the law of $F = (F_1, \ldots, F_k)$ as above is not absolutely continuous with respect to Lebesgue measure if and only if there exists a nonconstant polynomial P on \mathbb{R}^k such that $P(F_1, \ldots, F_k) = 0$ almost surely (see also [9, Theorem 3.1], where it is further shown that the degree of P can always be chosen less than or equal to $k 2^{k-1}$). But what can be said about the usual linear dependence of F_1, \ldots, F_k? One of the goals of this paper is to provide a number of positive and negative results in the spirit of the following theorem, which will be proved (actually in a more general framework) in Section 2.

Theorem 1.1. Let $k \in \mathbb{N}$ be fixed. Let $F = (F_1, \ldots, F_k)$ be a random vector given by (1.1) such that the law of F is not absolutely continuous. Then, there exist $k - 1$ independent...
\[N(0, 1) \text{ random variables } \eta_1, \ldots, \eta_{k-1} \text{ and } 2k - 1 \text{ real numbers } a_1, \ldots, a_k, b_1, \ldots, b_{k-1} \text{ such that } (a_1, \ldots, a_k) \neq (0, \ldots, 0) \text{ and almost surely} \]

\[a_1 F_1 + \cdots + a_k F_k = b_1 (\eta_1^2 - 1) + \cdots + b_{k-1} (\eta_{k-1}^2 - 1). \]

In order to better understand the significance of this theorem, let us comment on it a little bit. Let its assumptions hold. In case \(k = 1 \) this is only possible if \(F_1 = 0 \). When \(k = 2 \), it can be shown (see, e.g., [9 Proposition 3.2]) that one can actually choose \(b_1 = 0 \), which means that \(F_1 \) and \(F_2 \) are necessarily linearly dependent. When \(k \geq 3 \), the situation becomes more difficult. It is no longer true that the variables \(F_i \) are necessarily linearly dependent when \(F \) is not absolutely continuous, as the following simple counterexample shows. Let \(g_1, g_2 \sim N(0, 1) \) be independent. Set \(F_1 = g_1^2 - 1, F_2 = g_2^2 - 1 \) and

\[F_3 = g_1 g_2 = \frac{1}{2\sqrt{2}} \left[\left(\frac{(g_1 + g_2)}{\sqrt{2}} \right)^2 - 1 \right] - \left(\frac{(g_1 - g_2)}{\sqrt{2}} \right)^2 - 1. \]

The second equality just shows that \(F_3 \) is indeed of the form (1.1). It is readily checked that the covariance matrix of \(F_1, F_2, F_3 \) is not degenerate (hence \(F_1, F_2, F_3 \) are linearly independent), although the law of \((F_1, F_2, F_3)\) is obviously not absolutely continuous, since

\[F_3^2 - (F_1 + 1)(F_2 + 1) = 0. \]

Therefore, the best one can achieve about the linear dependence is precisely what we state in our theorem.

Let us now discuss the second main result of this paper, which is a description of the possible limits in law for sequences of vectors of quadratic forms. To be in a position to state a precise result, we first need to introduce some notation. Assume that, for each fixed \(n \), the variables \(g_{i,j,n} \) are jointly Gaussian and that \(\mathbb{E}[g_{i,j,n}g_{i,j',n}] = 0 \) whenever \(j \neq j' \). Let us also consider a sequence of random vectors \(F_n = (F_{1,n}, \ldots, F_{k,n}) \in \mathbb{R}^k \) whose components are again “quadratic forms”: for any \(i = 1, \ldots, k \) and any \(n \geq 1 \),

\[F_{i,n} = \sum_{j=1}^{\infty} \lambda_{i,j,n} (g_{i,j,n}^2 - 1) \text{ for some } \lambda_{i,j,n} \in \mathbb{R} \text{ with } \sum_{j=1}^{\infty} \lambda_{i,j,n}^2 < \infty. \]

We then have the following theorem, which is our second main result.

Theorem 1.2. Let us assume that \(F_n = (F_{1,n}, \ldots, F_{k,n}) \) converges in law as \(n \to \infty \). Then the limit law coincides with the distribution of a vector of the form \(\eta + F \), where \(F = (F_1, \ldots, F_k) \) is of the form (1.1) and \(\eta = (\eta_1, \ldots, \eta_k) \) is an independent Gaussian random vector.

When \(k = 1 \) (the one-dimensional case), Theorem 1.2 was actually shown by Arcones [2] (see also Sevastyanov [14] or Nourdin and Poly [12]). At first glance one could be tempted to think that, in order to show Theorem 1.2 in the general case \(k \geq 2 \), it suffices to apply the Arcones theorem along with the Cramér–Wold theorem. But if we try to implement this strategy, we face a crucial issue. Indeed, consider a random vector \(G = (G_1, \ldots, G_k) \) in \(\mathbb{R}^k \) and assume that each linear combination of the variables \(G_i \) is a quadratic form in
Gaussian random variables; how can we deduce from this that \(G \) has the same law as \(F \) given by (1.1)?

The paper is organized as follows. Section 2 contains our results related to Theorem 1.1, whereas the proof of Theorem 1.2 is performed in Section 3.

2. Second order polynomial mappings with linearly dependent Malliavin derivatives

A basic fact of the Malliavin calculus is that finitely many Sobolev functions \(F_1, \ldots, F_n \) on a space with a Gaussian \(\mu \) have a joint density of distribution provided that their Malliavin gradients \(D_H F_1, \ldots, D_H F_n \) along the Cameron–Martin space \(H \) are linearly independent almost everywhere. For this reason diverse sufficient conditions for such independence are of interest, which leads to a natural question about consequences of the alternative situation where the gradients are linearly dependent on a positive measure set. One can hardly expect a useful general characterization of this, but the situation may be more favorable for various special classes of functions, in particular, for measurable polynomials. One of the first results in this direction (already mentioned above) was obtained by Kusuoka [7]. This result has been recently extended in [9] as follows: the measure induced by \(F_1, \ldots, F_n \) is not absolutely continuous precisely when there is a polynomial dependence between \(F_1, \ldots, F_n \), i.e. there is a nonzero polynomial \(\psi \) such that \(\psi(F_1, \ldots, F_n) = 0 \). But what can be said about usual linear dependence of \(F_1, \ldots, F_n \)? Of course, in general there might be no such dependence even in the finite-dimensional case. However, there are cases where the linear dependence of derivatives of mappings on \(\mathbb{R}^d \) on a positive measure set yields the usual linear dependence of the mappings themselves. This is obviously the case for linear functions and can be also verified for quadratic forms. The goal of this section is to present a number of positive and negative results of this sort. We prove that if \(k \) measurable linear mappings \(A_1, \ldots, A_k \) on a space with a Gaussian measure \(\mu \) are such that the vectors \(A_1 x, \ldots, A_k x \) are linearly dependent for every \(x \) in a set of positive \(\mu \)-measure, then there is a measurable linear operator \(D \) of rank \(k - 1 \) such that the operators \(A_1, \ldots, A_k, D \) are linearly dependent, i.e. \(D = c_1 A_1 + \cdots + c_k A_k \) with some numbers \(c_1, \ldots, c_k \). In general, the rank of \(D \) cannot be made smaller. However, if \(k = 2 \) and \(A_1 \) and \(A_2 \) are the second derivatives along \(H \) of some second order polynomials, then the above assertion is true with \(D = 0 \), that is, \(A_1 \) and \(A_2 \) are linearly dependent.

Let \(\mu \) be a centered Radon Gaussian measure on a locally convex space \(X \) with the topological dual \(X^* \), i.e., every functional \(f \in X^* \) is a centered Gaussian random variable on \((X, \mu) \). Basic concepts and facts related to Gaussian measures can be found in [4] and [5]. We recall some of them.

The Cameron–Martin space of \(\mu \) is the set

\[
H = \{ h \in X : |h|_H < \infty \},
\]

where

\[
|h|_H := \sup \{ l(h) : l \in X^*, \|l\|_{L^2(\mu)} \leq 1 \}.
\]
It is known that the closure of H in X has full measure, so we shall assume throughout that H is dense. Such a measure μ is called nondegenerate. An equivalent condition is that the distribution of every nonzero $f \in X^*$ has a density.

Let X^*_μ denote the closure of X^* in $L^2(\mu)$. The elements of X^*_μ are called measurable linear functionals on X. Such a functional admits a version that is linear on all of X in the usual algebraic sense. Conversely, every μ-measurable function that is algebraically linear belongs to the space X^*_μ.

It is known that H consists of all vectors h such that μ is equivalent to its shift μ_h defined by $\mu_h(B) = \mu(B - h)$. It is also known that every vector $h \in H$ generates a measurable linear functional \hat{h} on X such that
\[
(f, \hat{h})_{L^2(\mu)} = f(h), \quad f \in X^*.
\]

Every element in X^*_μ can be represented in this way, so that the mapping $h \mapsto \hat{h}$ is one-to-one. It is known that H is a separable Hilbert space with the inner product
\[
(h, k)_H := (\hat{h}, \hat{k})_{L^2(\mu)}.
\]

If $\{e_n\}$ is an orthonormal basis in H, then
\[
\hat{h}(x) = \sum_{n=1}^{\infty} (h, e_n)_H \hat{e}_n(x),
\]
where the series converges in $L^2(\mu)$ and almost everywhere. In the case where μ is the standard Gaussian measure on \mathbb{R}^∞ (the countable power of \mathbb{R} or the space of all real sequences $x = (x_n)$) and $\{e_n\}$ is the standard basis in $H = l^2$, we have $\hat{e}_n(x) = x_n$ and
\[
\hat{h}(x) = \sum_{n=1}^{\infty} h_n x_n.
\]

Given a bounded operator $A: H \to H$ let \hat{A} denote the associated measurable linear operator on X, i.e., a measurable linear mapping from X to X such that $\hat{h}(\hat{A}x) = \hat{A}^* \hat{h}(x)$ for every $h \in H$. This operator can be defined by the formula
\[
\hat{A}x = \sum_{n=1}^{\infty} \hat{e}_n(x) A e_n,
\]
where the series converges in X for almost all x (which is ensured by the Tsirelson theorem).

If A is a Hilbert–Schmidt operator (and only in this case) the operator \hat{A} takes values in H. Then $(\hat{A}x, h)_H = \hat{A}^* \hat{h}(x)$ for every $h \in H$ and the above series converges in H for almost all x.

The space $L^2(\mu)$ can be decomposed in the orthogonal sum $\bigotimes_{k=0}^{\infty} X_k$ of mutually orthogonal closed subspaces X_k constructed as follows. Letting E_k be the closure in $L^2(\mu)$ of polynomials of the form $f(\xi_1, \ldots, \xi_n)$, where f is a polynomial of order k on \mathbb{R}^n and $\xi_i \in X^*_{\mu}$, the space X_k is the orthogonal complement of E_{k-1} in E_k, $E_0 = X^*_\mu$ is the one-dimensional space of constants. For example, $X_1 = X^*_\mu$. Functions in E_k are called measurable polynomials of order k. The elements of X_k are also referred to as elements of the homogeneous
Wiener chaos of order \(k \) (although they are not homogeneous polynomials excepting the case \(k = 1 \)). It has been recently shown in [3] that the class \(E_k \) coincides with the set of \(\mu \)-measurable functions on \(X \) which admit versions that are polynomials of order \(k \) in the usual algebraic sense (an algebraic polynomial of order \(k \) is a function whose restriction to every straight line is a polynomial of order \(k \)).

The elements of \(\mathcal{X}_2 \) admit the following relatively simple representation: for every \(f \in \mathcal{X}_2 \) there are numbers \(c_n \) and an orthonormal sequence \(\{ \xi_n \} \subset X^*_\mu \) such that \(\sum_{n=1}^{\infty} c_n^2 < \infty \) and

\[
f = \sum_{n=1}^{\infty} c_n (\xi_n^2 - 1),
\]

where the series converges almost everywhere and in \(L^2(\mu) \). For any \(k \), the elements of \(\mathcal{X}_k \) can be represented by series in Hermite polynomials of order \(k \) in the variables \(\xi_n \). Also, in the case of the classical Wiener space, they can be written as multiple Wiener integrals. In that case, \(X = C[0,1] \) or \(X = L^2[0,1] \), \(\mu \) is the Wiener measure, its Cameron–Martin space \(H \) is the space of all absolutely continuous functions \(h \) on \([0,1]\) such that \(h(0) = 0 \) and \(h' \in L^2[0,1] \); \((u,v)_H = (u',v')_{L^2} \). Every element in \(X^*_\mu \) can be written as the Wiener stochastic integral

\[
\xi(x) = \int_0^1 u(t)dx(t), \quad u \in L^2[0,1].
\]

Letting

\[
h(t) = \int_0^t u(s)ds,
\]

we have \(\xi = \hat{h} \). Similarly, any element in \(\mathcal{X}_2 \) can be written as the double Wiener integral

\[
f(x) = \int \int q(t,s)dx(t)dx(s),
\]

where \(q \in L^2([0,1]^2) \). However, the first integral \(\xi(s,x) = \int q(t,s)dx(t) \) must be an adapted process (so that the second integral is already an Itô integral of an adapted process with respect to the Wiener process), i.e., for every \(s \), the random variable \(\xi(s,x) \) must be measurable with respect to the \(\sigma \)-field generated by the variables \(x(t) \) with \(t \leq s \); for this reason it is required that \(q(t,s) = 0 \) whenever \(t > s \).

Every function \(f \in \mathcal{X}_2 \) has the Malliavin gradient \(D_H f \) along \(H \) that is a measurable linear operator from \(X \) to \(H \); for \(f \) of the form (2.1) we have

\[
D_H f(x) = 2 \sum_{n=1}^{\infty} c_n \xi_n(x) e_n,
\]

where \(\{ e_n \} \) is an orthonormal sequence in \(H \) such that \(\xi_n = \hat{e}_n \); without loss of generality we may assume that \(\{ e_n \} \) is a basis in \(H \). Therefore, the second derivative \(D^2_H f(x) \) is the symmetric Hilbert–Schmidt operator with an eigenbasis \(\{ e_n \} \) and the corresponding eigenvalues \(\{ 2c_n \} \). So the situation is similar to the case of \(\mathbb{R}^d \), where the function \(Q(x) = \sum_{n=1}^{d} c_n (x_n^2 - 1) \) has the gradient \(\nabla Q(x) = 2 \sum_{n=1}^{d} c_n x_n e_n \). In the coordinate-free form \(Q(x) = (Ax,x) - \text{trace} \ A \), where \(A \) is a symmetric operator, \(\nabla Q(x) = 2Ax \). The only
difference is that the series of \(c_n \xi_n^2\) does not have a separate meaning unless the series of \(|c_n|\) converges, so a typical element of \(X_2\) just formally looks like “a quadratic form minus a constant”.

It is clear that \(D_H f = 2 \hat{D}_H^2 f\). Conversely, for any symmetric Hilbert–Schmidt operator \(A\) that has an eigenbasis \(\{e_n\}\) and eigenvalues \(\{a_n\}\), there is \(f \in X_2\) of the form \[\hat{D}_H^2 f(x) = \sum_{n=1}^{\infty} a_n \xi_n^2 \] such that \(A = D_H^2 f(x)\) and \(\hat{A} x = D_H f(x)\).

It is readily seen that in the case of the classical Wiener space and an element \(f \in X_2\) represented by means of a double Wiener integral with a kernel \(q\) one has
\[
(D_H f(x), h)_H = \int_0^1 \int_0^1 [q(t, s) + q(s, t)] h'(t)dtdx(s), \quad h \in H.
\]

For the second derivative we have
\[
(D_H^2 f(x)h_1, h_2)_H = \int_0^1 \int_0^1 [q(t, s) + q(s, t)] h_1'(t)h_2'(s)dtds, \quad h_1, h_2 \in H.
\]

Now we may ask whether two elements \(f\) and \(g\) in \(X_2\) are linearly dependent if their gradients \(D_H f(x)\) and \(D_H g(x)\) are linearly dependent for almost all \(x\); what about \(k\) elements in \(X_2\)? In terms of the second derivatives along \(H\) our question is this: if two symmetric Hilbert–Schmidt operators \(A\) and \(B\) on \(H\) are such that \(\hat{A} x = \hat{B} x\) are linearly dependent for almost all \(x\), is it true that the operators \(A\) and \(B\) are linearly dependent? The same question can be asked about not necessarily symmetric operators on \(H\) and also about more general measurable linear operators (as well as about more than two such objects).

For example, given two quadratic forms \((Ax, x)\) and \((Bx, x)\) on \(\mathbb{R}^d\) with symmetric operators \(A\) and \(B\), the linear dependence of the forms (or, what is the same, the linear dependence of the corresponding elements \((Ax, x) - \text{trace} A\) and \((Bx, x) - \text{trace} B\) of \(X_2\)) is equivalent to the linear dependence of the operators, and both follow from the condition that \(Ax\) and \(Bx\) are linearly dependent for \(x\) in a positive measure set. We are concerned with infinite-dimensional generalizations of this fact.

Lemma 2.1. Two functions \(f, g \in X_2\) are linearly dependent precisely when the operators \(D_H^2 f\) and \(D_H^2 g\) on \(H\) are linearly dependent.

Proof. If \(\alpha f(x) + \beta g(x) = 0\) for some numbers \(\alpha, \beta\), then obviously \(\alpha D_H^2 f + \beta D_H^2 g = 0\). Suppose the latter equality holds. This means that the \(H\)-valued mapping \(\alpha D_H f + \beta D_H g\) has zero derivative along \(H\). It follows that \(\alpha D_H f(x) + \beta D_H g(x)\) is a constant vector \(h_0 \in H\). Therefore, \(\alpha f(x) + \beta g(x) = \hat{h}_0(x) + c\), where \(c\) is a constant. Since \(f\) and \(g\) are orthogonal in \(L^2(\mu)\) to all elements in \(E_1\), we conclude that \(c = 0\) and \(h_0 = 0\). \(\square\)

We recall the following zero-one law: for every \(\mu\)-measurable linear subspace \(L \subset X\) one has either \(\mu(L) = 0\) or \(\mu(L) = 1\). There is also a similar zero-one law for measurable polynomials \(\psi\): the set \(\{x: \psi(x) = 0\}\) has measure either 0 or 1, see [1] Theorem 3.2.10 and Proposition 5.10.10].
Theorem 2.2. Let A_1, \ldots, A_k be linearly independent Hilbert–Schmidt operators on H. Then either the vectors $\hat{A}_1x, \ldots, \hat{A}_kx$ are linearly independent a.e. or there is a finite-dimensional bounded operator D of rank at most $k-1$ that is a nontrivial linear combination of A_1, \ldots, A_k.

Proof. Let $k = 2$. We may assume that $\hat{A}_1x \neq 0$ a.e., since otherwise $\hat{A}_1x = 0$ a.e. by the zero-one law, hence $A_1 = 0$. Suppose that \hat{A}_1x, \hat{A}_2x are linearly dependent on a positive measure set. By the zero-one law for polynomials they are linearly dependent a.e., because the set Z of points x at which \hat{A}_1x and \hat{A}_2x are linearly dependent is characterized by the equality $(\hat{A}_1x, \hat{A}_2x)_H^2 - (\hat{A}_1x, \hat{A}_1x)_H(\hat{A}_2x, \hat{A}_2x)_H = 0$. Hence there is a function k on X such that

$$\hat{A}_2x = k(x)\hat{A}_1x \text{ a.e.}$$

Then $k(x) = (\hat{A}_1x, \hat{A}_2x)_H/|\hat{A}_1x|_H^2$. The functions

$$P(x) = (\hat{A}_1x, \hat{A}_2x)_H, \quad Q(x) = |\hat{A}_1x|_H^2$$

are obviously differentiable along H. Note that the derivatives of \hat{A}_1 and \hat{A}_1 along H are just the initial operators A_1 and A_2, respectively. Differentiating the equality

$$Q(x)\hat{A}_2x = P(x)\hat{A}_1x,$$

we get almost everywhere

$$Q(x)A_2 + D_HQ(x) \otimes \hat{A}_2x = P(x)A_1 + D_HP(x) \otimes \hat{A}_1x,$$

where for any two vectors $u, v \in H$ the operator $u \otimes v$ is defined by $u \otimes v(h) = (u, h)v$. It should be noted that differentiating is possible almost everywhere, since for almost every $x \in Z$ the set Z contains all straight lines $x + \mathbb{R}h$ for every vector $h \in H$ that is a linear combination of the elements of a fixed orthonormal basis $\{e_i\}$ in H with rational coefficients.

Let x be any point where the previous equality holds and $Q(x) \neq 0$. Then

$$A_2 = k(x)A_1 + Q(x)^{-1}[D_HP(x) - k(x)D_HQ(x)] \otimes \hat{A}_1x.$$

Setting $c := k(x)$ and

$$D := Q(x)^{-1}[D_HP(x) - k(x)D_HQ(x)] \otimes \hat{A}_1x,$$

we arrive at the identity $A_2 = cA_1 + D$, where D has rank at most 1.

Suppose now that our assertion is true for some $k \geq 2$ and consider linearly independent operators $A_1, \ldots, A_k, A_{k+1}$. We may assume that $\hat{A}_1x, \ldots, \hat{A}_kx$ are linearly independent a.e. If $\hat{A}_1x, \ldots, \hat{A}_{k+1}x$ are linearly dependent on a positive measure set, then they are linearly dependent a.e., hence there are functions c_1, \ldots, c_k on X such that a.e.

$$\hat{A}_{k+1}x = c_1(x)\hat{A}_1x + \cdots + c_k(x)\hat{A}_kx.$$

It is readily verified again that the functions c_i (which can be found explicitly) are differentiable along H a.e. Differentiating we arrive at the equality a.e.

$$A_{k+1} = c_1(x)A_1 + \cdots + c_k(x)A_k + D(x),$$
where $D(x)$ is a sum of k one-dimensional operators, hence has rank at most k. It remains
to take x as a common point of differentiability of c_1, \ldots, c_k.

\begin{proof}
Let us return to the proof of the theorem, where A means that both D (otherwise h)
dependent for vectors x.

\begin{remark}
It is known (see, e.g., [16]) that for any measurable linear operator T from a
separable Fréchet space X with a Gaussian measure μ (actually, not necessarily Gaussian)
to a separable Banach space Y there is a separable reflexive Banach space E compactly
embedded into X and having full measure such that T coincides almost everywhere with
a bounded linear operator from E to Y. Using this result, one can reduce the previous
theorem (in the case of Fréchet spaces) to the case of bounded operators.

\begin{corollary}
Let $k = 2$ and let A_1 and A_2 be symmetric. If $\hat{A}_1 x$ and $\hat{A}_2 x$ are linearly
dependent for vectors x in a set of positive measure, then A_1 and A_2 are linearly dependent.
\end{corollary}

\begin{proof}
Let us return to the proof of the theorem, where $\hat{A}_2 x = k(x)\hat{A}_1 x$ a.e. with some
measurable function k. We also have $A_2 = cA_1 + D$, where D has rank at most 1. Suppose
that $D \neq 0$. Clearly, D is also symmetric, hence $\hat{D} = \lambda h_1 h_1^\perp$ for some nonzero vector
$h_1 \in H$ and a nonzero number λ. Since $\hat{D}x = (k(x) - c)\hat{A}_1 x$ a.e. and $\hat{D}x \neq 0$ a.e.
(otherwise $D = 0$), we see \hat{A}_1 takes its values in the one-dimensional range of D a.e. This
means that both A_1 and A_2 are one-dimensional and by their symmetry are of the form
$h \mapsto c_1(h, h_1)h_1$ with some constants c_1 and c_2, whence it is obvious that they are linearly
dependent.
\end{proof}

\begin{corollary}
Suppose that functions f_1, \ldots, f_k, where $k > 2$, belong to \mathcal{X}_2 and are lin-
early independent. Then either they have a joint density of distribution or some nontrivial
linear combination $c_1 f_1 + \cdots + c_n f_n$ is a degenerate element of \mathcal{X}_2 of rank $k - 1$, i.e., a
second order polynomial in $k - 1$ elements of the space \mathcal{X}_1 of measurable linear functionals.
\end{corollary}

\begin{corollary}
Let μ be a nondegenerate centered Gaussian measure on a separable Fréchet
space X, let H be its Cameron–Martin space H, and let A_1, \ldots, A_k be linearly independent
continuous linear operators on X with values in a Banach space E. Then either the vectors
$A_1x, \ldots, A_k x$ are linearly independent a.e. or some nontrivial linear combination $c_1 A_1 +
\cdots + c_k A_k$ has rank at most $k - 1$.
\end{corollary}

\begin{proof}
It suffices to consider the case of infinite-dimensional H. We may assume that E
is separable. Embedding E into l^2 by means of an injective continuous linear operator we
can pass to the case $E = H$. Finally, taking an injective Hilbert–Schmidt operator S and
dealing with the operators SA_1, \ldots, SA_k we arrive at the situation in the theorem (in fact, there is no need to take S, since the restrictions of our operators to H will be automatically
Hilbert–Schmidt operators, see [4, Proposition 3.7.10]).
\end{proof}

Let us show that the rank of a degenerate linear combination indicated in Theorem 2.2
cannot be made smaller in general.

\begin{proposition}
For every $k \in \mathbb{N}$ there exist operators $A_1, \ldots, A_k \colon \mathbb{R}^k \to \mathbb{R}^d$, where
d $d = k(k - 1)/2$, such that, for every vector $x \in \mathbb{R}^k$, the vectors $A_1 x, \ldots, A_k x$ are linearly
dependent, but for every nonzero vector $x = (x_1, \ldots, x_k)$ the operator $\sum_{i=1}^k x_i A_i$ has rank

\(k - 1 \). In particular, a nontrivial linear combination of \(A_1, \ldots, A_k \) cannot be of rank less than \(k - 1 \).

Proof. Let \(A_1, \ldots, A_k \) be certain operators from \(\mathbb{R}^k \) to \(\mathbb{R}^d \). Each operator \(A_i \) is represented by a matrix \((a_{ij}^{(k)})_{i,j \leq k} \) with \(k \) columns \(A_1^k, \ldots, A_k^k \), where \(A_i^j = (a_{ij}^{(k)}) \). We first choose matrices \(A_i \) such that \(A_i^j = 0 \) and

\[
\sum_{i=1}^{k} x_i A_i x = 0 \quad \forall x \in \mathbb{R}^k.
\]

The latter is equivalent to the following system of vector equations:

\[
A_i^j = -A_j^i, \quad i \neq j.
\]

Thus, we obtain \(d = \frac{k(k - 1)}{2} \) vector equations for \(k(k - 1) \) nonzero columns of the matrices \(A_i \). Therefore, once we define \(d \) columns (one column for every equation), the remaining columns will be uniquely determined from the equations.

Let us consider two cases: \(k \) is odd or \(k \) is even. Let \(k \) be odd, \(m = (k - 1)/2 \). In every matrix \(A_i \) we define \(m \) columns (the remaining columns will be determined from the equations) in the following way: \(A_i^j = e_{(i-1)m+j-i}, \) \(j = i + 1, \ldots, i + m \mod k \), where \(e_1, \ldots, e_d \) is the standard basis of \(\mathbb{R}^d \) and \(j \mod k \) means the integer number \(r \leq k \) with \(j = pk + r \). It is easily seen that for every \(s \in \{1, \ldots, d\} \) there exists a unique pair of columns \(A_i^j, A_j^i \) with \(a_{ij} \neq 0 \); for different \(s \) such pairs are different. Now let us fix a nonzero vector \(x \in \mathbb{R}^k \). Let \(y \in \text{Ker} \sum_{i=1}^{k} x_i A_i \). We obtain that \(x_i y_j - x_j y_i = 0 \) for all pairs \(i, j \), which yields the linear dependence of the vectors \(x \) and \(y \). Therefore, \(\text{dim} \left(\text{Ker} \sum_{i=1}^{k} x_i A_i \right) = 1 \), which means that the rank of \(\sum_{i=1}^{k} x_i A_i \) is \(k - 1 \).

For example, let \(k = 3 \). Then \(d = \frac{k(k - 1)}{2} = 3, \) \(m = (k - 1)/2 = 1 \). We have \(k(k - 1)/2 = 3 \) equations \(A_i^j = -A_j^i, \) \(i \neq j \). First we define one column in every matrix, which along with the equality \(A_i^j = 0 \) yields the following representation:

\[
\begin{pmatrix}
0 & 1 & A_1^{13} \\
0 & 0 & A_1^{23} \\
0 & 0 & A_1^{33}
\end{pmatrix}
, \quad
\begin{pmatrix}
A_2^{11} & 0 & 0 \\
A_2^{21} & 0 & 1 \\
A_2^{31} & 0 & 0
\end{pmatrix}
, \quad
\begin{pmatrix}
0 & A_3^{12} & 0 \\
0 & A_3^{22} & 0 \\
1 & A_3^{32} & 0
\end{pmatrix}.
\]

From the equations we find that

\[
A_1^3 = -A_3^1 = (0, 0, -1), \quad A_2^1 = -A_1^2 = (-1, 0, 0), \quad A_3^2 = -A_2^3 = (0, -1, 0),
\]

so that our matrices are

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}, \quad
\begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & 0 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]
Suppose now we have a nontrivial linear combination

\[A = x \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} + y \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \]

and a vector \(y = (a, b, c) \in \text{Ker} \ A \). Then

\[A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -ay + bx \\ yc - zb \\ -xc + za \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}. \]

Hence the vectors \((a, b, c)\) and \((x, y, z)\) are linearly dependent, so \(\text{dim} \ \text{Ker} \ A = 1 \) and the rank of \(A \) is 2.

In case of even \(k \) everything is similar. Let \(k = 2m \). In every matrix \(A_1, \ldots, A_{k-1} \) we define \(m \) columns in the following way. First, dealing with the columns \(A_1, \ldots, A_{k-1} \) and ignoring the last \(k-1 \) lines we define the matrix elements in the same way as for the odd number \(k' = k - 1 \). Next, in the \(i \)th matrix (excepting the last one) in the \(k \)th column we put 1 at the \((d - (k - 1) + i) \)th position and put 0 at the other positions. \(\square \)

Example 2.8. In case \(k = 3 \), we have a simple example of three linearly independent elements \(xy, x^2 - 1, y^2 - 1 \) of \(\mathcal{X}_2 \) on the plane with the standard Gaussian measure such that their gradients \((y, x), (2x, 0)\) and \((0, 2y)\) are linearly dependent at every point \((x, y)\) in the plane. Thus, their second derivatives are symmetric linearly independent operators whose values on every fixed vector are linearly dependent.

3. Convergence in law in the second Wiener chaos

Let us first recall some important known results.

Theorem 3.1. Let \(g_1, g_2, \ldots \) be a sequence of independent \(N(0, 1) \) random variables. Let \(F_n \) be a sequence of the form \(F_n = \sum_{k=1}^\infty \alpha_{k,n}(g_k^2 - 1) \) with \(\sum_{k=1}^\infty \alpha_{k,n}^2 = \frac{1}{2} \), i.e., \(E[F_n^2] = 1 \). Assume also that \(\sup_{k \geq 1} |\alpha_{k,n}| \to 0 \) as \(n \to \infty \). Then \(F_n \xrightarrow{\text{law}} N(0, 1) \) as \(n \to \infty \).

This result is a very special case of a classical extension of the Lindeberg theorem (see [6, Section 21] or [8, Section 21.2]) on convergence of a sequence of series \(F_n = \sum_{k=1}^\infty \xi_{k,n} \) with independent in every series centered random variables such that \(\sum_{k=1}^\infty E(\xi_{k,n}^2) = 1 \). The condition of convergence in law to the standard normal distribution is that

\[\sum_{k=1}^\infty E(\xi_{k,n}^2 I_{|\xi_{k,n}| \geq \epsilon}) \to 0 \quad \text{for every } \epsilon > 0. \]

In our case this condition is obviously satisfied, since

\[E[\alpha_{k,n}^2(g_k^2 - 1)I_{|g_k^2 - 1| \geq \epsilon/|\alpha_{k,n}|}] \leq \alpha_{k,n}^2 \sqrt{E[(g_k^2 - 1)^4]} \sqrt{P(|g_k^2 - 1| \geq \epsilon/|\alpha_{k,n}|)} \leq C \frac{|\alpha_{k,n}|^3}{\epsilon} \leq \frac{C}{\epsilon} \sup_{k \geq 1} |\alpha_{k,n}| \times \alpha_{k,n}^2, \]
where \(g \) has the standard normal distribution. It is worth noting that we could also use a recent result of Nualart and Peccati \cite{12} on convergence of distributions of multiple Wiener integrals.

We shall also need the following result of Peccati and Tudor \cite{13} (see also \cite{10} Chapter 6).

Theorem 3.2. Let \(k_1, k_2 \in \mathbb{N} \) be fixed and let \(k = k_1 + k_2 \). Suppose we are given standard normal variables \(g_{i,j,n}, 1 \leq i \leq k, j, n = 1, 2, \ldots \), such that, for each fixed \(n \), the variables \(g_{i,j,n} \) are jointly Gaussian and \(\mathbb{E}[g_{i,j,n}g_{i,j',n}] = 0 \) for any \(i \) whenever \(j \neq j' \). Let us consider random vectors \(F_n = (F_{1,n}, \ldots, F_{k,n}) \in \mathbb{R}^k \), where \(F_{i,n} = g_{i,1,n} \) if \(i = 1, \ldots, k_1 \) and

\[
F_{i,n} = \sum_{j=1}^{\infty} \lambda_{i,j,n}(g_{i,j,n}^2 - 1) \quad \text{if} \quad i = k_1 + 1, \ldots, k_1 + k_2,
\]

where \(\lambda_{i,j,n} \in \mathbb{R}, \sum_{j=1}^{\infty} \lambda_{i,j,n}^2 < \infty \).

Assume that a finite limit \(C_{i,j} := \lim_{n \to \infty} \mathbb{E}[F_{i,n}F_{j,n}] \) exists for all \(i, j \). Then the following two assertions are equivalent:

(a) \((F_{1,n}, \ldots, F_{k,n}) \xrightarrow{\text{law}} N_k(0, C) \) as \(n \to \infty \), where \(C = (C_{i,j})_{1 \leq i,j \leq k} \);

(b) \(F_{i,n} \xrightarrow{\text{law}} N_1(0, C_{i,i}) \) as \(n \to \infty \) for each \(i = k_1 + 1, \ldots, k_1 + k_2 \).

We now use Corollary 3.1 and Theorem 3.2 to prove Theorem 1.2.

Proof. We can assume that the limit of the distributions of \(F_n \) is not the Dirac mass at zero (otherwise the desired conclusion is trivial). It is known that convergence in law for a sequence of measurable polynomials of a fixed degree yields boundedness in all \(L^p \) (see, e.g., \cite{1} Lemma 1, \cite{5} Exercise 9.8.19 or \cite{12} Lemma 2.4). Therefore, without loss of generality we may assume that, for all \(i \) and \(n \),

\[
\sum_{k=1}^{\infty} \lambda_{i,k,n}^2 = \frac{1}{2},
\]

that is, \(\mathbb{E}[F_{i,n}^2] = 1 \) for all \(i \) and \(n \). We can also assume that

\[
|\lambda_{i,1,n}| \geq |\lambda_{i,2,n}| \geq \cdots.
\]

Finally, using a suitable diagonalization \`a la Cantor, we can assume that

\[
\lambda_{i,j,n} \to \mu_{i,j} \quad \text{as} \quad n \to \infty.
\]

By Fatou’s lemma we have \(C_i := \sum_{k=1}^{\infty} \mu_{i,k}^2 \leq \frac{1}{2} \). On the other hand, we claim that there exist natural numbers \(D_{i,n} \to \infty \) such that

\[
C_{i,n} := \sum_{k=1}^{D_{i,n}} (\lambda_{i,k,n} - \mu_{i,k})^2 \to 0 \quad \text{as} \quad n \to \infty. \tag{3.1}
\]

Indeed, let \(a_{i,k,n} = (\lambda_{i,k,n} - \mu_{i,k})^2 \). For every \(k \geq 1 \), let \(B_{i,k} \geq 1 \) be the smallest integer such that if \(n \geq B_{i,k} \), then \(a_{i,1,n} + \ldots + a_{i,k,n} \leq \frac{1}{k} \). It is clear that \((B_{i,k})_{k \geq 1} \) is an increasing sequence. Without loss of generality, one can assume that \(B_{i,k} \to \infty \) as \(k \to \infty \) (if \(B_{i,k} \not\to \infty \), then \(B_{i,k} = B_{i,\infty} \) for all \(k \) large enough, which means that \(a_{i,1,n} + \ldots + a_{i,N,n} \leq \frac{1}{k} \)),
for all $n \geq B_{1,\infty}$ and all N; then $a_{i,j,n} = 0$ for all j and all $n \geq B_{i,\infty}$, so that the existence of $D_{i,n}$ becomes obvious. Set $D_{i,n} = \sup\{k: B_{i,k} \leq n\}$. In particular, one has $B_{D_{i,n},n} \leq n$, implying in turn that $a_{i,1,n} + \ldots + a_{i,D_{i,n},n} \leq \frac{1}{D_{i,n}}$. Moreover, $D_{i,n} \uparrow \infty$ (since $n < B_{i,D_{i,n},n} + 1$; if $D_{i,n} \not\to \infty$, then $D_{i,n} = D_{i,\infty}$ for n large enough, which is absurd when $n \to \infty$).

It is clear from (3.1) that
\[
\sum_{j=1}^{D_{i,n}} \lambda_{i,j,n}(g_{i,j,n}^2 - 1) \overset{\text{law}}{=} \sum_{j=1}^{D_{i,n}} \lambda_{i,j,n}(g_{i,j,1}^2 - 1) \to \sum_{j=1}^\infty \mu_{i,j}(g_{i,j,1}^2 - 1) \quad \text{as } n \to \infty.
\]

On the other hand, we claim that
\[
\sum_{j=D_{i,n}+1}^\infty \lambda_{i,j,n}(g_{i,j,n}^2 - 1) \overset{\text{law}}{=} N(0, 1 - 2C_i).
\]

Indeed, if $C_i = \frac{1}{2}$, then
\[
\sum_{j=1}^\infty (\lambda_{i,j,n} - \mu_{i,j})^2 = 2 \sum_{j=1}^\infty (\mu_{i,j} - \lambda_{i,j,n})\mu_{i,j}
\leq 2 \sum_{j=1}^N |\mu_{i,j} - \lambda_{i,j,n}| + 2 \left(\sum_{j=1}^\infty |\mu_{i,j} - \lambda_{i,j,n}|^2 \right)^{1/2} \left(\sum_{j=N+1}^\infty \mu_{i,j}^2 \right)^{1/2}
\leq 2 \sum_{j=1}^N |\mu_{i,j} - \lambda_{i,j,n}| + 2\sqrt{2} \left(\sum_{j=N+1}^\infty \mu_{i,j}^2 \right)^{1/2},
\]
so that
\[
\limsup_{n \to \infty} \sum_{j=1}^\infty (\lambda_{i,j,n} - \mu_{i,j})^2 \leq 2\sqrt{2} \left(\sum_{j=N+1}^\infty \mu_{i,j}^2 \right)^{1/2},
\]
whence it follows that $\sum_{k=1}^\infty (\lambda_{i,j,n} - \mu_{i,j})^2 \to 0$ as $n \to \infty$. As a result, one has
\[
\sum_{j=D_{i,n}+1}^\infty \lambda_{i,j,n}^2 \leq 2 \sum_{j=1}^\infty (\lambda_{i,j,n} - \mu_{i,j})^2 + 2 \sum_{j=D_{i,n}+1}^\infty \mu_{i,j}^2 \to 0
\]
and (3.2) is shown whenever $C_i = \frac{1}{2}$. Assume now that $C_i < \frac{1}{2}$. Since $D_{i,n} \to \infty$ and
\[
D_{i,n} \lambda_{i,D_{i,n},+1,n}^2 \leq \lambda_{i,1,n}^2 + \ldots + \lambda_{i,D_{i,n},n}^2 \leq \frac{1}{2},
\]
we obtain that $\lambda_{i,D_{i,n},+1,n} \to 0$ as $n \to \infty$. Let us consider the variables
\[
G_{i,n} = \frac{1}{\sqrt{1 - 2C_i}} \sum_{j=D_{i,n}+1}^\infty \lambda_{i,j,n}(g_{i,j,n}^2 - 1).
\]
It is readily verified that $\mathbb{E}[G_{i,n}^2] = 1$ for all n and that
\[
\sup_{j \geq D_{i,n}+1} \frac{|\lambda_{i,j,n}|}{\sqrt{1 - 2C_{i,n}}} \leq \frac{|\lambda_{i,D_{i,n}+1,n}|}{\sqrt{1 - 2C_{i,n}}} \to 0 \quad \text{as} \quad n \to \infty.
\]
By Theorem 3.1 we obtain that $G_{i,n} \xrightarrow{\text{law}} N(0,1)$, which yields in turn that (3.2) holds true whenever $C_i < \frac{1}{2}$.

Extracting a subsequence, we may assume that a finite limit
\[
\alpha_{i,i',j,j'} := \lim_{n \to \infty} \mathbb{E}[g_{i,j,n}g_{i',j',n}]
\]
exists for all i, i', j, j'. Note that $\alpha_{i,i,j,j'} = \delta_{jj'}$, where $\delta_{jj'}$ is the Kronecker symbol. Let
\[
\mathbf{g}_\infty = (g_{i,j,\infty})_{i=1, \ldots, d, j=1, \ldots, 2}\]
be a centered Gaussian family satisfying $\mathbb{E}[g_{i,j,\infty}g_{i',j',\infty}] = \alpha_{i,i',j,j'}$. By (3.2), (3.3) and Theorem 3.2, we obtain (possibly, passing to a subsequence) that, for any fixed $m \geq 1$, as $n \to \infty$
\[
(\mathbf{g}_{1,1,n}, \ldots, \mathbf{g}_{1,m,n}, \ldots, \mathbf{g}_{d,1,n}, \ldots, \mathbf{g}_{d,m,n}, \mathbf{V}_n) \xrightarrow{\text{law}} (\mathbf{g}_{1,1,\infty}, \ldots, \mathbf{g}_{1,m,\infty}, \ldots, \mathbf{g}_{d,1,\infty}, \ldots, \mathbf{g}_{d,m,\infty}, \mathbf{\hat{g}}),
\]
where $\mathbf{\hat{g}} := (\mathbf{\hat{g}}_1, \ldots, \mathbf{\hat{g}}_d)$ is centered Gaussian and independent of \mathbf{g}_∞. Let us now introduce some additional notation. For any $n, m \geq 1$, set
\[
\mathbf{U}_n = \left(\sum_{j=1}^{D_{i,n}} \lambda_{i,j,n}(g_{i,j,n}^2 - 1), \ldots, \sum_{j=1}^{D_{d,n}} \lambda_{d,j,n}(g_{d,j,n}^2 - 1) \right),
\]
\[
\mathbf{V}_n = \left(\sum_{j=D_{i,n}+1}^{\infty} \lambda_{i,j,n}(g_{i,j,n}^2 - 1), \ldots, \sum_{j=D_{d,n}+1}^{\infty} \lambda_{d,j,n}(g_{d,j,n}^2 - 1) \right),
\]
\[
\mathbf{W}_{m,n} = \left(\sum_{j=1}^{m} \mu_{i,j}(g_{i,j,n}^2 - 1), \ldots, \sum_{j=1}^{m} \mu_{d,j}(g_{d,j,n}^2 - 1) \right) \quad \text{(here $n = \infty$ is possible)},
\]
\[
\mathbf{Z}_\infty = \left(\sum_{j=1}^{\infty} \mu_{i,j}(g_{i,j,\infty}^2 - 1), \ldots, \sum_{j=1}^{\infty} \mu_{d,j}(g_{d,j,\infty}^2 - 1) \right).
\]
As an immediate consequence of (3.4), we have
\[
\lim_{n \to \infty} \text{dist}(\mathbf{W}_{m,n}, \mathbf{V}_n; \mathbf{W}_{m,\infty}, \mathbf{\hat{g}}) = 0 \quad \text{for any fixed} \quad m,
\]
where dist stands for any distance that metrizes convergence in probability (such as the Fortet–Mourier distance for instance). On the other hand, since
\[
\lim_{n,m \to \infty} \mathbb{E}[\|\mathbf{U}_n - \mathbf{W}_{m,n}\|^2] = 0, \quad \lim_{m \to \infty} \mathbb{E}[\|\mathbf{W}_{m,\infty} - \mathbf{Z}_\infty\|^2] = 0,
\]
where the usual norm in \mathbb{R}^d is used, we have
\[
\lim_{n,m \to \infty} \text{dist}(\mathbf{U}_n, \mathbf{V}_n; (\mathbf{W}_{m,n}, \mathbf{V}_n)) = 0, \quad \lim_{m \to \infty} \text{dist}(\mathbf{W}_{\infty,m}, \mathbf{\hat{g}}; (\mathbf{Z}_\infty, \mathbf{\hat{g}})) = 0.
\]
By combining (3.5) and (3.6) with
\[\text{dist}((U_n, V_n); (Z_\infty, \hat{g})) \leq \text{dist}((U_n, V_n); (W_{m,n}, V_n)) + \text{dist}((W_{m,n}, V_n); (W_{m,\infty}, \hat{g})) \]
\[+ \text{dist}((W_{m,\infty}, \hat{g}); (Z_\infty, \hat{g})), \]
we get that \(\lim_{n \to \infty} \text{dist}((U_n, V_n); (Z_\infty, \hat{g})) = 0 \), which yields the desired conclusion. \(\Box \)

It should be noted that Theorem 1.2 generalizes the Arcones theorem to the multidimensional case, but it is not known whether in the one-dimensional case the set of distributions of measurable polynomials of a fixed degree \(k > 2 \) is closed.

Acknowledgement. This work was supported by the RFBR projects 12-01-33009 and 11-01-12104-ofi-m, as well as the (french) ANR grant ‘Malliavin, Stein and Stochastic Equations with Irregular Coefficients’ [ANR-10-BLAN-0121].

References