Optical properties of single-layer, double-layer, and bulk MoS$_2$

Alejandro Molina-Sánchez, Ludger Wirtz, Davide Sangalli, Andrea Marini, Kerstin Hummer

UNIVERSITY OF LUXEMBOURG
Physics and Material Sciences Research Unit (PHYMS)
Single-layer semiconductors

From graphene to a new *family of materials*

- **Graphene**: No bandgap, $E_F \approx 6$ eV
- **Hexagonal boron nitride**: No bandgap
- **Molybdenum disulfide**: $E_F \approx 1.9$ eV
Single-layer semiconductors

From graphene to a new family of materials

Graphene

No bandgap

E_F

Hexagonal boron nitride

$\sim 1.9 \text{ eV}$

Molybdenum disulfide

$\sim 6 \text{ eV}$

The bandgap and the high mobility makes MoS$_2$ a suitable alternative to graphene or carbon nanotubes.

Appealing for transistors, tunable photo-thermoelectric effect, field-effect transistors ...

Spin-orbit coupling and class of symmetry lead to the spin and valley Hall effects of electrons and holes

Broad variety: MoSe$_2$, WS$_2$, MoSe$_2$

Transition metal dichalcogenides
Single-layer semiconductors

Crystal symmetry determines the electronic structure and optical properties.

Single-layer (D\textsubscript{3h})
- No inversion symmetry
 - SO inter. splits the valence bands

Double-layer and bulk (D\textsubscript{6h})
- Inversion symmetry
 - Interlayer inter. and SO splits the VB
Transition metal dichalcogenides
Single-layer semiconductors

Crystal symmetry determines the electronic structure and optical properties

Single-layer (D_{3h})
No inversion symmetry

Double-layer and bulk (D_{6h})
Inversion symmetry

SO inter. splits the valence bands
Interlayer inter. and SO splits the VB

VB splitting is exhibited in the PL and absorption by a two peaks structure

Control of the light polarization helicity by tuning the excitation energy (valley physics).

Transition metal dichalcogenides
Single-layer semiconductors

Crystal symmetry determines the electronic structure and optical properties

Single-layer (D_{3h})
No inversion symmetry

- CB
- VB

SO inter. splits the valence bands

Double-layer and bulk (D_{6h})
Inversion symmetry

- CB
- VB

Interlayer inter. and SO splits the VB

Control of the light polarization helicity by tuning the excitation energy (valley physics).

We have studied the electronic structure and the optical properties of MoS$_2$, and the dependence on the number of layers on the excitonic effects.

MoS$_2$. Band Structure. LDA and GW method

Correction of LDA bandgap underestimation by means of the GW method (spin-orbit interaction is included).
MoS$_2$. Band Structure. LDA and GW method

Correction of LDA bandgap underestimation by means of the GW method (spin-orbit interaction is included).

Electronic correlation is very sensitive to variations in dielectric screening.

The addition of more layers changes the dielectric screening, the symmetry and the interlayer interaction.

MoS$_2$. Band Structure. LDA and GW method

Correction of LDA bandgap underestimation by means of the GW method (spin-orbit interaction is included).

Electronic correlation is very sensitive to variations in dielectric screening.

The addition of more layers changes the dielectric screening, the symmetry and the interlayer interaction.

The GW correction is mainly a rigid shift of the conduction band. The correction is smaller when the number of layers increases (screening of the electron correlation).

Bandgap extremely sensitive to lattice optimization

The addition of more layers pushes up the valence band at Γ, making double-layer and bulk MoS$_2$ indirect SCs. Excitonic effect on the optical properties...

MoS_2. Excitonic Effects. Bethe-Salpeter Equation

Coulomb e-h interaction forms the exciton

$$H_{\text{exc}}^{(n_1,n_2),(n_3,n_4)} = \left(E_{n_2} - E_{n_1} \right) \delta_{(n_1,n_3),(n_2,n_4)}$$

Energy difference

Bethe-Salpeter Kernel

$$\Xi_{K_1K_2} = -iV_{K_1K_2} + iW_{K_1K_2}$$

Unscreened short ranged exchange interaction

Screened coulomb interaction

$K \equiv (c, v, k)$
MoS\textsubscript{2}. Excitonic Effects. Bethe-Salpeter Equation

Coulomb e-h interaction forms the exciton

\[H^{\text{exc}}_{(n_1,n_2),(n_3,n_4)} = (E_{n_2} - E_{n_1}) \delta_{(n_1,n_3)} \delta_{(n_2,n_4)} + i(f_{n_2} - f_{n_1}) \Xi_{(n_1,n_2),(n_3,n_4)} \]

Energy difference

Bethe-Salpeter Kernel

\[\Xi_{K_1K_2} = -iV_{K_1K_2} + iW_{K_1K_2} \]

Unscreened short ranged exchange interaction

Screened coulomb interaction

Key issue in reliable results: convergence in number of conduction and valence band states and k-points!
MoS$_2$. Excitonic Effects. Bethe-Salpeter Equation

Coulomb e-h interaction forms the exciton X_A and X_B:

$$H^{exc}_{(n_1,n_2),(n_3,n_4)} = (E_{n_2} - E_{n_1})\delta_{(n_1,n_3)}\delta_{(n_2,n_4)} + i(f_{n_2} - f_{n_1})\Xi_{(n_1,n_2),(n_3,n_4)}$$

Energy difference

Bethe-Salpeter Kernel

$$\Xi_{K_1K_2} = -iV_{K_1K_2} + iW_{K_1K_2}$$

Unscreened short ranged exchange interaction

Screened coulomb interaction

Key issue in reliable results: convergence in number of conduction and valence band states and k-points!

Lack of convergence in k-points normally overestimate the exciton binding energy.

The k-sampling is directly related to the numbers of unit cells employed to map the exciton wave functions.

Low k-sampling gives also artifacts in the optical absorption.
The exciton binding energy decreases with the number of layers. Consequence of larger dielectric screening. This compensates partially the GW correction.
MoS$_2$. Excitonic Effects. Bethe-Salpeter Equation

The exciton binding energy decreases with the number of layers. Consequence of larger dielectric screening. This compensates partially the GW correction.

For single-layers (around 3 eV) the absorption gains in efficiency (strongly bound exciton).

The theoretical spectra captures nicely the peaks separation for all the cases.
MoS$_2$. Excitonic Effects. Bethe-Salpeter Equation

The intensity of the optical absorption is related with the localization of the excitons.
The intensity of the optical absorption is related with the localization of the excitons.

For bulk, the exciton is confined in only one layer, due to the large interlayer distance.

We can appreciate the shape of the d-orbitals in the excitonic wavefunction.
Conclusions and ongoing work

- The bandgap (direct or indirect) depends critically on the number of layers and lattice optimization.

- Importance of convergence for reliable results.

- Excitonic effects are stronger in environments with small dielectric constant (single-layers).

- Further studies will deal with strained layers and the influence on the optical response (tunability of the bandgap).
Acknowledgements

Kerstin Hummer, University of Vienna.

Davide Sangalli and Andrea Marini, Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome Italy.
Thank you for your attention!